Research Article

Multipulse Homoclinic Orbits and Chaotic Dynamics of a Reinforced Composite Plate with Carbon Nanotubes

Fengxian An,1 Fangqi Chen,2,3 Xiaoxia Bian,4 and Li Zhang5

1Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaiian 223003, China
2Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
4School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051, China
5School of Mathematics and Physics, Anhui University of Technology, Ma’anshan 243002, China

Correspondence should be addressed to Fengxian An; anfengxian@nuaa.edu.cn

Received 8 January 2020; Revised 6 March 2020; Accepted 7 March 2020; Published 29 April 2020

Academic Editor: Roman Lewandowski

Copyright © 2020 Fengxian An et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The multipulse homoclinic orbits and chaotic dynamics of a reinforced composite plate with the carbon nanotubes (CNTs) under combined in-plane and transverse excitations are studied in the case of 1 : 1 internal resonance. The method of multiple scales is adopted to derive the averaged equations. From the averaged equations, the normal form theory is applied to reduce the equations to a simpler normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method proposed by Haller and Wiggins is utilized to examine the global bifurcations and chaotic dynamics of the CNT-reinforced composite plate. The analytical results demonstrate that the multipulse Shilnikov-type homoclinic orbits and chaotic motions exist in the system. Homoclinic trees are constructed to illustrate the repeated bifurcations of multipulse solutions. In order to verify the theoretical results, numerical simulations are given to show the multipulse Shilnikov-type chaotic motions in the CNT-reinforced composite plate. The results obtained here imply that the motion is chaotic in the sense of the Smale horseshoes for the CNT-reinforced composite plate.

1. Introduction

Carbon nanotubes (CNTs), as a new type of advanced materials, have attracted a lot of attention of researchers. This is because CNTs possess high strength and stiffness with high aspect ratio and low density. Due to these properties of CNTs, a number of studies on the nonlinear vibrations and dynamic responses of CNT-reinforced composite plates have been carried out by many researchers in recent years. By employing an equivalent continuum model, Formica et al. [1] investigated the vibration behaviors of CNT-reinforced composite plates. Zhu et al. [2] presented the bending and free vibration analysis of CNT-reinforced composite plates using the finite element method based on the first-order shear deformation plate theory. In their work, the authors showed the effects of the volume fractions of CNTs and the edge-to-thickness ratios on the bending responses, natural frequencies, and mode shapes of the plates. In addition, Wang and Shen [3] examined the nonlinear dynamic response of CNT-reinforced composite plates resting on elastic foundations in thermal environments. The motion equations were derived based on a higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity. In [4], a mixed Navier-layerwise differential quadrature method was employed by Malekzadeh and Heydarpour for the free vibration and static response analysis of functionally graded carbon nanotube- (FG-CNT-) reinforced composite laminated plates. Based on the conventional Ritz method accompanied with the Lagrangian multiplier technique, Kiani [5] analyzed the free vibration characteristics of FG-CNT-reinforced composite plates located on point supports. Rafiee et al. [6] applied Galerkin’s method to deal with the nonlinear dynamic stability of initially imperfect
piezoelectric FG-CNT-reinforced composite plates under combined thermal and electrical loadings. Using the Fourier series expansion and state-space technique, Alibeigloo and Liew [7] investigated the bending behavior of FG-CNT-reinforced composite plates with simply supported edges subjected to thermomechanical loads. Subsequently, this work was extended by Alibeigloo and Emtehani [8] for various boundary conditions by employing the differential quadrature method. Recently, Zhang et al. [9] carried out the analysis of geometrically nonlinear large deformation of triangular FG-CNT-reinforced composite plates using the element-free improved moving least-squares Ritz (IMLS-Ritz) method.

In addition, with the increasing applications of functionally graded materials (FGM) in modern technology, the buckling and vibration analysis of FGM structures began to attract a widespread attention. Thus, many studies on the buckling and vibration analysis of FGM shells have been published in the literature. Zhang and Li [10] discussed the dynamic buckling of FGM truncated conical shells subjected to normal impact loads. Bagherizadeh et al. [11] investigated the mechanical buckling of simply-supported FGM cylindrical shells using third-order shear deformation shell theory. They found that system parameters have great influence on the buckling characteristics of FGM shells. Buckling behavior analysis based on Reddy’s high-order shear deformation theory has also been performed by Sun et al. [12] for FGM cylindrical shells subjected to an axial compression in the thermal environment. In recent years, there have been some numerical methods for analyzing the plates and shells. The multiquadric radial basis function (MQ) method was developed and applied by Ferreira [13] to discuss the effects of system parameters on the laminated composite plates. The method of discrete singular convolution (DSC) gives a fast and accurate solution of the mathematical physics and engineering problems. Then, Civalek and his coworkers made a number of remarkable studies using the DSC method; such investigations involved the analysis of composite conical shells and panels [14–16], plates on elastic foundations [17, 18], and so on.

However, in the course of our study, we found that there are only few studies on the global bifurcations and multipulse chaotic dynamics for the CNT-reinforced composite plate. In order to eliminate or suppress large nonlinear vibrations and chaotic motions of the CNT-reinforced composite plate, we should deepen and complete the theoretical analysis on the CNT-reinforced composite plate model, discuss the complex dynamic behaviors, explore the existence conditions of the multipulse Shilnikov-type orbits, and analyze the impact of parameters on the system, so as to ensure the stability and controllability of the CNT-reinforced composite plate. The present work is therefore motivated to examine the global bifurcations and multipulse chaotic dynamics of the CNT-reinforced composite plate considered by Guo and Zhang [19]. The energy-phase method developed by Haller and Zhang [19], the axial and transverse displacement fields at any point for the CNT-reinforced composite plate are given as

\[u(x, y, t) = u_0(x, y, t) + z\varphi_x(x, y, t) - z^3 \frac{4}{3h} \left(\varphi_x + \frac{\partial u_y}{\partial x} \right), \]

\[v(x, y, t) = v_0(x, y, t) + z\varphi_y(x, y, t) - z^3 \frac{4}{3h} \left(\varphi_y + \frac{\partial u_x}{\partial y} \right), \]
where \(u_0, v_0, \) and \(w_0 \) represent the displacements at the midplane of the plate in the \(x, y, \) and \(z \) directions. \(\varphi_x \) and \(\varphi_y \) denote the rotations of the transverse normal at the midplane about the \(x \) and \(y \) axes. Employing the von Kármán-type plate theory and in terms of the displacements, the strains \(\epsilon_i (i = xx, yy) \) and the curvatures \(\gamma_i (i = xy, yz, zx) \) in the midplane can be expressed as

\[
\epsilon_{xx} = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2,
\]

\[
\epsilon_{yy} = \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2,
\]

\[
\gamma_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right),
\]

\[
\gamma_{yz} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right),
\]

\[
\gamma_{zx} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right).
\]

The force and moment resultants associated with the strains and curvatures of the plate constitutive equations are

\[
\begin{align*}
N_{x,x} &+ N_{x,y,y} = I_0 \ddot{u}_0 + \left(\tilde{I}_1 - \frac{4}{3h} \tilde{I}_3 \right) \dddot{\varphi}_x - \frac{4}{3h} \dddot{\varphi}_y, \\
N_{y,y} &+ N_{x,x,x} = I_0 \ddot{v}_0 + \left(\tilde{I}_1 - \frac{4}{3h} \tilde{I}_3 \right) \dddot{\varphi}_y - \frac{4}{3h} \dddot{\varphi}_x,
\end{align*}
\]

\[
\begin{align*}
\left(N_{y,y} \frac{\partial \omega_0}{\partial y} + N_{x,x} \frac{\partial \omega_0}{\partial x} + N_{x} \frac{\partial^2 \omega_0}{\partial x^2} + N_{y,y} \frac{\partial \omega_0}{\partial y} + N_{x,y} \frac{\partial \omega_0}{\partial x} + 2N_{x,y} \frac{\partial^2 \omega_0}{\partial y \partial x} \right) \\
+ \frac{4}{3h} \left(P_{x,x} + 2P_{x,y} + P_{y,y} \right) - \frac{4}{h} \left(R_{x,x} + R_{y,y} \right) - \rho \ddot{w}_0 + (Q_{x,x} + Q_{y,y}) + F \end{align*}
\]

\[
= I_0 \dddot{\omega}_0 + \frac{4}{3h} \tilde{I}_1 \left(\frac{\partial \ddot{u}_0}{\partial x} + \frac{\partial \ddot{v}_0}{\partial y} \right) - \left(\frac{4}{3h} \right) \tilde{I}_4 \left(\frac{\partial^2 \dot{\varphi}_0}{\partial x^2} + \frac{\partial^2 \dot{\varphi}_0}{\partial y^2} \right) + \frac{4}{3h} \tilde{I}_6 \left(\frac{\partial \dddot{\varphi}_x}{\partial x} + \frac{\partial \dddot{\varphi}_y}{\partial y} \right).
\]
Substituting the stress resultants of equations (1a)–(1c), (2), and (3a)–(3e) into equations (4a)–(4e), the governing equations of motion for the CNT-reinforced composite plate in terms of generalized displacements are derived as follows [19]:
\[A_{26} \frac{\partial^2 y_0}{\partial x \partial y} + \left(A_{12} + A_{66} \right) \frac{\partial^2 u_0}{\partial x \partial y} \frac{\partial w_0}{\partial y} + (c_1 F_{11} - c_1^2 H_{11}) \frac{\partial^2 \varphi_x}{\partial y^2} + \left(c_1 F_{26} - c_1^2 H_{26} \right) \frac{\partial^2 \varphi_x}{\partial x^2} + c_1 \left(3 F_{16} - c_1 H_{16} \right) \frac{\partial^3 \varphi_x}{\partial x^2 \partial y} \\
+ c_1 \left(F_{21} + 2 F_{66} - c_1 H_{21} - c_1 H_{66} \right) \frac{\partial^3 \varphi_x}{\partial x \partial y^2} + \left(A_{45} - 2 c_1 D_{45} + c_1^2 F_{45} \right) \frac{\partial \varphi_x}{\partial y} + \left(A_{55} - c_1 D_{55} + c_1^2 F_{55} \right) \frac{\partial^2 \varphi_x}{\partial x} \\
+ c_1 \left(F_{22} - c_1 H_{22} \right) \frac{\partial^3 \varphi_y}{\partial y^3} + c_1 \left(F_{16} + c_1 H_{16} \right) \frac{\partial^3 \varphi_y}{\partial x^3} + \left(F_{12} + 2 F_{66} - c_1 H_{21} - c_1 H_{66} \right) \frac{\partial^3 \varphi_y}{\partial x^2} \\
+ c_1 \left(3 F_{26} - c_1 H_{26} \right) \frac{\partial^3 \varphi_y}{\partial x \partial y^2} + \left(A_{45} - c_1 D_{45} + c_1^2 F_{45} \right) \frac{\partial \varphi_y}{\partial x} + \left(A_{44} - c_1 D_{44} + c_1^2 F_{44} \right) \frac{\partial \varphi_y}{\partial y} + F \cos \Omega t - \mu \dot{w}_0 \\
\]

\[= 0 \frac{\partial^2 \ddot{w}_0}{\partial t^2} + c_1 I_6 \left(\frac{\partial^2 \ddot{w}_0}{\partial x^2} + \frac{\partial^2 \ddot{w}_0}{\partial y^2} \right) + c_1 I_3 \left(\frac{\partial \ddot{w}_0}{\partial x} + \frac{\partial \ddot{w}_0}{\partial y} \right), \]

\[(D_{11} - 2 c_1 F_{11} + c_1^2 H_{11}) \frac{\partial^2 \varphi_x}{\partial x^2} + \left(D_{66} - 2 c_1 F_{66} + c_1^2 H_{66} \right) \frac{\partial^2 \varphi_x}{\partial y^2} + \left(D_{16} - 2 c_1 F_{16} + c_1^2 H_{16} \right) \frac{\partial^2 \varphi_y}{\partial x^2} \\
+ \left(22 - 2 c_1 F_{22} + c_1^2 H_{22} \right) \frac{\partial^2 \varphi_y}{\partial x \partial y} + \left(D_{21} + 2 c_1 F_{21} - 2 c_1^2 H_{21} \right) \frac{\partial^2 \varphi_x}{\partial x} + \left(-A_{55} + 2 c_1 D_{55} - c_1^2 F_{55} \right) \frac{\partial \varphi_x}{\partial y} \\
+ \left(-A_{45} + 2 c_1 D_{45} - c_1^2 F_{45} \right) \varphi_y + \left(c_1^2 H_{11} - c_1 F_{11} \right) \frac{\partial^3 \varphi_x}{\partial y^3} + \left(c_1^2 H_{26} - c_1 F_{26} \right) \frac{\partial \varphi_y}{\partial x^2} \\
+ \left(-A_{55} + 2 c_1 D_{55} - c_1^2 F_{55} \right) \frac{\partial \varphi_y}{\partial x} + \left(-A_{45} + 2 c_1 D_{45} - c_1^2 F_{45} \right) \frac{\partial \varphi_y}{\partial y} \]

\[= \left(I_2 - \frac{4}{3^2} I_4 \right) \ddot{w}_0 - \frac{4}{3^2} \left(I_5 - \frac{4}{3^2} I_7 \right) \dddot{w}_0 + \left(I_3 - \frac{8}{3^2} I_5 + \frac{16}{9^2} I_7 \right) \dot{\varphi}_y, \]

\[(D_{16} - 2 c_1 F_{16} + c_1^2 H_{16}) \frac{\partial^2 \varphi_x}{\partial x^2} + \left(D_{26} - 2 c_1 F_{26} + c_1^2 H_{26} \right) \frac{\partial^2 \varphi_x}{\partial y^2} + \left(D_{66} - 2 c_1 F_{66} + c_1^2 H_{66} \right) \frac{\partial^2 \varphi_y}{\partial x^2} + \left(D_{22} - 2 c_1 F_{22} + c_1^2 H_{22} \right) \frac{\partial^2 \varphi_y}{\partial y^2} \\
+ \left(D_{22} + 2 c_1 F_{22} + c_1^2 H_{22} \right) \frac{\partial^3 \varphi_y}{\partial x \partial y^2} + \left(D_{21} + 2 c_1 F_{21} - 2 c_1^2 H_{21} \right) \frac{\partial^3 \varphi_x}{\partial x^2 \partial y} - \left(A_{45} - 2 c_1 D_{45} + c_1^2 F_{45} \right) \varphi_y - \left(A_{55} - 2 c_1 D_{55} + c_1^2 F_{55} \right) \varphi_y + \left(c_1^2 H_{16} - c_1 F_{16} \right) \frac{\partial^3 \varphi_x}{\partial x^3} + \left(c_1^2 H_{21} - c_1 F_{21} \right) \frac{\partial^3 \varphi_y}{\partial x^2} \\
+ \left(2 c_1^2 H_{66} - c_1^2 H_{66} - c_1 F_{21} - c_1 F_{21} \right) \frac{\partial^3 \varphi_y}{\partial x^2 \partial y} - \left(c_1^2 H_{26} + c_1 F_{26} \right) \frac{\partial \varphi_y}{\partial x} - \left(A_{45} - 2 c_1 D_{45} + \frac{16}{h} \right) \frac{\partial \varphi_y}{\partial x} \\
- \left(A_{55} - \frac{8}{h} D_{55} + \frac{16}{h^2} F_{55} \right) \frac{\partial \varphi_y}{\partial y} = \left(I_2 - c_1 I_4 \right) \ddot{w}_0 - c_1 \left(I_5 - c_1 I_7 \right) \dddot{w}_0 + \left(I_3 - 2 c_1 I_5 + c_1 I_7 \right) \dot{\varphi}_y, \]

where \(\mu \) is the damping coefficient, and all the other coefficients can be found in [19]. The associated boundary conditions for the simply-supported CNT composite plate can be written as

\[\nu = \omega = 0, \]
\[\varphi_x = 0, \]
\[M_{xx} = N_{xy} = 0, \]
\[y = 0, b, \]
\[\int_0^h N_{xx(x=0)} dz = - \int_0^h (F_0 - F_1 \cos \Omega t) dz. \]

Also, the following nondimensional parameters are introduced:
\[u_0 = \frac{u_0}{a} \]
\[v_0 = \frac{v_0}{b} \]
\[\bar{w}_0 = \frac{w_0}{h} \]
\[\bar{\varphi}_x = \varphi_x, \]
\[\bar{\varphi}_y = \varphi_y, \]
\[\bar{x} = \frac{x}{a}, \]
\[\bar{y} = \frac{y}{b}, \]
\[I_i = \frac{1}{L^{i-1} \rho} L_i, \]
\[F = \frac{(ab)^{(7/2)}}{Eh^7} F, \]
\[P = \frac{v^2}{Eh^3} P, \]
\[\bar{\rho} = \frac{1}{\sqrt{\rho E}} \frac{a^2 b^2}{\pi^2 h^2} \rho, \]
\[T = \frac{1}{L} \sqrt{\frac{E}{\rho}}, \]
\[[A_{ij}] = \frac{(ab)^{(1/2)}}{Eh^2} [A_{ij}], \]
\[[D_{ij}] = \frac{(ab)^{(1/2) \times 1}}{Eh^4} [D_{ij}], \]
\[[F_{ij}] = \frac{(ab)^{(1/2) \times 1}}{Eh^4} [F_{ij}], \]
\[[H_{ij}] = \frac{(ab)^{(1/2) \times 1}}{Eh^4} [H_{ij}], \]
\[(i = 1, 2, 3, 4, 5, 6; j = 1, 2, 3, 4, 5, 6). \]

In this paper, our research is focused on the multipulse global bifurcations and chaotic dynamics of the CNT composite plate in its first two modes. Hence, we express \(w \) in the following form:
\[w_0 = w_1 \sin \frac{3\pi x}{a} \sin \frac{\pi y}{b} + w_2 \sin \frac{\pi x}{a} \sin \frac{3\pi y}{b}, \quad (8) \]
where \(w_1 \) and \(w_2 \) are the amplitudes of two modes. The other variables and transverse excitation are given as
\[u_0 = u_1 \sin \frac{3\pi x}{a} \cos \frac{\pi y}{b} + u_2 \sin \frac{\pi x}{a} \cos \frac{3\pi y}{b}, \quad (9a) \]
\[v_0 = v_1 \cos \frac{3\pi x}{a} \sin \frac{\pi y}{b} + v_2 \cos \frac{\pi x}{a} \sin \frac{3\pi y}{b}, \quad (9b) \]
\[\varphi_x = \varphi_1 \cos \frac{3\pi x}{a} \sin \frac{\pi y}{b} + \varphi_2 \cos \frac{\pi x}{a} \sin \frac{3\pi y}{b}, \quad (9c) \]
\[\varphi_y = \varphi_3 \sin \frac{3\pi x}{a} \cos \frac{\pi y}{b} + \varphi_4 \sin \frac{\pi x}{a} \cos \frac{3\pi y}{b}, \quad (9d) \]
\[F = F_1 \sin \frac{3\pi x}{a} \sin \frac{\pi y}{b} + F_2 \sin \frac{\pi x}{a} \sin \frac{3\pi y}{b}. \quad (9e) \]

Then, substituting these expressions into equations (5a)–(5e) and applying the Galerkin integration procedure, we can obtain the displacements \(u_0, v_0, \varphi_x, \) and \(\varphi_y \) with respect to \(w_0 \). Consequently, the nonlinear ordinary differential equations of this system in terms of transverse displacements are derived. According to the results of convergence studies given by Hao et al. [30], the dimensionless equations of motion for the CNT-reinforced composite plate in the first two modes are derived as [19]
\[\ddot{w}_1 + \mu \dot{w}_1 + \omega_1^2 w_1 + a_1 w_1 \cos \Omega_1 t + a_2 w_2^3 + a_3 w_2^5 + a_4 w_1^7 w_2 + a_5 w_1^2 w_2 + a_6 w_1 w_2 + a_7 w_2^3 + a_8 w_2^5 = f_1 \cos \Omega_1 t, \quad (10a) \]
\[\ddot{w}_2 + \mu \dot{w}_2 + \omega_2^2 w_2 + b_1 w_2 \cos \Omega_1 t + b_2 w_1^3 + b_3 w_1^5 + b_4 w_1^7 w_2 + b_5 w_1^2 w_2 + b_6 w_1 w_2 + b_7 w_2^3 + b_8 w_2^5 = f_2 \cos \Omega_1 t, \quad (10b) \]
where all the coefficients can be found in [19]. We consider the case of 1:1 internal resonance, principal parametric resonance, and 1/2 subharmonic resonance of the CNT-reinforced composite plate, for which the resonant relations are listed as follows:
\[\omega_1 = \frac{1}{2} \Omega_1 + \varepsilon \sigma_1, \]
\[\omega_2 = \frac{1}{2} \Omega_2 + \varepsilon \sigma_2, \]
\[\Omega_1 = \Omega_2 = \Omega, \quad (11) \]
where \(\sigma_1 \) and \(\sigma_2 \) are two detuning parameters. For convenience, we let \(\Omega = 2 \) in the following analysis. The uniform solutions of equations (10a) and (10b) take the following form:
\[w_n(t, \bar{t}) = x_{n0}(T_0, T_1) + \varepsilon x_{n1}(T_0, T_1) + \cdots, \quad n = 1, 2, \quad (12) \]
where \(T_0 = t \) and \(T_1 = \bar{t} \). We employ the method of multiple scales to equations (10a) and (10b) and obtain the averaged equations as follows:
where \(f_0 = (1/4) \beta_1 \).

2.2. Computation of Normal Form. In order to study the multipulse chaotic dynamics of the CNT-reinforced composite plate, the first is to reduce equations (13a)–(13d) to a simpler normal form. It is clear that equations (13a)–(13d) possess a trivial zero solution \((x_1, x_2, x_3, x_4) = (0, 0, 0, 0)\) at which the Jacobian matrix can be written as

\[
J = \begin{bmatrix}
-\left(\frac{1}{2}\right)\mu - \sigma_1 + \frac{1}{4}\sigma i & 0 & 0 & 0 \\
\sigma_1 + \frac{1}{4}\sigma i & -\left(\frac{1}{2}\right)\mu & 0 & 0 \\
0 & 0 & -\left(\frac{1}{2}\right)\mu - (\sigma_2 - f_0) & 0 \\
0 & 0 & (\sigma_2 + f_0) & -\left(\frac{1}{2}\right)\mu \\
\end{bmatrix}, \tag{14}
\]

The characteristic polynomial of Jacobian matrix (14) is

\[
|\lambda I - J| = \left[\lambda^2 + \mu \lambda + \frac{1}{4} \mu^2 + \sigma_1 - \frac{1}{16} \sigma_1^2 \right] \left[\lambda^2 + \mu \lambda + \sigma_2^2 - f_0^2 \right]. \tag{15}
\]

It is easy to see that when \(\mu = 0, \sigma_1 = -4\sigma_1, \) and \(\sigma_2^2 - f_0^2 > 0 \) are satisfied simultaneously, systems (13a)–(13d) have a pair of pure imaginary eigenvalues and one non-semi-simple double zero:

\[
\lambda_{1,2} = 0, \quad \lambda_{3,4} = \pm i \sqrt{\sigma_2^2 - f_0^2}. \tag{16}
\]

Setting \(\alpha_1 = 2 \) and \(\sigma = \sigma_1 + (1/4)\alpha_1 \) and considering \(\mu, \sigma \), and \(f_0 \) as the perturbation parameters, then equations (13a)–(13d) without the perturbation parameters become

\[
\begin{align*}
x_1 &= -\frac{1}{2} \mu x_1 - \left(\frac{1}{4}\alpha_1\right) x_2 - \frac{3}{2} \alpha_2 x_3 (x_1^2 + x_2^2) - \frac{3}{2} \alpha_3 x_4 (x_1^2 + x_2^2) - \frac{1}{2} \alpha_4 x_4 (x_1^2 - x_2^2) - \frac{1}{2} \alpha_5 x_2 (x_1^2 - x_2^2) \\
&\quad + \frac{1}{2} \alpha_6 x_2 (x_1^2 - x_2^2) - \alpha_7 x_2 (x_1^2 + x_2^2) - \alpha_8 x_1 x_2 x_3 - \alpha_9 x_1 x_3 x_4, \tag{17a}
\end{align*}
\]

\[
\begin{align*}
x_2 &= -\frac{1}{2} \mu x_2 + \left(\frac{1}{4}\alpha_1\right) x_1 + \frac{3}{2} \alpha_2 x_1 (x_1^2 + x_2^2) + \frac{3}{2} \alpha_3 x_3 (x_1^2 + x_2^2) + \frac{1}{2} \alpha_4 x_4 (x_1^2 - x_2^2) + \frac{1}{2} \alpha_5 x_2 (x_1^2 + x_2^2) \\
&\quad + \frac{1}{2} \alpha_6 x_1 (x_1^2 - x_2^2) + \alpha_7 x_1 (x_1^2 + x_2^2) + \alpha_8 x_1 x_2 x_4 + \alpha_9 x_2 x_3 x_4, \tag{17b}
\end{align*}
\]
The Jacobian matrix of equations (17a)–(17d) is evaluated as

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -\sigma_2 & 0 \\
0 & 0 & \sigma_2 & 0
\end{bmatrix}.
\]

(18)

Executing the Maple program designed by Zhang et al. [31] leads to the following 3-order normal form of equations (17a)–(17d):

\[
\begin{align*}
\dot{y}_1 &= y_2, \\
\dot{y}_2 &= \frac{3}{2} \alpha_3 y_1^3 + \alpha_5 y_1 (y_3^2 + y_4^2), \\
\dot{y}_3 &= -\sigma_2 y_4 - \beta_3 y_3^2 y_4 - \frac{3}{2} \beta_4 y_4 (y_3^2 + y_4^2), \\
\dot{y}_4 &= \sigma_2 y_3 + \beta_4 y_3 y_3 + \frac{3}{2} \beta_3 y_3 (y_3^2 + y_4^2).
\end{align*}
\]

(19a–19d)

Accordingly, the normal form of equations (13a)–(13d) with the perturbation parameters is obtained as

\[
\begin{align*}
\dot{y}_1 &= -\frac{1}{2} \mu y_1 + (1 - \sigma) y_2, \\
\dot{y}_2 &= \sigma y_1 - \frac{1}{2} \mu y_2 + \frac{3}{2} \alpha_3 y_1^3 + \alpha_5 y_1 (y_3^2 + y_4^2), \\
\dot{y}_3 &= -\frac{1}{2} \mu y_3 - (\sigma_2 - f_0) y_4 - \beta_4 y_1 y_4 + \frac{3}{2} \beta_3 y_4 (y_3^2 + y_4^2), \\
\dot{y}_4 &= (\sigma_2 + f_0) y_3 - \frac{1}{2} \mu y_4 + \beta_4 y_3 y_3 + \frac{3}{2} \beta_3 y_3 (y_3^2 + y_4^2).
\end{align*}
\]

(20a–20c)

\[
\begin{align*}
\dot{y}_3 &= \frac{1}{2} \mu y_3 + \sigma_2 y_3 + y_4, \\
\dot{y}_4 &= \frac{1}{2} \mu y_4 + \beta_3 y_4 (y_3^2 + y_4^2).
\end{align*}
\]

(20d)

Letting

\[
\begin{align*}
y_3 &= I \cos \phi, \\
y_4 &= I \sin \phi,
\end{align*}
\]

we have

\[
\begin{align*}
\dot{y}_1 &= -\frac{1}{2} \mu y_1 + (1 - \sigma) y_2, \\
\dot{y}_2 &= \sigma y_1 - \frac{1}{2} \mu y_2 + \frac{3}{2} \alpha_3 y_1^3 + \alpha_5 y_1 I^2.
\end{align*}
\]

(22a–22b)

\[
\begin{align*}
\dot{y}_1 &= -\frac{1}{2} \mu y_1 + (1 - \sigma) y_2, \\
\dot{y}_2 &= \sigma y_1 - \frac{1}{2} \mu y_2 + \frac{3}{2} \alpha_3 y_1^3 + \alpha_5 y_1 I^2,
\end{align*}
\]

(22a–22b)
3. Dynamics of the Unperturbed System

Setting \(\varepsilon = 0 \) in equations (26a)–(26d) results in the completely integrable equations defined as the unperturbed system. Hence, we will now study the nonlinear dynamics of the following unperturbed system:

\[
\begin{align*}
\dot{z}_1 &= z_2, \\
\dot{z}_2 &= -\mu z_1 + \eta z_1^3 + \alpha z_1 I^2, \\
\dot{I} &= 0, \\
\dot{\phi} &= \sigma_1 I + \alpha_z z_1^2 I + \frac{3}{2} \beta_3 I^3.
\end{align*}
\]

(28a)–(28d)

Consider the first two equations of systems (28a)–(28d):

\[
\begin{align*}
\dot{z}_1 &= z_2, \\
\dot{z}_2 &= -\mu z_1 + \eta z_1^3 + \alpha z_1 I^2.
\end{align*}
\]

(29a)–(29b)

Note that homoclinic bifurcations occur in systems (29a) and (29b) for \(\eta < 0 \). Also, when \(\mu - \alpha z I^2 > 0 \), we can obtain that systems (29a) and (29b) have only the trivial zero solution \((z_1, z_2) = (0, 0)\) being a center. On a curve expressed by \(\mu = \alpha z I^2 \), that is,

\[
I_1 = \left[\frac{(1/4)\mu^2 - \sigma (1 - \sigma)}{\alpha_z} \right]^{(1/2)},
\]

(30)

three solutions bifurcate from the trivial zero solution through a pitchfork bifurcation denoted by \(q_0(I) = (0, 0) \) and \(q_{\pm}(I) = (B, 0) \), respectively, where

\[
B = \pm \left[\frac{(1/4)\mu^2 - \sigma (1 - \sigma) - \alpha \sigma I^2}{\eta} \right]^{(1/2)}.
\]

(31)

For all \(I \in [I_1, +\infty) \), systems (29a) and (29b) possess one hyperbolic saddle point \(q_0(I) \) connected to itself by a pair of homoclinic orbits, \(z_{\pm}^0(T_1, I) \), that is, \(\lim_{T_1 \to \pm \infty} z_{\pm}^0(T_1, I) = q_0(I) \). Therefore, the set defined by

\[
M = \{ (z, I, \phi) \mid z = q_0(I), I > I_1, 0 \leq \phi \leq 2\pi \},
\]

(32)

is a two-dimensional invariant manifold in the full four-dimensional phase space. Based on the analysis given by Haller and Wiggins [20], we know that the two-dimensional invariant manifold \(M \) is normally hyperbolic and contains three-dimensional stable and unstable manifolds. Let \(W^s(M) \) and \(W^u(M) \), respectively, denote the stable and unstable manifolds. The existence of the homoclinic orbit in systems (29a) and (29b) to \(q_0(I) = (0, 0) \) means that \(W^s(M) \) and \(W^u(M) \) intersect nontransversally along a three-dimensional homoclinic manifold \(\Gamma \) described as follows:

\[
\Gamma = \left\{ (z, I, \phi) \mid z = z_{\pm}^0(T_1, I), I > I_1, \phi = \frac{1}{I} \int_0^{T_1} D_I H \right\},
\]

(33)

\[
\cdot \left(z_{\pm}^0(s, I), I \right) ds + \phi_0 \right\},
\]

where \(D_I H(z, I) = -(\partial H/\partial I) \). Letting \(\xi_1 = -\mu + \alpha z I^2 \), \(\delta_1 = -\eta \), systems (29a) and (29b) can be rewritten as

\[
\begin{align*}
\dot{z}_1 &= z_2, \\
\dot{z}_2 &= \xi_1 z_1 - \delta_1 z_1^3.
\end{align*}
\]

(34a)–(34b)

The Hamiltonian for Hamilton systems (34a) and (34b) is

\[
H(z_1, z_2) = \frac{1}{2} z_2^2 - \frac{1}{2} \xi_1 z_1^2 + \frac{1}{2} \delta_1 z_1^4.
\]

(35)

When \(H = 0 \), there is a homoclinic loop \(\Gamma^0 \) formed by one saddle point \(q_0(I) \) and a pair of homoclinic orbits \(z_{\pm}(T_1) \). Using equations (34a) and (34b) and (35), the analytical expressions for the homoclinic orbits of (34a) and (34b) are then obtained as

\[
\begin{align*}
z_1(T_1) &= \pm \frac{\sqrt{2} \xi_1}{\delta_1} \text{sech} \left(\sqrt{\xi_1} T_1 \right), \\
z_2(T_1) &= \frac{\sqrt{2} \xi_1}{\delta_1} \text{tanh} \left(\sqrt{\xi_1} T_1 \right) \text{sech} \left(\sqrt{\xi_1} T_1 \right).
\end{align*}
\]

(36a)–(36b)

We now consider the dynamics of the unperturbed system of (26a) and (26d) restricted to \(M \) given by

\[
\begin{align*}
\dot{I} &= 0, \\
\dot{\phi} &= \sigma_1 I + \alpha_z q_0^2(I) + \frac{3}{2} \beta_3 I^3 = D_I H (q_0(I), I), I > I_1.
\end{align*}
\]

(37a)–(37b)

If the condition \(D_I H (q_0(I), I) \neq 0 \) holds, \(I = \text{constant} \) is a periodic orbit, and if \(D_I H (q_0(I), I) = 0 \), \(I = \text{constant} \) is a circle of fixed points. A value of \(I \in [I_1, +\infty) \) for which \(D_I H (q_0(I), I) = 0 \) is referred to as a resonant value \(I \), and these fixed points are identified as resonant fixed points. A resonant value is denoted by \(I_r \) so that

\[
D_I H (q_0(I), I) = \sigma_1 I + \frac{3}{2} \beta_3 I^3 = 0.
\]

(38)

Thus, the resonant value \(I_r \) is derived as

\[
I_r = \frac{-\sqrt{2} \alpha_z}{3 \beta_3}.
\]

(39)

For \(I = I_r \), the phase shift \(\Delta \phi \) can be defined as
\[\Delta \phi = \phi(\pm \infty, I_r, \epsilon) - \phi(\pm \infty, I_r), \] (40)

which will be used in subsequent studies to determine the condition under which the multipulse Shilnikov-type homoclinic orbits may exist. Substituting the first equations of (36a) and (36b) into the fourth equations of (28a)–(28d) leads to

\[\dot{\phi} = \sigma_2 + \frac{3}{2} \beta_3 I^2 + \frac{2 \alpha_s \xi_1}{\delta_1} \text{sech}^2 \left(\sqrt{\xi_1} T_1 \right). \] (41)

After integration, we obtain

\[\phi(T_1) = \left(\sigma_2 + \frac{3}{2} \beta_3 I^2 \right) T_1 + \frac{2 \alpha_s \sqrt{\xi_1}}{\delta_1} \tanh \left(\sqrt{\xi_1} T_1 \right) + \phi_0. \] (42)

Accordingly, the phase shift is also obtained as

\[\Delta \phi = \left[\frac{4 \alpha_s \sqrt{\xi_1}}{\delta_1} \right]_{T_1} \phi_1 = \frac{4 \alpha_s}{\eta} \sqrt{\frac{1}{4} - \mu^2 + \sigma(1 - \sigma) + \alpha_s I_r^2}. \] (43)

4. Dynamics of the Perturbed System

After obtaining the detailed properties of the subspace \((z_1, z_2)\) for systems (28a)–(28d), the next step is to examine the effects of small perturbation terms \((0 < \epsilon \ll 1)\) on systems (28a)–(28d). The energy-phase method developed by Haller and Wiggins [20] is utilized to determine the existence of multipulse orbits and chaotic dynamics in the CNT-reinforced composite rectangular plate.

4.1. The Case of Dissipative Perturbations

We start by considering the influence of such small perturbations on manifold \(M\). Based on the research by Haller and Wiggins [20], we know that the manifold \(M\) is invariant for small nonzero \(\epsilon\). Therefore, the perturbed annulus \(M_e\) is taken to be the same as \(M\). That is,

\[M_e = \{ (z, I, \phi) | z = q_0(I), I > I_1, 0 \leq \phi \leq 2\pi \}. \] (44)

In order to study the dynamic behaviors of the perturbed vector field restricted to \(M_e\) near the resonance \(I = I_r\), we now introduce the following scale transformations:

\[I = I_r + \sqrt{\epsilon} h, \]
\[\tau = \sqrt{\epsilon} T_1. \] (45)

The last two equations of (26a)–(26d) then become

\[h' = -\frac{1}{2} \mu I_r + f_0 I_r \sin 2\phi + \sqrt{\epsilon} \left(-\frac{1}{2} \mu h + f_0 h \sin 2\phi \right), \] (46a)

\[\phi' = 3 \beta_3 I_r h \pm \sqrt{\epsilon} \left(\frac{3}{2} \beta_3 h^2 + f_0 \cos 2\phi \right), \] (46b)

where the prime represents the differentiation with respect to \(\tau\). When \(\epsilon = 0\), systems (46a) and (46b) become

\[h' = -\frac{1}{2} \mu I_r + f_0 I_r \sin 2\phi, \] (47a)

\[\phi' = 3 \beta_3 I_r h. \] (47b)

Systems (47a) and (47b) are a Hamiltonian system with the Hamiltonian

\[\mathcal{H}_D = -\frac{1}{2} \mu I_r \phi - \frac{1}{2} f_0 I_r \cos 2\phi - \frac{3}{2} \beta_3 I_r h^2. \] (48)

A simple calculation indicates that systems (47a) and (47b) have two singular points expressed by

\[P_0 = (0, \phi_s) = \left(0, \frac{1}{2} \arcsin \frac{\mu}{f_0} \right), \] (49a)

\[Q_0 = (0, \phi_c) = \left(0, \frac{1}{2} \pi - \frac{1}{2} \arcsin \frac{\mu}{f_0} \right). \] (49b)

It is known that if \(6 \beta_3 f_0 I_{r0}^2 \cos 2\phi_c < 0\), the singular point \(P_0\) is a center point. And if \(6 \beta_3 f_0 I_{r0}^2 \cos 2\phi_s > 0\), the singular point \(Q_0\) is a saddle connected to itself by a homoclinic orbit. Figure 2(a) shows the phase portrait of systems (47a) and (47b). It is observed that, for sufficiently small parameter \(\epsilon\), the singular point \(Q_0\) still remains a hyperbolic saddle point \(Q_s\) while for small perturbations, the singular point \(P_0\) changes to a hyperbolic sink \(P_s\), see Figure 2(b) for the phase portrait of perturbed systems (46a) and (46b).

On the basis of equation (48), at \(h = 0\), the basin of the attractor for \(\phi_{\min}\) can be estimated as follows:

\[-\frac{1}{2} \mu I_r \phi_{\min} - \frac{1}{2} f_0 I_r \cos 2\phi_{\min} = -\frac{1}{2} \mu I_r \phi_1 - \frac{1}{2} f_0 I_r \cos 2\phi_c. \] (50)

Substituting \(\phi_{\min}\) in (49a) and (49b) into (50) yields

\[\phi_{\min} + \frac{f_0}{\mu} \cos 2\phi_{\min} = \frac{1}{2} \pi - \frac{1}{2} \arcsin \frac{\mu}{f_0} - \frac{\sqrt{f_0^2 - \mu^2}}{2\mu}. \] (51)

The neighborhood of \(I_r\) is defined as

\[A_{\epsilon} = \{ (z, I, \phi) | z = 0, |I - I_r| < \sqrt{\epsilon} C, 0 \leq \phi \leq 2\pi \}, \] (52)

where the constant \(C\) is sufficiently large so that the unperturbed homoclinic orbit is enclosed within the annulus.

4.2. The Existence of Multipulse Homoclinic Orbits

Based on the results obtained by Haller and Wiggins [20], the dissipative energy-difference function is of the form

\[\Delta^0 \mathcal{H}_D (\phi) = \mathcal{H}_D (h, \phi + n \Delta \phi) - \mathcal{H}_D (h, \phi), \]

\[-\sum_{i=1}^{n} \int_{-\infty}^{\infty} \langle D\mathcal{H}, g \rangle |(z_i, T_i)| \, dT_i, \] (53)
The zero of $\Delta^n \bar{H}_D (\phi)$ in $[-(\pi/2), (\pi/2)]$ are
\[
\phi_{n,1}^* = \frac{\pi}{2} - \left[\frac{1}{2} n \Delta \phi + \varphi \right] \mod \pi ,
\]
\[
\phi_{n,2}^* = \frac{\pi}{2} - \left[\frac{1}{2} n \Delta \phi - \varphi \right] \mod \pi ,
\]
where $\varphi = -(1/2) \arcsin (2n\xi_1 d \Delta \phi /3\alpha_5 I_r \sin (n\Delta \phi))$. Define a set that contains all transverse zeros of $\Delta^n \bar{H}_D (\phi)$ as
\[Z_n^\alpha = \{(h, \phi) \mid \Delta^\alpha \tilde{H}_D(\phi) = 0, D_\phi \Delta^\alpha \tilde{H}_D(\phi) \neq 0 \}. \quad (63) \]

It is easy to know that both zeros are transverse under condition (61). We now need to introduce the two additional angles
\[
\phi_{+,1}^\alpha = [\phi_{-,1}^\alpha + n\Delta \phi] \mod 2\pi, \quad (64a)
\]
\[
\phi_{+,2}^\alpha = [\phi_{-,2}^\alpha + n\Delta \phi] \mod 2\pi, \quad (64b)
\]
and utilize them to construct the two sets of transverse zeros of \(\Delta^\alpha \tilde{H}_D(\phi) \) as
\[
Z_n^\alpha = \{(h, \phi) \mid \phi \in \{\phi_{+,1}^\alpha, \phi_{+,2}^\alpha\} \}, \quad n \geq 1, \quad (65a)
\]
\[
Z_n^\beta = \{(h, \phi) \mid \phi \in \{\phi_{-,1}^\alpha, \phi_{-,2}^\alpha\} \}, \quad n \geq 1. \quad (65b)
\]

Consider a domain \(S_0 \subset A_1 \), enclosed inside the homoclinic orbit of (47a) and (47b) located in the interval \(\phi \in [-\pi/2, \pi/2] \). The periodic orbits in \(S_0 \) are classified according to their pulse numbers, see Figure 3. Note that, under condition (61), all internal orbits outside \(S_0 \) intersect \(Z_1^\perp \) transversally. Thus, for any periodic or homoclinic orbit \(\gamma \) outside \(S_0 \), the pulse number is \(N(\gamma) = 1 \). Define the energy sequence
\[
h_0 = \tilde{H}_D(0, \phi_0) = -\frac{1}{2} \mu L_{\phi} \left(\frac{\pi}{2} - \frac{1}{2} \arcsin \frac{d}{\sqrt{4 - d^2}} \right) + \frac{1}{4} \mu L_{\phi} \sqrt{4 - d^2}, \quad (66a)
\]
\[
h_n = \min \left\{ \tilde{H}_D(0, \phi_{+,1}^\alpha), \tilde{H}_D(0, \phi_{-,2}^\alpha) \right\}, \quad (66b)
\]
such that \(h_n \) provides the energy level related to an orbit closer to the center. Define the open set of internal orbits in \(S_0 \) as
\[
A_0 = \emptyset,
\]
\[
A_n = \{(h, \phi) \in S_0 \mid \tilde{H}_D(h, \phi) > h_n\}, \quad n \geq 1. \quad (67)
\]

The pulse sequence is then defined as
\[
N_1 = 1,
\]
\[
N_k = \min \{n \in Z^+ \mid n > N_{k-1}, h_n < h_{N_{k-1}}\}, \quad k \geq 2. \quad (68)
\]

Since the energy of the periodic orbits in \(S_0 \) decreases monotonically with the orbits shrinking to the center, we necessarily have
\[
A_{N_1} \subset A_{N_2} \subset \cdots A_{N_k} \subset \cdots. \quad (69)
\]

The layer sequence is defined as
\[
L_{N_k} = \text{Int} \left(\frac{A_{N_k}}{A_{N_{k-1}}} \right), \quad (70)
\]

where \(\text{Int}(\cdot) \) denotes the interior of a set. And the construction of the layer sequence is shown in Figure 3. We can easily see that all these sequences defined above are finite by (60). For any periodic orbit \(\gamma \in S_0 \), the pulse number is \(N(\gamma) = N_k \). As illustrated in Figure 3, the layer radii are defined as

\[
r_{N_k} = \min \left[|\phi_c - \phi_{+,1}^\alpha|, |\phi_c - \phi_{+,2}^\alpha| \right]. \quad (71)
\]

A recursive algorithm for the calculation of the distribution of pulse numbers and the layer radii is implemented on a computer. For different values of the dissipation factor \(d \), we obtain the corresponding pulse diagrams and layer radius diagrams as a function of the phase shift \(\Delta \phi \) for \(N_k < 20 \), illustrated in Figures 4 and 5. As can be seen in Figure 4, the horizontal line segments at each level \(N_k \) identify that an infinity of \(N_k \)-pulse orbits exist for all values of the phase shift in the interval below that line. Besides, the diagrams in Figure 5 exhibit a gradual breakup of the homoclinic tree as \(d \) is increased. This observation means that the system parameters have a vital effect on the distribution of the pulse numbers and the layer radii.

We now detect the existence of the multipulse Shilnikov-type orbits based on Theorem 4.5 in [20]. Note that the sinks of (46a) and (46b) become the centers of (47a) and (47b). Therefore, systems (47a) and (47b) have a nondegenerate equilibrium
\[
P_0 = (h_0, \phi_c) = (0, \frac{1}{2} \arcsin \frac{d}{\sqrt{4 - d^2}}). \quad (72)
\]

The values of \((d, \Delta \phi, N) \) for which the center \(P_0 \) falls in the zero set \(Z_n^\alpha \) given in (63) must be determined, that is,
\[
-\frac{1}{2} L_{\phi} \left[\cos \left(\frac{1}{2} \arcsin \frac{d}{\sqrt{4 - d^2}} + 2N\Delta \phi \right) - \cos \left(\frac{1}{2} \arcsin \frac{d}{\sqrt{4 - d^2}} \right) \right] + \frac{2N \xi_1 d \Delta \phi}{3\xi_5} = 0, \quad (73)
\]

which yields
Figure 4: The pulse sequence as a function of the phase shift \(((\xi_1/\alpha_5 I_r) = (2/15)) \). (a) \(d = 0 \). (b) \(d = 10^{-5} \). (c) \(d = 0.01 \). (d) \(d = 0.05 \). (e) \(d = 0.1 \). (f) \(d = 0.4 \).
Figure 5: The layer radius sequence as a function of the phase shift \((\xi/t_0) = (2/15))\). (a) \(d = 0\). (b) \(d = 10^{-5}\). (c) \(d = 0.01\). (d) \(d = 0.05\). (e) \(d = 0.1\). (f) \(d = 0.4\).
\[
\sqrt{4 - d^2} [\cos(2N\Delta\phi) - 1] = d \left[\sin(2N\Delta\phi) + \frac{8N\xi_i\Delta\phi}{3\alpha_i I_r} \right].
\]

(74)

Solving (74), the dissipation factor \(d\) is obtained as
\[
d = \frac{2[1 - \cos(2N\Delta\phi)]}{\sqrt{[1 - \cos(2N\Delta\phi)]^2 + \left[\sin(2N\Delta\phi) + \left(\frac{8N\xi_i\Delta\phi}{3\alpha_i I_r}\right)\right]^2}}.
\]

(75)

whenever (74) and (76) hold. Carrying out the differentiation in expression (74), we find that (77) fails to be satisfied when
\[
-d[\cos(2N\Delta\phi) - 1] = \sqrt{4 - d^2} \left[\sin(2N\Delta\phi) + \frac{8N\xi_i\Delta\phi}{3\alpha_i I_r} \right].
\]

(78)

It is easy to see that equations (74) and (78) cannot hold simultaneously under condition (76). Thus, nondegeneracy condition (77) holds. We now have to guarantee that the projection of landing points falls in the domain of attraction of one of the sinks.

Based on the above analysis, the results in this section give rise to the following theorem.

Theorem 1. For any integer \(N \geq 1\), there exists a positive number \(\varepsilon_0(N) > 0\) and a finite union \(C_N\) of codimension-one surfaces in the \((\xi_1, \alpha_3, \mu, f_0, \varepsilon) \in C_N\) parameter space near the set satisfying \(0 < d < 1\), (75), and (82) such that, for any \((\xi_1, \alpha_3, \mu, f_0, \varepsilon) \in C_N\) and \(0 < \varepsilon < \varepsilon_0(N)\), the following conclusions hold:

1. If the integer \(Q = \text{INT} \left[\frac{1}{2} + \frac{N\Delta\phi + \arcsin(d/2)}{\pi} \right]\), (83)

is even, then each of the saddle-focus-type equilibria contained in the slow manifold satisfies the generalized Shilnikov-type homoclinic orbits. If \(Q\) is odd, then there exist two cycles of Shilnikov-type heteroclinic orbits connecting the two saddle-foci to each other. In both cases, the N-pulse orbits form pairs which are symmetric with respect to the subspace \((x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0)\).

2. There exists an open set of parameters containing \(C_N\) for which system (26) admits Smale horseshoes in its dynamics.

5. Numerical Simulations

In order to verify the analytical predictions, we choose systems (13a)–(13d) to perform numerical simulations. The fourth-order Runge–Kutta algorithm is employed to indicate the existence of the multipulse Shilnikov-type homoclinic orbits and chaotic motions in the CNT-reinforced composite plate. Figure 6 is obtained to show that there exist multipulse chaotic motions for the CNT-reinforced composite plate. In Figure 6, the parameters and initial conditions are selected as \(\mu = 0.05, \sigma_1 = -1.86, \sigma_2 = 1.5, \alpha_1 = 7.2, \alpha_3 = -10.8, \alpha_4 = -3.9, \alpha_5 = 11.6, \alpha_6 = 15, \beta_2 = -4.78, \beta_3 = -4, \beta_4 = 5, \beta_5 = -7.18, f_0 = 12.235, (x_1, x_2, x_3, x_4) = (0.105, -0.101, -0.013, -0.506),\) and the phase shift at \(T = T_r = \sqrt{(2\sigma_3/3\beta_3)} = (1/2)\) is \(\Delta \phi = 2.37\). We choose the pulse number \(N = 4\); then, (75) gives \(d = (\mu/f_0) = 0.00409\). Using equations (79) and (80a) and (80b), we have \(\phi_N^* = 3.199, \phi_1 = 1.569, cos 2\phi_N^* - cos 2\phi_c = 1.993,\) and \(d(\phi_4 - \phi_N^*) = -0.067.\) Obviously, condition (82) holds, which implies that the chaotic motion presented in Figure 6 is multipulse Shilnikov-type chaotic motion.
6. Conclusions

In this paper, the multipulse homoclinic orbits and chaotic dynamics of a CNT-reinforced composite plate under combined in-plane and transverse excitations are studied. The method of multiple scales is adopted to acquire the averaged equations in the case of 1:1 internal resonance, principal parametric resonance, and 1/2 subharmonic resonance. On the basis of the averaged equations obtained, the normal form theory is employed to derive the expressions of normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method proposed by Haller and Wiggins [20] is utilized to detect the presence of the multipulse homoclinic orbits and chaotic dynamics for

![Figure 6: The multipulse chaotic motion obtained based on equation (13): (a) the phase portrait on the plane \((x_1, x_2)\), (b) the phase portrait on the plane \((x_3, x_4)\), (c) the waveform on the plane \((t, x_1)\), (d) the waveform on the plane \((t, x_3)\), (e) the phase portraits in the three-dimensional space \((x_1, x_2, x_3)\), and (f) the phase portraits in the three-dimensional space \((x_2, x_3, x_4)\).](image-url)
the resonant case. As the trajectory of motion comes close to the sink point P_ϵ, every Shilnikov-type orbit takes off again and repeats this similar motion in the full four-dimensional phase space and eventually leads to the multipulse Shilnikov-type orbits. Our analysis in Section 4 also indicates that the multipulse Shilnikov-type orbits depend on the system parameters and dissipative perturbations. It is known that the existence of multipulse Shilnikov-type orbits implies the existence of chaos in the sense of Smale horseshoes. Homoclinic trees are presented to describe the repeated bifurcations of multipulse solutions. From the diagrams, we can see a gradual breakup of the homoclinic tree with the increase of the dissipation factor. This observation denotes that the damping coefficient and system parameters affect the distribution of the pulse numbers and the layer radii. The analytical results obtained here are extensions of those appearing in [19].

To confirm the theoretical results, numerical simulations are applied to examine the chaotic dynamics of the CNT-reinforced composite plate. The numerical results demonstrate that there exist multipulse homoclinic orbits and chaotic dynamics in systems (13a)–(13d) when the conditions are satisfied. As we all know, under certain conditions, the multipulse chaotic motions in the averaged equations can result in the multipulse Shilnikov-type orbits. Our analysis in Section 4 also indicates that the multipulse Shilnikov-type orbits take off again and repeats this similar motion in the full four-dimensional phase space and eventually leads to the multipulse Shilnikov-type orbits.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (11872201, 11572148, and 11772148), the National Research Foundation for the Doctoral Program of Higher Education of China (20133218110025), the Fundamental Research Funds for the Central Universities (NS2017046), and the Natural Science Research Project for College and University of Anhui Province (KJ2018A0048).

References

