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We consider the classic online scheduling problem on m uniform machines in the online setting where jobs arrive over time.
Preemption is not allowed.*e objective is to minimize total weighted completion time. An online algorithm based on the directly
waiting strategy is proposed. Its competitive performance is proved to be max 2smax(1 − (1/(2 si))), (2smax/ (1 + smax))(2.5 −

(1/2m))} by the idea of instance reduction, where sm is the fastest machine speed after being normalized by the slowest
machine speed.

1. Introduction

Scheduling is a commonly used term in several different
contexts including production management, service oper-
ations, and computer systems. In a general sense, scheduling
is a process of allocating some scarce resources to different
activities. It aims to improve the effectiveness and/or effi-
ciency to implement these activities. It is for this fact that
scheduling has attracted numerous interests of both prac-
titioners and researchers. In academia, thousands of papers
have been published with scheduling as topics. *ese works
can be roughly classified into two categories, namely, ap-
plication-oriented research and theoretical research.

From a perspective of applications, researchers try to
provide a solutionmethod for a given scheduling problem by
utilizing mathematical or computation techniques. *e ef-
fectiveness and efficiency of the proposed approach are often
judged by its performance on randomly generated or
benchmark instances or some case data. Along this line, a
rich variety of scheduling problems have been investigated,
motivated by different applications from real-world situa-
tions. Among these problems, a great many are focused on
scheduling arising in industries of production and
manufacturing. In this field, most of the work can be divided
into four types in terms of solution methodology, which are

analytical approaches (e.g., branch and bound [1], La-
grangian relaxation [2], and column generation [3]), heu-
ristic dispatch rules [4], metaheuristics (e.g., simulated
annealing [5] and genetic algorithms [6]), and machine
learning methods (e.g., neural network [7], decision tree [8],
and ensemble methods [9]). *e detailed discussion of these
methods is beyond the scope of this paper. *e above-
mentioned references are just some of the landmark or
representative papers in each field. Interested readers can
further refer to some classical books (e.g., Brucker [10] and
Pinedo [11]). In addition to the abovementioned work about
shop-level scheduling methods, some attention has been
paid on scheduling-related problems from the perspective of
planning and management. For example, Sastoque Pinilla
et al. [12] conducted a case study about technology readiness
level (TRL) 5C7 project management in the aircraft industry.
In addition, with the new requirements and challenges
occurring in the context of Industry 4.0, some new tech-
nologies and ideas such as Internet of things, cyber-physical
systems, and big data analysis have been introduced into the
scheduling research [13–15].

In contrast, from a theoretical perspective, researchers
first try to understand the computational complexity of a
given scheduling problem. If the problem is computationally
tractable, they then develop a polynomial algorithm that can
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give optimal solutions in polynomial time for any instance of
the problem. If the problem is computationally intractable,
they design an algorithm and evaluate it by its theoretically
guaranteed performance rather than its performance in
numeric simulations. *e theoretically guaranteed perfor-
mance often refers to the worst-case performance. Along
this line, most of the work is focused on some classical and
simplified scheduling models that are abstracted from
similar applications, which can be often denoted by the
widely used three-field classification scheme [16]. *ese
models can be further divided into two categories in terms of
whether the full information about jobs is known at the
outset or not, namely, off-line models and online models.
For the former category, some pioneering works can be
found in [17] and [18]. For the online category, some
representative works include Hoogeveen and Vestjens [19],
Anderson and Potts [20], and Correa and Wagner [21].
Interested readers can further refer to a review by Potts and
Strusevich [22]. Following this line of theoretical research,
we consider a classical online scheduling problem in this
work.

1.1. Problem Formulation. Formally, there is a sequence of
jobs denoted by J1, J2, . . . , Jn, which must be scheduled on
one of m uniform machines without interruption. Here,
uniform means that each machine has a job-independent
speed. Each job Jj is characterized by a release time rj, a
processing requirement pj, and a positive weightwj. When a
job is assigned on a machine, the processing time is its
processing requirement divided by the machine speed.
Without loss of the generality, we assume that the machines
are ordered by a nondecreasing speed 1 � s1 ≤ s2 ≤ · · · ≤ sm.
*e objective is to minimize the total weighted completion
time of all the jobs. We focus our attention on the online
setting, which means that all the characteristics about one
job is not revealed to the scheduling algorithm until it is
released at its release time. *e problem can be denoted by
Qm|rj, online|  wjCj.

1.2. Related Work. In the online setting, parallel machine
scheduling problem has obtained much attention. For the
case of identical machines, many efficient online algorithms
were presented [21, 23, 24]. When it comes to the setting of
uniformmachines, i.e., eachmachine has a different and job-
independent speed, most of the work was focused on the
objective of minimizing the makespan [25–27]. For the
objective of minimizing the total completion time, to the
best of our knowledge, the only constant competitive al-
gorithm was the one presented by Hall et al. [18]. *ey
designed a 8 + ε-competitive algorithm. *e result had
remained unchanged for more than ten years until Liu et al.
[28] extended the result about a two-machine scheduling
problem [29] and proposed an online algorithm with a
competitive performance of (

������
4m − 3

√
+ 3)/2 . It performs

better than the 8-competitive algorithm when the machine
number is not too larger. However, the competitive ratio
tends to infinity with m increasing. As mentioned by
Hoogeveen and Vestjens [19], for the single-machine case,

any online algorithm that schedules a job as soon as the
machine is available has an unbounded worst-case perfor-
mance. *e conclusion also holds up for the case of uniform
machines. In other words, a waiting strategy is necessary in
order to guarantee bounded competitive performance. Two
kinds of techniques are commonly used to design waiting
strategies. *e first one is to shift releasing times forward.
*e revised releasing times are derived either by a heuristic
method [23, 30, 31] or from a preemptive schedule by
solving a related relaxation problem [21, 32, 33]. *e other
technique is to apply a directly waiting strategy, whichmakes
the decision to insert appropriate waiting time or to im-
mediately schedule a job by directly comparing processing
time with the current time [19, 20, 34]. Hoogeveen and
Vestjens [19] first developed the technique and proposed the
delayed shortest processing rule (D-SPT) for the single-
machine scheduling to minimize the total completion time.
*ey proved that the D-SPTrule is the best online algorithm
for 1|rj, online|  Cj. *e idea behind the D-SPTrule and its
competitive analysis was generalized to the weighted case by
Anderson and Potts [20]. *ey proposed the delayed
shortest weighted processing time (D-SWPT) rule and
proved it is optimal for 1|rj, online|  wjCj. *e idea of the
directly waiting strategy was further extended to design
online algorithms for Pm|rj, online|  wjCj by Tao [24], Tao
et al. [35], and Ma and Tao [36]. *e authors designed
several waiting strategies and proved their competitive
performance.

1.3. Our Contribution. For Qm|rj, online|  wjCj, we con-
struct a deterministic online algorithm and prove that it has
a competitive ratio of no more than max 2smax

(1 − (1/(2 si))), (2smax/(1 + smax))(2.5 − (1/2m))}. To the
best of our knowledge, this is the first online algorithm
where the approximation ratio depends on the machine
speeds. If the fastest machine is not too fast, say less than 4,
the algorithm beats the 8 + ε-competitive algorithm [18],
which is the best constant competitive algorithm so far. In
addition, the performance ratio for our algorithm decreases
as the machine number increases. It is contrary to the
result in [28], where the competitive ratio increases as the
machine number increases. *us, our algorithm also out-
performs the one in [28] in the case with a larger number of
machines.

*e remaining sections are organized as follows. In
Section 2, the online algorithm is presented.*e competitive
analysis is detailed in Section 3. Conclusions are given in
Section 4.

2. The LW-SWPR Rule

Inspired by the same idea of the directly waiting strategy
mentioned above in the subsection of related work, we
construct an online algorithm for Qm | rj, online |  wjCj.
We call the proposed algorithm the limited waiting shortest
weighted processing requirement rule. It is therefore ab-
breviated to LW-SWPR, which can be described as follows
with some notations listed in Table 1:
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2.1.*eLW-SWPRRule. Whenever some idle machines and
some jobs are available at time t, choose the machine with
the highest speed and choose a job with the smallest value of
the ratio pj/wj among all the arrived and unscheduled jobs.
If ties occur, choose the smallest index. Say that Mi and Jj

are chosen. Calculate the total processing requirement at all
the busy machines at time t, which can be written as
Si≤t,Ci>tpi. *en, if

pj + Si≤t,Ci>tpi


m
i�1 si

≤ t, (1)

schedule Jj on the machine Mi; otherwise, wait until a new
job is released or the above inequality is satisfied.

We note that the LW-SWPR rule can be reduced to the
AD-SWPT rule in Tao [24] when all the machines have the
same speed, i.e., the model is reduced to the identical-ma-
chine model. Next, we will show that the LW-SWPR rule has
a machine number independent performance guarantee.

Theorem 1. For the online scheduling problem of
Qm|rj, online|  wjCj, the LW-SWPR rule is
max 2sm(1 − (1/(2 si))), (2sm/(1 + sm))(2.5 − (1/2m)) -
competitive, where sm is the fastest machine speed after
being normalized by the slowest machine speed.

3. The Competitive Analysis of the LW-
SWPR Algorithm

3.1. Instance Reduction. Since it is very difficult to directly
analyze the performance for an arbitrary instance, we wish to
reduce the searching space for the worst-case instances. *is
is just the intuition behind the instance reduction method
commonly used by Tao et al. [37, 38] and Tao [24]. *e basic
idea is to modify an arbitrary instance to a new instance such
that it has a worse performance ratio as well as a more special
structure of which we can take advantage to analyze the
performance ratio. To simplify the presentation, we list some
instances with specified structure in Table 2. We also use
these notations to refer to the instance set with the specified
structure when no confusion arises. For ease of presentation,
we denote that one machine is “idle”/“busy” at the time t if
the machine remains idle/busy during the interval of
(t − ε, t + ε), where ε is an infinitely small positive value. In
order to differentiate the switching time points between the
busy and idle states, we further state that the time t is a
“starting point of busy time”(abbreviated to SPoint) if the
machine remains idle in (t − ε, t) and busy in (t, t + ε) and

that the time t is an “ending point of busy time”(EPoint) if the
machine is busy in (t − ε, t) and idle in (t, t + ε).

First, we note that the worst-case instances can be ob-
tained among the set of I1. *e reason follows. For any
instance I which does not belong to the set of I1, there exists
a time t between the earliest SPoint and the latest EPoint
when all the machines are idle. *us, we can split the in-
stance I into two smaller instances that consist of jobs
scheduled, respectively, before and after t. Denote the two
instances by I′ and I″, respectively. According to the LW-
SWPR rule, we can readily discover that σ(I′) and σ(I″)
maintain the starting times of all the jobs same as in σ(I), i.e.,

σ(I) � σ I′(  + σ I″( . (2)

Given any feasible schedule of I, we can construct two
feasible schedules for I′ and I″, respectively, by keeping the
starting times unchanged. Because the optimal schedule is
the one with the minimum objective value among all the
feasible schedules, it follows that

π(I)≥ π I′(  + π I″( . (3)

Combining (2) with (3), we can obtain

σ(I)

π(I)
≤
σ I′(  + σ I″( 

π I′(  + π I″( 
≤max

σ I′( 

π I′( 
,
σ I″( 

π I″( 
 , (4)

i.e., at least one of the two smaller instances can achieve a
performance ratio not less than that of the original instance
I. *erefore, from the perspective of worst-case instances,
we need to focus only on the set of I1.

Next, we show in Lemma 1 that I1 can be further reduced
to one of the two new instances I2 or I3 with the perfor-
mance ratio not decreasing. Here, we only give some in-
tuitive explanation while referring readers to [24] for the
detailed proof. As mentioned above, jobs within each
subqueue are ordered according to the WSPR rule. For I1,
we can multiply the weights of some jobs by a parameter δ
with not changing the mutual relations of the weighted
processing requirements among jobs. *e result is that jobs
are scheduled in the same time intervals as in σ(I1) after this
modification. *e fact means that the objective value of the
online schedule for the modified instance is a monotonously
increasing linear function with respect to δ. At the same
time, the optimal objective value is a concave function with
respect to δ because any feasible schedule remains feasible
after modification and the optimal schedule is the one with
the minimum objective value among all the feasible
schedules. Combining the above observations with Lemma

Table 1: Symbol/notation description.

Notation Description
t *e current decision time

σ(·)
*e schedule constructed by the LW-SWPR rule for a given instance. It also refers to the objective value of the schedule when no

confusion arises
Sj *e starting time of job Jj in the online schedule σ(·)

Cj *e completion time of job Jj in the online schedule σ(·)

π(·) *e optimal schedule for a given instance. It also refers to the objective value of the schedule when no confusion arises
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3.1 in [37] which states that the ratio of a convex function to
a concave function is maximized at one endpoint of the
supported interval, we can modify I1 to an intermediate
instance with a worse performance ratio by setting δ to a
specified value. By repeatedly applying the modification, we
can reduce I1 to I2 or I3.

Lemma 1 (see [24]). For any instance I1, a new instance I2
or I3 can be constructed by modifying the weights in I1, such
that

σ I1( 

π I1( 
≤max

σ I2( 

π I2( 
,
σ I3( 

π I3( 
 . (5)

3.2. Performance Analysis of I2 and I3. Based on the special
structure that I2 and I3 possess and the LP lower bound, we
can analyze the performance ratio of I2 and I3. First, an
appropriate lower bound on the optimal schedule has to be
established in order to further analyze the performance
ratios of I2 and I3. Because the instances I2 and I3 are
associated with the special structure, we can only consider
the lower bound on these special instances. *is can be
readily obtained from related results provided by Gu and Lu
[39] and Chou et al. [40].

Lemma 2 (see [39, 40]). For the Qm|rj, online|  wjCj with
pj � wj for each job, the optimal schedule satisfies an in-
equality of

μ(I)≥ rmin 

n

j�1
pj +

1
2 si

 

n

j�1
pj

2

+
1
2sm



n

j�1
p
2
j , (6)

where rmin is the earliest release time.

Next, we analyze the performance ratios of I2 and I3 by
two lemmas.

Lemma 3. For any instance I2, the online scheduling by the
LW-SWPR rule satisfies

σ I2( 

π I2( 
≤max 2sm 1 −

1
2 si

 ,
2sm

1 + sm

2.5 −
1
2m

  . (7)

Proof. It does not change the performance ratio to multiply
the weights of all the jobs by a positive constant. All the jobs
in I2 have the same weighted processing time and we can
normalize the ratio of pj/wj to 1, i.e., wj equals pj.

Consider the latest SPoint in σ(I2), and denote it as rL.
*e “latest” implies that jobs are continuously processed

after rL at each machine without idle time between jobs.
Now, we analyze the performance ratio by two cases.

Case 1: there does not exist a job which is released
before rL and is scheduled at, or after, rL in σ(I2).
Consider these jobs that start at or after rL. According
to the increasing order of their starting times, denote
these jobs by J1, J2, . . . , Jn. *e assumption in this case
implies that these jobs must be released at, or after, rL.
Furthermore, these jobs have no effect on jobs starting
before rL. Construct an intermediate instance I2′ which
includes all the other jobs in I2 except J1, J2, . . . , Jn.
*en, we have

σ I2( ≤ σ I2′(  + 

n

j�1
Sj + pj wj. (8)

Jobs are continuously processed after rL at each ma-
chine. So, we can limit the starting time of the jth job in
J1, J2, . . . , Jn  as

Sj ≤ rL +
Sj≤rL,Cj>rL

pj + 1≤i<jpi


m
i�1 si

,

i � 1, 2, . . . , m, j � 1, 2, . . . , n,

(9)

where the second term is to average the total processing
time that have to be finished between rL and Sj over all
the machines and Sj≤rL,Cj>rL

pj represents the total
remaining processing time at all the machines at time
rL. Let Sj≤rL,Cj>rL

pj: � A and 
n
j�1 pj: � B. Along

with (7), we can limit σ(I2) by an upper bound as

σ I2( ≤ σ I2′(  + 
n

j�1
Sj + pj wj

≤ σ I2′(  + 
n

j�1
rL +

A + 
j− 1
i�1 pi

 si

+ pj pj

� σ I2′(  + 
n

j�1
rL +

A

 si

+


j

i�1 pi

 si

 pj + 1 −
1

 si

  
n

j�1
p
2
j

� σ I2′(  + rL +
A

 si

 B +
B2

2 si

+ 1 −
1

2 si

  

n

j�1
p
2
j .

(10)

*e second term in (10) can be regarded as the total
weighted completion time of the jobs of J1, J2, . . . , Jn,

Table 2: *ree types of instances with specified structure.

I1:
Any instance for which there does not exist a time t between the earliest SPoint and the latest EPoint in the online schedule by the LW-

SWPR rule, such that all the machines remain idle at t

I2: An instance which not only possesses the same structure as I1 but also satisfies that each job has the same weighted processing time

I3:
An instance which not only possesses the same structure as I1 but also satisfies that jobs in the last subqueue in the online schedule have

the same weighted processing time with weights tending to positive infinity
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which are continuously processed starting from the
time rL + (A/ si) on a single machine, with the
processing time of each job multiplied by a constant of
1/ si. Consider the set of J1, J2, . . . , Jn  as a separate
instance and further relax the release times of all the

jobs to rL; then, we can develop a lower bound of the
optimal schedule π(I2) according to Lemma 2.

π I2( ≥ π I2′(  + π J1, J2, . . . , Jn ( 

≥ π I2′(  + LBm
J1, J2, . . . , Jn ( 

� π I2′(  + rmin 
j∈I

pj +
1

2 si

 
j ∈ I

pj

2

+
1
2sm


j∈I

p
2
j .

(11)

According to the LW-SWPR rule, we have
(Sj≤rL,Cj>rL

pj/ si)≤ rL, i.e., (A/ si)≤ rL. Combin-
ing (9) and (10), we have

σ I2( 

π I2( 
≤max

σ I2′( 

π I2′( 
,

rL + A/ si( ( B + B2/2 si + 1 − 1/2 si( (  
n
j�1 p2

j

rLB + B2/2 si(  + 1/2sm(  
n
j�1 p2

j

⎧⎨

⎩

⎫⎬

⎭

≤max
σ I2′( 

π I2′( 
, 2, 2sm 1 −

1
2 si

  

≤max
σ I2′( 

π I2′( 
, 2sm 1 −

1
2 si

  .

(12)

Case 2: there exists at least a job Jk which is released
before rL and is scheduled at, or after, rL in σ(I2).
According to the LW-SWPR rule, Jk must satisfy

pk + Sj≤rL,Cj>rL
pj

 si

≥ rL. (13)

Otherwise, Jk would be scheduled before rL.
Consider the jobs that are completed after rL. According

to the increasing order of their starting times, denote these
jobs by J1, J2, . . . , Jn. Construct an intermediate instance I2′

which includes all the other jobs in I2 except J1, J2, . . . , Jn.
Divide the set of J1, J2, . . . , Jn  into two subsets as follows:

Q1 � Jj

 Sj < rL, Cj > rL ∪ Jk ,

Q2 � Jj

 Sj ≥ rL \ Jk .

(14)

Let Jj∈Q1
pj:� A and Jj∈Q2

pj:� B.
*en, similar to the derivation of (9), we can limit σ(I2)

as

σ I2( ≤ σ I2′(  + rL(A + B) +
(A + B)2

2 si

+ 1 −
1

2 si

  
Jj∈Q1∪Q2

p
2
j . (15)

By relaxing the releasing times of jobs in J1, J2, . . . , Jn 

to 0, similar to the analysis of (10), we can limit π(I2) as

π I2( ≥ π I2′(  +
(A + B)2

2 si

+
1
2sm


Jj∈Q1∪Q2

p
2
j . (16)

We can derive (A/ si)≥ rL from (12). Furthermore, we
can obtain Jj∈Q1

p2
j ≥A2/m because there are at most m jobs

in Q1. In addition, we have the inequality of 
m
i�1 si ≥m.

Combining these relations with (13) and (15), we can limit
the performance ratio of I2 as

Mathematical Problems in Engineering 5



σ I2( 

π I2( 
≤max

σ I2′( 

π I2′( 
,
rL(A + B) + (A + B)2/2 si  + 1 − 1/2 si( ( Jj∈Q1∪Q2

p2
j

(A + B)2/2 si  + 1/2sm( Jj∈Q1∪Q2
p2

j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤max
σ I2′( 

π I2′( 
,

A(A + B)/ si(  + (A + B)2/2 si  + 1 − 1/2 si( ( Jj∈Q1∪Q2
p2

j

A2/2 si(  + 1/2sm( Jj∈Q1∪Q2
p2

j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤max
σ I2′( 

π I2′( 
, 2sm +

(3/2) − sm( / si( A2 − 1/2 si( Jj∈Q1∪Q2
p2

j

A2/2 si(  + 1/2sm( Jj∈Q1∪Q2
p2

j

⎧⎨

⎩

⎫⎬

⎭

≤max
σ I2′( 

π I2′( 
, 2sm +

(3/2) − sm( / si( A2 − 1/2 si(  A2/m( 

A2/2 si(  + 1/2sm(  A2/ si( 
 

� max
σ I2′( 

π I2′( 
,
2sm

sm + 1
2.5 −

1
2m

  .

(17)

*e above two cases show that we can bound the per-
formance ratio of I2 from above equation by 2sm(1−

(1/2 si)) or (2sm/(sm + 1))(2.5 − (1/2m)) or the perfor-
mance ratio of an intermediate instance I2′. Furthermore, in
σ(I2′), rL is not the latest SPoint anymore. Rewrite I2′ as I2
and repeat the above analysis until I2′ becomes an empty set.
Ultimately the performance ratio of I2 can be bounded from
the above equation by the larger value in 2sm(1 − (1/2 si))

and (2sm/(sm + 1))(2.5 − (1/2m)). □

Lemma 4. For any instance I3, the online schedule by the
LW-SWPR rule satisfies

σ I3( 

π I3( 
≤max 2sm 1 −

1
2 si

 ,
2sm

1 + sm

2.5 −
1
2m

  .

(18)

Proof. Jobs in the last subqueue of I3 have the same
weighted processing time with weights tending to infinity.
Without loss of generality, let wj � δpj for these jobs with δ
tending to infinity. In the following calculation of perfor-
mance ratios, they are all carried out in the sense of limit
when δ tends to infinity, with the sign of limit omitted.

Denote by Q∞ the set including all the jobs in the last
subqueue of I3. Denote by rf the earliest releasing time of
jobs inQ∞, and by rL the latest SPoint in I3. Next, we analyze
the performance ratio of I3 by the following three cases:

Case 1: rL ≤ rf. Considering the time rf, according to
the LW-SWPR rule, we have

Sj≤rf,Cj>rf
pj

 si

≤ rf. (19)

After the jobs which start before rf are completed, the
jobs in Q∞ are continuously processed. Assume that

the jobs in Q∞ start being processed in the order of
J1, J2, . . . , Jn. Let Jj∈Q∞pj:� B. Similar to the analysis
in Case 1 in the proof of Lemma 3.5, along with (19), we
can derive an upper bound of σ(I3) as

σ I3(  � σ I3′(  + 
n

j�1
Sj + pj wj

≤ σ I3′(  + 
n

j�1
rf +

Sj≤rf,Cj>rf
pj + 

j− 1
i�1 pi

 si

+ pj
⎛⎝ ⎞⎠δpj

≤ σ I3′(  + δ2rfB +
B2

2 si

+ 1 −
1

2 si

  

n

j�1
p
2
j,

(20)

where π(I3′) indicates a limited value. By relaxing the
releasing times of jobs in Q∞ to rf, we can similarly
derive a lower bound of π(I3) as

π I3( ≥ π I3′(  + δ rfB +
B2

2m
+

1
2sm



n

j�1
p
2
j).⎛⎝ (21)

When δ tends to infinity, the relations above imme-
diately imply

σ I3( 

π I3( 
≤max

σ I3′( 

π I3′( 
, 2sm 1 −

1
2 si

  . (22)

Case 2: rL > rf. Furthermore, jobs being processed at rL

in σ(I3) all belong to Q∞. Similar to the proof of
Lemma 3, we can construct an intermediate instance I3′

6 Mathematical Problems in Engineering



by deleting some jobs from I3 such that rL is not the
latest SPoint in σ(I3′) anymore. Furthermore, it holds
that

σ I3( 

π I3( 
≤max

σ I3′( 

π I3′( 
,
2sm

sm + 1
2.5 −

1
2m

  . (23)

Case 3: rL > rf. Furthermore, there are one ormore jobs
which do not belong to Q∞ and are being processed at
rL in σ(I3). According to the improved AD-SWPTrule,

these jobs must start before rf. We further analyze the
performance ratio in terms of two subcases.

Case 3.1: there does not exist a job in Q∞ which is
released before rL and is scheduled at, or after, rL in
σ(I3). *is case implies that jobs starting at, or after,
rL are all released at, or after, rL. Except these jobs, we
can construct an intermediate instance I3′, which
includes all the other jobs in I3. Let Sj≥rL

pj � B.
Similar to the analysis in Case 1 in the proof of Lemma
3, we can derive

σ I3( 

π I3( 
≤
σ I3′(  + δ rL + Sj<rL

pj/ si  B + B2/2 si(  + 1 − 1/2 si( ( Sj≥rL
p2

j 

π I3′(  + δ rLB + B2/2 si(  + 1/2sm( Sj≥rL
p2

j 

≤max
σ I3′( 

π I3′( 
, 2sm 1 −

1
2 si

  .

(24)

Case 3.2: there exists at least a job Jk in Q∞ which is
released before rL and is scheduled at, or after, rL in
σ(I3). First, consider these jobs which do not belong to
Q∞ and are being processed at rL in σ(I3). Denote the
set including these jobs by Q′. Let
j∈Q′ ,Sj≤rL,Cj>rL

pj: � A′. According to the LW-SWPR
rule, these jobs must start being processed before rf. It
follows that

A′

 si

≤ rf. (25)

Because Jk is released before rL and is scheduled at, or
after, rL in σ(I3), we have

pk + Sj≤rL,Cj>rL
pj

 si

≥ rL. (26)

Consider the jobs in Q∞ which are completed after rL.
Define two sets as follows:

Q1 � Jj ∈ Q∞

 Sj < rL, Cj > rL ∪ Jk ,

Q2 � Jj ∈ Q∞

 Sj ≥ rL \ Jk .

(27)

Construct an intermediate instance I3′, which includes all
the jobs in I3 except jobs in Q1 and Q2. Let Jj∈Q1

:� A and
Jj∈Q2

:� B. Similar to the analysis in Case 2 in the proof of
Lemma 3, considering that jobs in Q1 and Q2 can be con-
tinuously processed after jobs in Q′ are completed, we can
derive an upper bound on σ(I3) as

σ I3( ≤ σ I3′(  + δ rL +
A′

 si

 (A + B)

+
(A + B)2

2 si

+ 1 −
1

2 si

 
Jj∈Q1∪Q2

p
2
j.

(28)

By relaxing the releasing times of jobs in Q1 and Q2 to rf,
we can also derive a lower bound on π(I3) as

π I3( ≥ π I3′(  + δrf(A + B) +
(A + B)2

2 si

+ 
Jj∈Q1∪Q2

p2
j

2
.

(29)

Equation (26) implies that (A + A′)/ si ≥ rL. Further-
more, Jj∈Q1

p2
j ≥A2/ si because there are at most m jobs in

Q1. Combining these relations with (24), (26), and (28), we
have

σ I3( 

π I3( 
≤max

σ I3′( 

π I3′( 
, 2,

A/ si( (A + B) + (A + B)2/2 si  + 1 − 1/2 si( ( Jj∈Q1∪Q2
p2

j

(A + B)2/2 si  + 1/2sm( Jj∈Q1∪Q2
p2

j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
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≤max
σ I3′( 

π I3′( 
, 2, 2sm +

(3/2) − sm( / si( A2 − 1/2 si( Jj∈Q1∪Q2
p2

j

A2/2 si(  + 1/2sm( Jj∈Q1∪Q2
p2

j

⎧⎨

⎩

⎫⎬

⎭

≤max
σ I3′( 

π I3′( 
, 2, 2sm +

(3/2) − sm( / si( A2 − 1/2 si(  A2/m( 

A2/2 si(  + 1/2sm(  A2/ si( 
 

≤max
σ I3′( 

π I3′( 
,
2sm

sm + 1
2.5 −

1
2m

  .

(30)

*e first inequality is derived by applying
(A + A′)/ si ≥ rL and A′/ si ≤ rf. *e second inequality is
obtained by relaxing Q2 to an empty set and then applying
Jj∈Q1

p2
j ≥A2/m.

*e above three cases show that we can bound the
performance ratio from the above equation by the maximal
value among 2sm(1/(1 − 2 si)) and (2sm/(sm + 1))(2.5 −

(1/2m)) and the performance ratio of the intermediate
instance I3′. Furthermore, in σ(I3′), rL is not the latest SPoint
anymore. Rewrite I3′ as I3 and repeat the above analysis.
Ultimately the performance ratio of I3 can be bounded from
the above equation by max 2sm(1 − (1/2 si)),

(2sm/(1 + sm))(2.5 − (1/2m))}.
Following Lemmas 1, 3, and 4, we can readily obtain that

LW-SWPR is max 2sm(1 − (1/2 si)), (2sm/(1 + sm))

(2.5 − (1/2m))}-competitive. *us, *eorem 1 is
proved. □

4. Conclusions

In this work, we design an online algorithm for
Qm|rj, online|  wjCj and prove that it is
max 2sm(1 − (1/2 si)), (2sm/(1 + sm))(2.5 − (1/2m)) -c-
ompetitive. *e result is a generalization from the identical-
machine scheduling considered in [24]. Although the
competitive performance is not a constant because it tends to
infinity when the fastest machine speed sm tends to infinity,
it still makes improvements on the existed results in some
extents. *e first one is that it improves the result provided
by Hall et al. [18] when the fastest machine is not too fast, say
less than 4. *e second one is that it tends to an sm-related
constant when the machine number tends to infinity. In this
sense, it also improves the result provided by Liu et al. [28].
Furthermore, it is very hopeful to improve the performance
guarantee to an sm-independent value if all the machines are
considered besides the idle ones in the scheduling rule. *e
same analysis method can be employed. It deserves to be
further investigated in our future work.
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