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Climate downscaling is a way to provide finer resolution data at local scales, which has been widely used in meteorological research.
-e twomain approaches for climate downscaling are dynamical and statistical.-e traditional dynamical downscaling methods are
quite time- and resource-consuming based on general circulation models (GCMs). Recently, more and more researchers construct a
statistical deep learning model for climate downscaling motivated by the single-image superresolution (SISR) process in computer
vision (CV). -is is an approach that uses historical climate observations to learn a low-resolution to high-resolution mapping and
produces great enhancements in terms of efficiency and effectiveness. -erefore, it has provided an appreciable new insight and
successful downscaling solution to multiple climate phenomena. However, most existing models only make a simple analogy
between climate downscaling and SISR and ignore the underlying dynamical mechanisms, which leads to the overaveraged
downscaling results lacking crucial physical details. In this paper, we incorporate the a priori meteorological knowledge into a deep
learning formalization for climate downscaling. More specifically, we consider the multiscale spatial correlations and the chaos in
multiple climate events. Depending on two characteristics, we build up a two-stage deep learning model containing a stepwise
reconstruction process and ensemble inference, which is named climate downscaling network (CDN). It can extract more local/
remote spatial dependencies and provide more comprehensive captures of extreme conditions. We evaluate our model based on two
datasets: climate science dataset (CSD) and benchmark image dataset (BID). -e results demonstrate that our model shows the
effectiveness and superiority in downscaling daily precipitation data from 2.5 degrees to 0.5 degrees over Asia and Europe. In
addition, our model exhibits better performance than the other traditional approaches and state-of-the-art deep learning models.

1. Introduction

Climate variations are influencing society’s well-being all
over the world, such as global warming, extreme storm,
precipitation, and sea-level rising [1–3]. A lot of industrial
and agricultural products have been severely affected by
these climate changes with increasing intensity, duration,
and frequency [4]. In recent years, climate researchers are
looking for more reliable climate simulation methods, which
can provide a more detailed evolution process of meteo-
rological events, for more effective disaster mitigation and
decision-making [5].

General circulation models (GCMs) are the traditional
tools for simulating and investigating the various climate
events [6, 7]. -ey are usually developed on the basis of

complicated physical dynamical principles and executed on
large-scale supercomputers. -ese GCMs usually take a large
number of physical variables into account andmodel the entire
climate evolution processes into specific differential equations.
-ese variables are treated as initial fields and have specific
spatial resolutions, respectively, so that the meteorological
researchers can investigate and forecast the potential trends
that rely on these physical patterns with various resolutions
under model integration. However, when simulating and
studying themeteorological evolutions in small-scale areas, one
may encounter the issues of too coarse spatial resolutions in
GCMs, which limit revealing critical detailed physical pro-
cesses, such as precipitations in key river basins and extreme
typhoons.-is severely hinders the assessment of the impact of
climate events on these relevant key regions [8].
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In this situation, climate downscaling has always been
the hotspot in meteorological research, which aims to re-
construct more detailed and finer resolution meteorological
data for small/medium scale regions. Technically, climate
downscaling is used to enlarge the resolutions and elaborate
the detailed contents for physical variables in climate events.
-ere are two classic approaches to solve this problem:
dynamical downscaling and statistical downscaling. Dy-
namical downscaling accounts for developing high-resolu-
tion GCMs or regional climate numerical models (RCMs) to
simulate local meteorological processes. It usually includes
embedding subgrid of key regions into GCM or using the
output of GCM as the boundary conditions in RCMs for
high-resolution projections. -is is an advantage that dy-
namical downscaling has clear physical causalities and
usually covers any regions even the entire Earth. However,
limited to construction principles of GCMs or RCMs, de-
veloping and integrating the dynamical downscaling may
need a large amount of calculation and time resources; in
addition, modifying and configuring GCMs into a certain
resolution are not convenient.

Statistical downscaling is a data-driven method and
learns the projection relationship from low-resolution (LR)
to high-resolution (HR) climate patterns via historical
meteorological big data. A large number of existing studies
have suggested that statistical downscaling has more efficient
computation and almost equally or even more accurate
downscaling results [9, 10], which is a reliable alternative.
-erefore, climate researchers are paying more attention to
it recently.

Statistical downscaling has been implemented by a va-
riety of numerical calculation methods in wide scope; one of
the most important ideas is to use regression to simulate the
mapping projection including linear and nonlinear ways.
Traditional linear regression makes preliminary progress in
terms of downscaling of sea temperature and precipitation in
early stage [11]. Subsequently, many studies focus on the
nonlinear evolution in climate events and extend linear to
nonlinear (such as artificial neural network (ANN)) ap-
proach based on machine learning to reduce downscaling
errors. -ese nonlinear methods, including quantile re-
gression neural networks [12], Bayesian model averaging
[13], and expanded downscaling [14], can capture a more
general relationship between LR and HR, so they achieve
better results.

-e above-mentioned statistical methods are efficient in
climate downscaling. However, limited to simplified for-
malization in mathematics, the existing statistical down-
scaling can only learn the most superficial correlations
contained in meteorological data but overlooks potential
physical details, which causes the unreasonable downscaling
results, such as overaveraging results or even describing the
extreme events’ failures [15]. In meteorological research, the
extreme behaviors in the Earth system should be paid more
attention to than normal events [1, 8], such as typhoons,
unusual floods, and strong El Niño events [16], because
extreme events may cause more severe damages. -erefore,
there is a special requirement for climate downscaling:

reconstructing more accurate climate data for reflecting the
truly detailed scenarios, instead of simple interpolation.

With the development of computing equipment, deep
learning methods, as the extension of ANN, provide an
appreciable new insight in many frontier areas, which in-
spire climate researchers to explore suitable alternatives in
the field of deep learning computer vision (CV) and ef-
fectively transfer these ideas to climate downscaling. More
specifically, single-image superresolution (SISR) problems
in CV are to raise the image resolution for providing clearer
and more comfortable pictures for human eyes. In terms of
such purpose, SISR problem is quite similar to climate
downscaling: they both learn a projection relationship be-
tween low-resolution (LR) and high-resolution (HR) data.
SR is based on image data; climate downscaling relies on
climate observed or simulated data. But the meteorological
data has a natural property; that is, they are usually available
on grid points. -erefore, we can make an analogy between
SR and climate downscaling: treating the grid points in a
climate data as pixels in an image and then modeling climate
downscaling as enlarging resolution in SR via deep learning
CV techniques [15].

Recently, a large number of established benchmark
image databases and SR competitions have significantly
promoted the development of SR problem in CV, so that we
can absorb these successful experiences and apply them to
climate downscaling. -e first successful deep learning
model was established by Dong et al. [17], who proposed a
three-layer SRCNN and achieved superior performance than
conventional methods. -en the SISR models are con-
structed larger scale, deeper and deeper by introducing
residual learning [18] and dense connection [19], such as 20
layers in VDSR [20] and DCRN [21]. In addition, more and
more CNN-based models improved the pioneering works
and achieved better results, such as applying subpixel
convolution [22], generative adversarial network [23], and
Charbonnier penalty function [24] in the model structures
to enhance model expression and ease model training. In
general, deep learning methods are relatively easier to
construct than dynamical downscaling and they can make
up the shortcomings of execution time and computing re-
sources. Furthermore, many latest deep learning technolo-
gies are also convenient to use in SR, which are more and
more conducive to improving performance, such as dense
connection and residual learning. -ese studies imply that
deep learning can be a reliable tool in climate investigation,
and have great potential in climate downscaling.

However, the relationship between climate downscaling
and SR is not exactly the simple analogy. SR requires the
modulated images to improve viewing comfort, including
higher resolutions, adaptive contrast, and edges. On the
contrary, climate downscaling requires absolutely true
physical details and dynamic features that cannot be de-
scribed well at low resolution, which may even generate
“extra” spatial information. To tackle this challenge, we can
absorb some general guidelines in the SR model and then
combine them with specific concepts of meteorological
knowledge to build up a more comprehensive formalization
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for climate downscaling problem, which can increase the
model interpretability and improve downscaling skills.

In this paper, we incorporate the a priori meteorological
knowledge into the deep learning modeling process for
climate downscaling. -e multiscale spatial correlations and
the chaos are the two key concepts in multiple climate
events. We take both into account and novelly formulate
climate downscaling as a two-stage process. In the first stage,
the same LR climate data will be reconstructed to multiple
same-size HR data considering multiple spatial scale cor-
relations, which will generate many HR candidates. In the
second stage, we will evaluate the reconstruction uncer-
tainties of these HR candidates and then infer the optimal
probability distribution of the results, which can provide the
optimal mean and corresponding variance at the same time.
Based on such formalization, we further implement a more
detailed model named climate downscaling network (CDN),
which implements the above-mentioned two stages.

To the best of our knowledge, it is the first time to in-
tegrate meteorological knowledge into deep learning in
climate downscaling. We train and evaluate our proposed
model on the real-world climate science dataset (CSD) and
benchmark image dataset (BID), respectively, on the metrics
of SSIM and PSNR. We carry out comparative experiments
to determine a better model structure which can make a
trade-off between performance and speed, and then we
design several different magnification experiments with our
two datasets and conduct extensive experiments to evaluate
the performance of our model. From CSD experiments, our
model shows the effectiveness and superiority in down-
scaling daily precipitation data from 2.5 degrees to 0.5
degrees over Asia and Europe. In addition, we also discover
that what our model learns is not a fixed resolution mapping
from LR to HR but the enlarged size, which means that our
model is not limited by the size of input or output and has
good extensibility for transfer learning [25]. As for BID
experiments, our model has excellent performance, which
outperforms than the other traditional approaches and state-
of-the-art models, especially at the small magnifications.

2. Problem Formalization and Context

2.1. Formalization. Climate events can be treated as very
complicated hydrodynamic phenomena, where different
coupled physical variables develop under deterministic
dynamic mechanisms. Climate downscaling is to enhance
the resolution of a certain physical variable in the same area
and provide more detailed forecast results. In other words,
climate downscaling is to supplement the data on the finer
grid points by extracting and learning the underlying
physical laws of the original data.

Spatial correlation plays an important role in climate
downscaling, which is an important internal characteristic.
Increasing evidence suggests the remote correlations pro-
duce climate variabilities. Rong et al. [26] found that the
positive sea surface temperature anomalies (SSTA) in the
northern tropical Atlantic (NTA) can trigger the eastward
Kelvin wave which induces low-level anticyclone over the
western North Pacific during boreal summer. Rueda et al.

[27] found that the waves have great contributions to ex-
treme sea-level fluctuations, for both local and remote
windstorms. In general, climate events in the Earth system
are not isolated; because multiples atmospheric circulations
or ocean waves building up a bridge span the ocean (or land)
and atmosphere, the coupled interactions connect all climate
variables spatially together regardless of adjacency correla-
tions or remote correlations.

However, such spatial correlations are not fully utilized
in the climate downscaling problem. Traditional regression
approaches and CNNfilters usually extract local information
in continuous spaces to interpolate extra grid points, which
is confined to adjacency neighborhood, and tend to average
the downscaling results; the remote meteorological spatial
correlations are usually ignored, which makes the results
lacking credible dynamic causality and interpretation.

From the perspective of climate dynamics, the inter-
polated details are mainly determined by local scales
information or the so-called adjacency correlations; the
large-scale information may also contain the potential
trends, such as remote waves or wind forcing. So if multi-
scale correlations can be taken into account in the down-
scaling model, the performance will be greatly improved. In
addition, the chaos of the dynamic system is inevitable;
meteorological researchers are paying more attention to
describing the uncertainties in climate forecasting, leading to
a turning from determinant single-value predictions to
probabilistic predictions, such as ensemble prediction
[28, 29]. -erefore, we will take good advantage of proba-
bilistic predictions and provide more comprehensive
downscaling.

On the basis of these two pieces of a priori meteoro-
logical knowledge, we formulate a 2-stage process for climate
downscaling. -e first stage (stage 1) is to reconstruct HR
climate data considering different multiscale spatial corre-
lations and obtain several HR candidates. -e second stage
(stage 2) is to infer the optimal probabilistic distributions for
downscaling results via the obtained candidates from stage 1,
providing the optimal mean and corresponding variance at
the same time (see Figure 1).

Stage 1. In general, small-scale spatial correlation can reflect
more adjacency information; large-scale spatial correlation
contains more remote interactions. -erefore, to cover as
many different spatial correlations as possible, we design a
structure containing N path to reconstruct HR data, where
every path extracts and learns different scale spatial corre-
lations. Finally, we can obtain N HR candidates.

In every reconstruction process of these N paths, we
propose the stepwise reconstruction process to gradually
enlarge the climate data. Classic methods usually use the
upsampling or bicubic interpolation to enlarge the data by
integer multiples directly, but these operations are done in
one step and always limited in integer multiples, such as
from an original size 40 × 60 to a required size 80 × 120 (2×

magnification), which may fill too much content at one time
and cause too large space skips. In fact, climate downscaling
may have a more flexible magnification size according to
requirement, which is usually not an integer-multiple
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amplification, such as from an original size 40 × 60 to a
required size 50 × 80, in which aspect traditional methods
have limitations. -erefore, in every reconstruction path, we
divide the entire process into gradually enlarged subpro-
cesses, which can fully extract the spatial correlations of
different scales.

More specifically, suppose the original climate data size
is i × j and the required data size is i′ × j′ in a 2D down-
scaling scenario (channel size is 1 for expression
simplification):

Δh � i′ − i,

Δw � j′ − j,

⎧⎨

⎩ (1)

where Δh and Δw are the resolution increments, respec-
tively, for each edge of original climate data. According to
equation (1), we divide Δh and Δw into M steps and enlarge
the data size with (nh

(m), nw
(m)) in each step as depicted in

 n
h
(m)


� Δh

 n
w
(m)


� Δw

y(m+1) � g
nh

(m)
,nw

(m)
 

y(m) 

, (m � 1, 2, . . . , M)

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (2)

where y(m) and y(m+1) are the input and output data of each
step, respectively, and g is the magnification operator related
to enlarged sizes (nh

(m), nw
(m)). For example, the input size for

y(m) is i(m) × j(m) and the output size for y(m+1) is
(i(m) + nh

(m)) × (j(m) + nw
(m)). -is process is described in

Figure 2, where (a) and (e), (b) and (f), and (c) and (g) show
the processes for M � 1, 2, 3, respectively; (d) represents the
process of dividing M into infinite magnifications, which is
similar to calculus. We design a rule to deduce the enlarged
sizes (nh

(m), nw
(m)) to guarantee them as equal as possible

during these M steps as in equation (3). In such a process,
⌊Δh/M⌋ or ⌈Δh/M⌉ represents every enlarged size nh

(m) and
the same for nw

(m).

Δh � sh ×⌊Δh/M⌋ + th × Δh/M⌈ ⌉,

Δw � sw ×⌊Δw/M⌋ + tw × Δw/M⌈ ⌉,

M � sh + th � sw + tw.

⎧⎪⎪⎨

⎪⎪⎩
(3)

For a certain climate downscaling problem, Δh and Δw
are fixed values; the magnification factors (nh

(m), nw
(m)) and

step size M are negatively related to each other; for example,
when M is very small, (nh

(m), nw
(m)) are relatively large,

but when M is very large, (nh
(m), nw

(m)) are relatively small. In
addition, the smaller (nh

(m), nw
(m)) means the size change of

climate data is not obvious, which leads the climate data to
tend to project more on to the adjacency spatial correlations
and learn more local information to fill the grid point of
expanded resolution and vice versa. As we use N different
paths to reconstruct the HR data and set as many different
decomposed steps M as possible in every path where
(nh

(m), nw
(m)) are totally different, we can fully demonstrate

the adjacency and remote spatial interactions in the whole
process. Figure 3 displays the detailed stepwise recon-
struction structure in each path.

Stage 2. In meteorological research, the forecasts are more
willing to be expressed in the form of a probability distri-
bution. On the one hand, this is a more rigorous choice to
measure the uncertainties of forecast results. On the other
hand, climate events often imply potential extreme condi-
tions, which cannot be ignored.-erefore, a large number of
studies use ensemble forecasts to describe climate
evolutions.

Taking the ensemble idea into account, we build up a
probabilistic distribution for obtained downscaling candi-
dates from stage 1 as

y, σ2  � F y1, y2, . . . , yN ( , (4)

where y and σ2 are the optimal mean and variance for the
downscaling results, [y1, y2, . . . , yN] represents the N HR
candidates from stage 1, and F represents the downscaling
ensemble system.

Data-driven methods, especially deep learning, show
excellent performance in discovering the intricate nonlinear
characteristics. -erefore, we construct a detailed deep
learning architecture to approximate g and F depicted in
the following sections. -is novel architecture is composed
of two corresponding stages. -e first stage is to reconstruct
downscaling data from the perspective of multiscale spatial
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Figure 1: Our proposed two-stage formalization, considering the multiscale spatial correlations and chaos in multiple climate events.
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correlation, and the second stage is to approximate the mean
and variance for the obtained candidates and provide the
optimal result.

2.2.DataCollection andApplication Scenario. We use a deep
learning network to implement the magnification operator g

and downscaling ensemble system F. When the deep
learning network structure is determined, the training
dataset quality directly affects the downscaling performance.
From the perspective of meteorology, multiresolution
datasets are easily available. One of the ways is to collect real-
world observation data on the same area and time period
with different resolutions as a training set; another is to use
simulation data by adjusting the resolution setting of a
certain numerical climate model. No matter in which way,
the LR climate data can be treated as the input of the deep
learning model, and the corresponding HR climate data can
be applied to supervised learning.

However, one may also encounter the situation that
there is a single source for a certain physical variable, which
only provides one fixed resolution climate data. It is difficult
to obtain adequate data. In this situation, we can draw on the
idea of SISR problem to augment the dataset in three ways.
(1) Scaling: randomly downscale the original climate data
between [0.5, 1]. (2) Rotation: randomly rotate image by 90°,
180°, or 270°. (3) Flipping: flip images horizontally or ver-
tically with a probability of 0.5. -e expended dataset can be
used as HR data, then generating the LR training set using
the bicubic downsampling method. It is worth noting that
what the model actually learns via such LR-HR data pair is
more similar to the inverse process of the downsampling
kernel (such as the inverse of the bicubic kernel) [30].
-erefore, it is a better choice to use the real-world or
simulated LR-HR climate data to train the network.

Furthermore, our model is very expandable. What the
model learns is not a fixed resolution mapping from LR to
HR, but the enlarged size, which can be applied to any
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Figure 3: -e detailed process for an N path reconstruction based on the stepwise reconstruction process. Every row in the green block
represents a path, where each box means the enlarged size in this step. After reconstructing in N paths, we can collect N HR candidates
shown in red block.
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Figure 2: Some examples of the stepwise reconstruction process. -e upper row means the original task: enlarging the data from i × j to
i′ × j′. -e lower row means dividing the entire process into M steps. M � 2 for (a) and (e); M � 3 for (b) and (f); M � 4 for (c) and (g). (d)
represents the process of dividing M into infinite magnifications.
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resolution enlargement. For example, the model is trained
for enlarging (30 × 40) to (50 × 70) with downscaling size
(+20, +30); then it can be reused for enlarging (20 × 30) to
(40 × 60) by transfer learning.-is approach greatly reduces
the difficulty of climate downscaling in similar situations.

3. Methodology

Based on the proposed architecture, we design a more de-
tailed network for providing improved climate downscaling,
named climate downscaling network (CDN). -e structures
and intentions of the two-stage structure are interpreted in
the following sections.

3.1. stage 1: Stepwise Reconstruction Process. According to
our proposed formalization, we build up a deep learning
model which contains N different paths, and every path
enlarges the LR data in M steps gradually. It will reconstruct
and generate N HR candidates. -e network structure is
designed as in Figure 4.

-e input is the original climate data or climate data after
some preprocess operations, such as min–max scale, stan-
dardization, and normalization. After the climate data
passed into network, it is assigned to N different paths,
respectively. In each path, the original climate data will be
expended in M steps gradually to the required size, which is
called the stepwise reconstruction process as stair-like green
blocks in Figure 4.

In this structure, the path number N and corresponding
step number M are crucial for model structure and
downscaling performance, which will influence the change
sizes (nh

(m), nw
(m)) directly. Suppose the climate data sizes for

HR and LR are i′ × j′ and i × j, respectively; we apply three
effective strategies for determining the path number N and
step number M in every path. ① Nature-strategy (NS): the
step size in the first path is 1, and the step size between
adjacent paths is increased by 1 from 1 to
min((i′ − i), (j′ − j)). ② Even (Odd)-strategy (ES or OS):
the step size in the first path is 1 (2), and the step size
between adjacent levels is increased by 2 from 1 (2) to
min((i′ − i), (j′ − j)). ③ Prime-strategy (PS): choose all
prime numbers between 3 and min((i′ − i), (j′ − j)) as the
step size for every path. An example is shown in Figure 5. In
the following experiments, we will verify the pros and cons
of these three strategies.

-e most import module in the stepwise reconstruction
process is the green block in Figure 4, which is used to
enlarge the feature maps by (nh

(m), nw
(m)). As our proposed

formalization, change size (nh
(m), nw

(m)) may be small.
-erefore, we propose a special dense block to configurablely
enlarge the size of feature map by (nh

(m), nw
(m)) described in

Figure 6. In this block, the input feature map is firstly
expended by c convolution layers as χ for feature extraction;
then the channel-expended feature map χ is connected to a
k-stair-like structure, which has the following
characteristics:

(1) Every stair contains one convolution layer and one
final dilated transformed convolution layer.

(2) -e first stair uses feature map χ as input. -e other
stairs concatenate the last stair’s input and the output
of the convolutional layer and then use it as the input
of this layer.

After all stairs enlarge the feature maps’ size by the
dilated transformed convolution layer, we concatenate the
output from every stair together and shrink the channel size
to the original input channel size by continuous d convo-
lution layers. -e example shown in Figure 6 exhibits one
structure with c � 1, d � 3, and k � 3 stairs.

Such dense block fully consists of convolutional layers
and can be considered to contain 3 different effects: feature
extraction, mapping, and shrinking. -e first c convolution
layers represent the feature extraction. -e k-stair-like
structure represents the mapping, which can discover the
mapper between coarse resolution (LR) and fine resolution
(HR).-e final d convolution layers represent the shrinking,
which can compress and filter the redundant features after
multiple mappings. We design such structure by dense
connection, where the feature representations at lower levels
are shared and connected directly with higher levels and thus
can increase the nonlinearity of the network to learn
complex mappings at the finer levels.

In this dense block, the key point is the dilated trans-
formed convolution layer, which is used to expand the size of
feature maps efficiently in each stair. We improve the
original dilated transformed convolution layer according to
(nh

(m), nw
(m)). For example, when expanding data size i(m) ×

j(m) to (i(m) + nh
(m)) × (j(m) + nw

(m)), the contributions of
(nh

(m), nw
(m)) are twofold: firstly, (nh

(m), nw
(m)) are used to

define the padding size around original feature maps, which
means padding zeros around the feature maps to make the
size expand as required. -e left-up-right-bottom padding
sizes are nh

(m)/2, nw
(m)/2, nh

(m)/2, nw
(m)/2, respec-

tively, shown as dotted rectangles around the light blue
rectangles in Figure 7; secondly, (nh

(m), nw
(m)) control the

dilated rate (dr) for the kernel of dilated transformed
convolution layer, where the relationship between dr and
(nh

(m), nw
(m)) is described in the following equation:

drh
�

n
h
(m)

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
,

drw
�

n
w
(m)

2
 .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

-e difference between dilated and common convolu-
tion lies in that the dilated rate dr means inserting (dr − 1)

zeros between two elements in convolution kernel, as grey
rectangles inserted into the dark blue kernel in Figure 7(b).
Because the convolution kernel is a skipped structure, the
dilated kernels are concerned not only with continuous
spatial information (when dr � 2) but also with remote grid
points with discontinuous remote spatial correlations (when
dr> 2). -is is also related to the receptive field in deep
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Figure 4: Our proposed two-stage deep learning model. -e upper row represents the stepwise reconstruction model, the input is the
original data, and the output is the HR candidates’ collection set. -e lower row represents the ensemble inference model, which is a
symmetrical encoder-decoder structure, the input is the HR candidates set, and the output is the final downscaling result.
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Figure 5: -e detailed subprocesses for our proposed 3 path strategies with corresponding step size and detailed size changes. Suppose we
enlarge the climate data from 30 × 30 to 50 × 50. -e first block represents the NS, where the path number is 20. -e second (third) block
represents the OS (ES), where the path number is 10. -e last block represents the PS, where the path number is 7.

Feature extraction1 Mapping2 Shrinking3

Figure 6: Our proposed dense block, which is a stair-like full convolution structure. It can be considered to contain 3 different effects:
feature extraction, mapping, and shrinking.
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learning, which is determined by the real size of convolution
kernel. -e smaller dr is, the smaller the convolution kernel
is, the more the network pays attention to the adjacency
information, and vice versa. In our network architecture, we
reconstruct the HR data into multiple paths, and we divide
the entire enlarge process into various steps, so that the
network covers as many multiscale spatial correlations as
possible.

3.2. stage 2: Ensemble Inference for Uncertainty Estimation.
After obtaining N reconstruction candidates, we will esti-
mate the optimal probabilistic distribution. Mathematically,
when solving the optimal downscaling result y∗ for a new
observed sample x∗, it allows us to infer the probabilistic
distribution p(y∗ | x∗) via Bayesian formula as

p y
∗

| x
∗
, D(  �  p y

∗
| x
∗
, θ( p(θ | D)dθ, (6)

where D is the original dataset and θ is the optimal trainable
parameters in the downscaling system. However, the pos-
terior distribution p(θ | D) usually cannot be evaluated
analytically. Variational inference is often used to approx-
imate it, which uses a relatively simple distribution q(θ) to
simulate p(θ | D) by minimizing the Kullback-Leibler (KL)
divergence in equation (7).-is process is shown in Figure 8.

θ � argmin
θ

KL[q(θ)‖p(θ \ D)]. (7)

Dropout variational inference is one of the useful
techniques to approximate the posterior distribution. As
proved by Gal et al. [31], the posterior distribution p(θ | D)

is approximately equivalent to the dropout mask distribu-
tion q′(θ), which can be viewed as a Bernoulli distribution
related to dropout rate z. At the meanwhile, the results can
be described by sampling T times in testing, which is a
stochastic process. -erefore, equation (6) can be regarded
as follows:

p y
∗

| x
∗
, D(  ≈  p y

∗
| x
∗
, θ( q′(θ)dθ ≈

1
T



T

t�1
p y
∗

| x
∗
, θ( .

(8)

Via equation (8), we can estimate the approximate mean
and variance for the downscaling results. As for stage 2, we
design an encoder-decoder structure to implement it as
shown in Figure 4 (lower row). -is structure is also fully
convolutional. -e input of this network is the concatena-
tion of N candidates obtained from stage 1. During the
feature maps propagation forward in this network, the width
and height are never changed; we only use the convolution
filters to expand and reduce the channel size. -e encoder
and decoder are designed to be symmetrical. In the encoder,
the channel size is gradually increased, such that we use
[16, 32, 64] filters in Figure 4 (lower row). On the contrary,
the channel size is gradually decreased in the decoder, such
as [64, 32, 16]. In encoder and decoder, all layers are adopted
dense connection, where the input of every layer is the
outputs’ concatenation of the previous layers. Such structure
reuses the extracted features and strengthens the feature
propagation.

Furthermore, a trainable spatial dropout layer [32] is
applied to connect encoder and decoder, which is to drop
out some redundant information points spatially. -is layer
provides uncertainties for the whole network and allows the
approximation of p(y∗ | x∗, D) from the stochastic dropout
sampling. On the other hand, we can take advantage of all
our training dataset, because the vast majority of samples are
neural events which contain little extreme information for
the regression; determinant single-value traditional methods
tend to be overaveraged downscaling naturally (neutrali-
zation), but the probability distribution is convenient to
describe the true situation.

3.3. Loss Function and Metrics. Our goal is to approximate
the stepwise magnification operator g and the downscaling
ensemble system F for generating an HR data y, which is
close to the ground truth y. According to our formalization,
we design two different loss functions for these two different
stages, respectively, and combine them together, which can
ensure the spatial consistency of reconstructed HR data.

For stage 1, we use N paths to reconstruct N different
HR candidates by stepwise subprocesses. -erefore, we

(a) (b)

Figure 7: Two examples of improved dilated transformed convolution layer, the contributions of which are twofold: enlarging the feature
maps and enlarging the receptive fields to capture discontinuous remote spatial correlations. (a) nh

(m) � nw
(m) � 2, drh � drw � 1;

(b) nh
(m) � nw

(m) � 4, drh � drw � 2.
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optimize every candidate yn in every path by ℓ2 norm, which
is described in equation (9):

LS1 �
1
N



N

n�1
y − yn2. (9)

For stage 2, we combine ℓ2 norm and ℓ1 norm together,
where ℓ2 norm is to measure the smoothness of the
reconstructed HR data and ℓ1 norm is to measure the peak
distribution of the reconstructed HR data, described in
equation

LS2 � y − y2 + y − y1. (10)

-e total loss is as follows:

L � LS1 + LS2. (11)

After training the model, we evaluate the reconstructed
HR data in a validation set with two commonly used quality
metrics: PSNR and SSIM [33], shown as equations

MSE �
1

i′j′
 (y − y)

2
,

PSNR � 10 · log10
MAX2

MSE
 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

l �
2μy

2μ2y + c1

μy
2

+ μ2y + c1
,

c �
2σyy

+ c2

σy
2

+ σ2y + c2
,

s �
σyy

+ c3

σyσy + c3
,

SSIM � l
α

· c
β

· s
c
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

In PSNR,MAX is the maximum value among grid points
or pixels, such as MAX � 255 in image evaluation (the pixel
range is [0, 255] in an image). In SSIM, l, c, and s represent
bright, contrast, and structure comparison, respectively. μy
and μy are the averages of all grid point in y and y, σy and σy

are the standard deviations of all grid point in y and y, and
σyy

is the covariance between y and y. We set α � β � c � 1,
and c1, c2, and c3 are all small constants which are to prevent
denominator from 0.

4. Experiment Schema and Results

4.1. Climate Science Dataset and Benchmark Image Dataset.
For fully measuring the performance of our proposedmodel,
we collect two types of datasets and carry out extensive
experiments on them, respectively: ① Climate science
dataset (CSD): this dataset is composed of real-world ob-
served daily precipitation data with different 3 resolutions
covering the globe [34, 35], which are 0.5°, 1°, and 2.5°,
respectively (0.5° only for Europe). ② Benchmark image
dataset (BID): this dataset is composed of several different
datasets. -e training and validation set is from DIV2K [36],
containing 800 images for training and 100 images for
validation, respectively. -e testing set is from 5 datasets:
SET5 [37], SET14 [38], BSDS100 [39], URBAN100 [40], and
MANGA109 [41]. Among these datasets, SET5, SET14, and
BSDS100 consist of natural scenes; URBAN100 contains
challenging urban scenes images with details in different
frequency bands; and MANGA109 is a dataset of Japanese
manga.

For CSD, we crop the daily precipitation data covering
Europe and Asia from original data, respectively; the res-
olution and size are shown in Table 1. Europe covers
(150°W to 65°E, 30°N to 80°N), and Asia covers
(70°E to 140°E, 0° to 60°N). We make pairs of these data at
the same area under different resolutions and treat such
pairs as an individual subdataset for training and testing so
that we obtain 4 different subsets: 2.5°⟶ 1° Europe,
2.5°⟶ 0.5° Europe, 1°⟶ 0.5° Europe, and 2.5°⟶ 1°
Asia. In every subset, we select 85% randomly as the training
set, 5% as the validation set, and 10% as the testing set. -is
dataset is with one channel and preprocessed to [0, 1] by
max–min scale as

xnorm �
x − xmin

xmax − xmin
, (14)

where x is the original data, xnorm is the scaled data, and xmax
and xmin are the maximum and minimum value in original
data x. In addition, in the following experiments, we choose
lower resolution data as input and higher resolution data in
the same area as output of the model. -e PSNR and SSIM
indices are calculated for the reconstructed HR data directly,
whereMAX � 1 for PSNR because the data is scaled to [0, 1].

For BID, we design experiments with 2× and 3× mag-
nifications. Due to the characteristics of climate down-
scaling, meteorological researchers tend to choose climate
data with a resolution close to the requirement for down-
scaling, so the magnifications of climate data are often not

Hidden true posterior P(θ|D)

Optimal proxy q(θ)

Divergence
KL[q(θ)||p(θ|D)]

Figure 8: -e variational inference for analyzing the optimal posterior distribution p(θ|D) by estimating a relatively simpler distribution
q(θ).
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too large, which can basically meet the needs within 3×. -e
original size of every dataset is not the same; we randomly
sample small patches with the size of 64 × 64 (120 × 120) as
the HR training set and generate the corresponding LR
training set with 32 × 32 (40 × 40) by bicubic downscaling
with 2 (3) scale factor.-e input and output are both in RGB
color space (original channel� 3). -e PSNR and SSIM
indices are calculated on the luminance channel (a.k.a. Y
channel) of YCbCr color space, and MAX � 255 for PSNR.

We run our model on a GPU server (Intel i7 8700k and
dual NVIDIA GTX 1080Tis). -e experiments are divided
into two parts. Firstly, we investigate the optimal model
structure by determining the hyperparameters. Secondly, we
measure and investigate the performance by conducting
comparison experiments on the above-mentioned two
datasets, respectively.

4.2. Model Analysis. -e structure of a deep learning model
affects the downscaling performance directly. Our proposed
model has many adjustable modules, and we design a lot of
comparative experiments to find the optimal combination.

4.2.1. Network Structure. To determine the path number N

and corresponding step size M in each path, we evaluate our
model with three proposed strategies. We train and test our
model on BID with 2× magnifications, where we set
c � 1, d � 3, and k � 3 in the dense block of stage 1 and set
encoder (decoder) depth of stage 2 at 3. Under such settings,
we dynamically adjust the strategies to evaluate the model
performance. -e results are summarized in Table 2. From
the results, the PS has obvious better performance than
others. Specifically, when building the whole model with NS,
the results will obtain the largest downscaling errors. It may
be due to the fact that the enlargement process is too finely
divided, even containing overmuch continuous (+1, +1) in
many paths. -is will lead to an overly dense network
structure, so that too many redundant dense blocks may
exist in this process, which leads to overfitting. In addition,
the OS or ES also exhibits a little bit overfitting. -is
demonstrates that the subprocesses should not be divided
too much, and it will also lead to an increase in the number
of trainable parameters and extend the training time.

On the other hand, the division of subprocesses can be
designed adaptively, such as Tolerance2-Strategy (T2S) or
Tolerance3-Strategy (T3S), where the difference of step size
between adjacent paths is 2 or 3. -e results are also de-
scribed in Table 2.-e T2S has downscaling results similar to
PS, which outperforms than T3S. T3S divides sparser paths

in the entire model, which may lead to some big skips in the
dilated rate and discontinuous spatial correlations. -is
implies that the model is unable to learn enough detailed
features with sparse division of stepwise reconstruction
subprocesses.

4.2.2. Network Depth. In our proposed dense block, by
reducing the stair depth k to 1 in our proposed model, the
block falls back to a network structure similar to FSRCNN
[42]. On the contrary, when increasing the depth k of dense
block, the block is similar to the structure of LapSRN [24]
with the dense connections attached. Increasing the depth k

will definitely bring more trainable parameters of the model,
causing the considerable extension of training time and
downscaling speed, but also improves the model perfor-
mance. To find the trade-offs between performance and
speed, we train the model with different block structure
combinations, which represents the different total network
depth. We use PS in stage 1 and set encoder (decoder) depth
of Stage 2 at 3 and then dynamically adjust the depth of the
dense block. -e parameter combinations of dense block
and trade-offs between performance and speed are shown in
Table 3. From the results, we can conclude that deeper model
will perform better than shallow. As the network gradually
deepens, the performance improvement is not very obvious.
-erefore, we choose k � c � d � 3 in each dense block of
stage 1 for the following experiments to balance the effi-
ciency and performance.

For stage 2, we also train the proposedmodel by changing
the depth of symmetrical encoder and decoder (with PS and
k � c � d � 3 in the dense block). -e results are shown in
Table 4. It is the same as stage 1, when the network deepens,
the performance will increase. We choose encoder (decoder)
depth at 5 because we do not observe significant performance
gains by using more convolutional layers.

4.3. Climate Downscaling Performance on CSD. We apply
our model to CSD dataset. -e CSD dataset contains 5
subdatasets as different regions and resolutions; we divide
the entire dataset into 4 groups of LR-HR training pairs. -e
downscaling of CSD can be considered as 2× (1 to 0.5), 2.5×

(2.5 to 1), and 5× (2.5 to 0.5) according to the groups.-e LR
and HR climate are treated as the input and output of model,
respectively. -e results are described in Table 5.

From Table 5, we can detect that the restored HR is very
close to the real observation in general, where SSIM and
PSNR are both maintained at a high level. As the magni-
fication increases, SSIM and PSNR will decrease slightly.
-is is because the LR data (20 × 38) especially in 5× ex-
periments is too sparse for the required size (100 × 190) and
cannot provide enough spatial information for more ac-
curate results. In addition, at the same magnification such as
in 2.5× experiments, although the input data of the model
are different, such that the input sizes are 20 × 38 and 24 × 28
for Europe and Asia, respectively, the downscaling results
are almost the same. -is implies that our model is almost
not limited by the input size under the same magnification.
In addition, the sizes of the input and output have significant

Table 1: Climate science dataset (CSD).

HOAPS/GPCC
Region Resolution Size

Europe
0.5° 100 × 190
1° 50 × 95
2.5° 20 × 38

Asia 1° 60 × 70
2.5° 24 × 28
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impacts on the training time. -e larger the size is, the more
the time it takes to train the model. -erefore, under the
premise of ensuring model performance, it is important to
choose a suitable input and output size.

Furthermore, we choose real-world observation data in
the validation set to exhibit the downscaling results as shown
in Figures 9–12.

In these figures, in the left three columns: the second
column (b) describes the original HR climate data, the first
column (a) shows the results of bicubic interpolation, and
the third column (c) shows the output of our proposed
model. -e rightmost column (d) in these figures describes
the downscaling variance of our model. By comparing the
downscaling results, we can see that the bicubic interpola-
tion tends to underestimate and especially overestimate the
downscaling results, such as excessively expanding the re-
gion of the large value area (red areas in the figures)
compared to ground truth; this phenomenon is particularly
common. Technically, climate downscaling is to insert more
grid points into original data. Traditional approaches are
similar to heat diffusion process, which tends to smoothly
transport energy between grid points. -is makes the results
more average, ignoring the real physical mechanism.
However, our model considers the different multiscale
spatial correlations at the same time in the modeling process;
it pays more attention to extract potential features in the
discontinuous remote spaces. -erefore, our model can
achieve better performance.

From the perspective of variance ((d) in these figures),
the largest variance always appears at the large value area.
-is indicates that, in areas where the events are relatively
strong, the uncertainties are high. As the magnification
increases, the uncertainty gradually increases and becomes
more and more obvious. It may be that the LR data provides
too little information, which leads to increased uncertainties.
Overall, it still maintains at a very low level. From these real-
world downscaling results, although the climate down-
scaling has become more and more accurate in recent years,
it is still unavoidable that uncertainties will interfere with
results. -erefore, quantitative evaluation of the uncer-
tainties is very important in meteorological research.

4.4. Comparison with the State-of-the-Art on BID. We
compare our proposed model with 8 state-of-the-art SR
methods and models: FSRCNN [42], VDSR [20], EDSR [43],
LapSRN [24], RDN [44], RCAN [45], AdaRCAN [46], and
RFANet [47]. -ese models are all based on deep learning.
All the models are trained and validated on the same dataset,
DIV2K, and tested on 5 datasets: SET5, SET14, BSDS100,
URBAN100, and MANGA109. In addition, the learning rate
is initialized as 10− 5 and decays to half after every 50 epochs
to total convergence.

We measure the performance of the above-mentioned
models with PNSR and SSIM.We train these models with 2×

and 3× to detect the differences on performance. -e results
are shown in Table 6. Note that all results of other methods
given in this section are generated by the officially released
models or papers.

As shown in Table 6, in general, our proposed model is
roughly comparable with or even outperforms other models
especially in 2× experiments, which indicates the superiority
of the stepwise reconstruction and ensemble inference. At

Table 5: Quantitative evaluation of our proposed model on CSD:
averaged PSNR/SSIM for 4 groups of subdatasets, containing 2×,
2.5×, and 5× magnifications.

Region Magnification Downscaling
Loss Value

SSIM PSNR

Europe
2× 1⟶ 0.5 0.966 37.97
2.5× 2.5⟶1 0.943 36.81
5× 2.5⟶ 0.5 0.896 31.74

Asia 2.5× 2.5⟶1 0.967 37.95

Table 2: -e results on the proposed 3 different strategies with 2
other strategies to determine the path number.

Strategies Set5 Set14
PSNR/SSIM PSNR/SSIM

NS 36.53/0.957 31.76/0.905
OS (ES) 37.74/0.959 32.48/0.914
PS 38.27/0.961 34.10/0.921
T2S 38.12/0.961 33.87/0.920
T3S 37.85/0.960 33.88/0.918

Table 3: Trade-off between network depth and performance on the
depth of the dense block in stage 1. We dynamically adjust the
parameters k, c, and d in the dense block, where we set c � d for
simplification.

k c and d
Set5 Set14

PSNR/SSIM PSNR/SSIM

1
2 37.54/0.936 32.85/0.890
3 37.63/0.939 32.87/0.892
5 37.69/0.942 32.94/0.894

2
2 37.84/0.946 33.84/0.909
3 37.89/0.949 33.86/0.911
5 38.03/0.951 33.91/0.912

3
2 38.26/0.961 34.09/0.919
3 38.27/0.961 34.10/0.921
5 38.29/0.962 34.12/0.921

5
2 38.30/0.963 34.13/0.920
3 38.30/0.964 34.13/0.919
5 38.31/0.964 34.13/0.922

Table 4: Trade-off between network depth and performance on the
depth of encoder and decoder in stage 2.

Encoder (Decoder) Depth Set5 Set14
PSNR/SSIM PSNR/SSIM

2 38.18/0.956 34.03/0.910
3 38.21/0.959 34.07/0.911
5 38.27/0.961 34.10/0.921
8 38.28/0.963 34.14/0.921
10 38.31/0.964 34.17/0.922
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present, the existing deep learning models are designed
deeper and deeper, and they make full use of dense con-
nection and residual learning in the model structures.
However, these models are usually one step to enlarge the
feature maps directly (such as from 30 × 30 to 60 × 60 di-
rectly), which may cause too large feature size changes and
incomplete feature extractions. On the other hand, these
models only contain the integer-multiple magnification
block, so sometimes they cannot adjust any enlargement size
such as 2.5× magnification. Due to the stepwise recon-
struction process, our model tends to use as many magni-
fication blocks as possible, which enlarge the data gradually
and make full use of spatial correlations. -erefore, it can
extract more spatial dependencies and achieve better results.

In addition, our model performs better on 2× experiments
than 3× experiments in general. -is may be because the LR
images have closer resolutions with HR images in 2×

experiments.
It is worth noting that the SSIM indicator obtained by

our model is better, which usually ranks higher than PSNR.
According to the mathematical definitions of PSNR and
SSIM, PSNR tends to describe the ratio of the noise in-
formation (MSE) between two images, while SSIM thor-
oughly measures the structures of the two images under
multiple aspects, such as luminance and contrast, many
values of which are calculated by correlation coefficients of
these two images based on equation (13). It shows that SSIM
pays more attention to the trend and spatial consistency of
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Figure 9: -e comparison results for our model and bicubic results in 2× experiments (1⟶ 0.5) on real-world observation from 2019.12.1
to 2019.12.4 over Europe.-e ground truth is in the second column (b). -e first column (a) represents the bicubic results, the third column
(c) represents our model results, and the forth column (d) represents the downscaling variance of our model.
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Figure 10: -e same with Figure 9, but for 2.5× experiments (2.5⟶1) on real-world observation from 2018.12.1 to 2018.12.4 over Europe.
(a) Bicubic results, (b) ground truth HR, (c) our results, and (d) downscaling variance.
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the downscaling results. -erefore, this implies that the
downscaling results of our model will slightly overestimate
or underestimate the real situation due to the interference of
uncertainties, but it can exhibit more comprehensive spatial
characteristics, which is more important in meteorological
research.

5. Discussions

In which aspect does our proposed model consider the
multiple spatial remote correlations of climate events? In
order to take good advantage of this intrinsic characteristic
of climate phenomena, we associate the concept of receptive
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Figure 11:-e samewith Figure 9, but for 5× experiments (2.5⟶ 0.5) on real-world observation from 2019.6.1 to 2019.6.4 over Europe. (a)
Bicubic results, (b) ground truth HR, (c) our results, and (d) downscaling variance.
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Figure 12: -e same with Figure 9, but for 2.5× experiments (2.5⟶1) on real-world observation from 2019.6.1 to 2019.6.4 over Asia. (a)
Bicubic results, (b) ground truth HR, (c) our results, and (d) downscaling variance.
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field in deep learning with spatial remote correlation and
design a stepwise reconstruction process to enlarge climate
data gradually. More specifically, in the proposed dense
blocks, we adaptively design different dilated rate in dilated
transformed convolution layers to capture multiscale spatial
correlations. In detail, the real kernel size in dilated trans-
formed convolution layers kernelreal � kernel+
(kernel − 1)(dr − 1), which means inserting (dr − 1) zeros
between every two elements of the original kernel. So when
dr≥ 2, the kernel size is enlarged, and the receptive fields are
also expanded. -e space filtered by convolution kernels is
not continuous, and there are lots of skips in space, so that
broader remote spatial correlations are considered. Figure 13
shows some examples when kernel � 3.

In addition, in the stepwise subprocesses, we divide the
entire enlargement process into many small processes that
gradually enlarge the feature maps. -e stepwise recon-
struction process can cover as many different dilated rate dr
as possible. -erefore, in the entire enlarging process with a
specific strategy (such as Prime-strategy), the model usually
contains a large dilated rate and small dilated rate at the same
time, which can make every grid point participate in the
reconstruction process with multiscale spatial correlations.

Such operation ensures that our proposed model can extract
more comprehensive multiscale spatial information and
achieve better results.

In the implementation detail, there are no pooling layers
existing in the proposed model. Although pooling layers are
the most common structure to enlarge the receptive field, it
may reduce the size of the data, which is contrary to the
downscaling purpose and loss information. -erefore, we
design special dilated transformed convolution layers to
dynamically adjust the receptive field while increasing the
climate data resolution.

-e chaos of the dynamic system is always a severe
obstacle for climate forecasting. -is is the direction for
further climate research to try to capture the uncertainties.
We design a key structure of a trainable spatial dropout
layer, which can increase the randomness of the model, so
that our model can infer the probability distribution of
downscaling results and describe the optimal mean and
variance at the same time.

6. Conclusions

In this paper, we propose a novel formalization for climate
downscaling considering the multiscale spatial correlations
and chaos in climate events and incorporate these pieces of a
priori meteorological knowledge into the deep learning
modeling process. Our formalization contains 2 stages. In
the first stage, we creatively formulate climate downscaling
into a parallel N-path process, and each path contains a
stepwise reconstruction process to gradually enlarge the data
considering the different scale spatial correlations. -e same
LR climate data will be reconstructed to N same-sized HR
data. stage 1 will generate N HR candidates. In the second
stage, we absorb the thought of ensemble prediction and

Dilated rate
3
5
7
9

Real kernel size
7

11
15
19

Figure 13: Some examples of the relationships between the real
kernel size and dilated rate when the original kernel size is 3.

Table 6: Quantitative evaluation with other 8 state-of-the-art models: averaged PSNR/SSIM for 2× and 3× magnifications. Red text indicates
the best and blue text indicates the second best performance.

Scale Algorithm SET5 SET14 BSDS100 URBAN100 MANGA109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Bicubic 33.65/0.930 30.34/0.870 29.56/0.844 26.88/0.841 30.84/0.935
FSRCNN 36.99/0.955 32.73/0.909 31.51/0.891 29.87/0.901 36.62/0.971
VDSR 37.53/0.958 32.97/0.913 31.90/0.896 30.77/0.914 37.16/0.974
EDSR 38.20/0.961 34.02/0.920 32.37/0.902 33.10/0.936 39.10/0.977
LapSRN 37.52/0.959 33.08/0.913 31.80/0.895 30.41/0.910 37.27/0.974
RDN 38.24/0.961 34.01/0.921 32.34/0.902 32.89/0.935 39.18/0.978
RCAN 38.27/0.961 34.12/0.922 32.41/0.903 33.34/0.938 39.44/0.979

AdaRCAN 38.28/0.962 34.12/0.922 32.41/0.903 33.29/0.938 39.44/0.979
RFANet 38.26/0.961 34.16/0.922 32.41/0.903 33.33/0.939 39.44/0.978
Ours 38.27/0.961 34.10/0.921 32.41/0.902 33.33/0.939 39.43/0.979

×3

Bicubic 30.39/0.868 27.55/0.774 27.21/0.739 24.46/0.735 26.95/0.856
FSRCNN 33.18/0.914 29.37/0.824 28.53/0.791 26.43/0.808 31.10/0.921
VDSR 33.66/0.921 29.77/0.831 28.82/0.798 27.14/0.828 32.01/0.9340
EDSR 34.76/0.929 30.66/0.848 29.32/0.810 29.02/0.869 34.17/0.948
LapSRN — — — — —
RDN 34.71/0.930 30.57/0.847 29.26/0.809 28.80/0.865 34.13/0.948
RCAN 34.74/0.930 30.65/0.848 29.32/0.811 29.09/0.870 34.44/0.950

AdaRCAN 34.79/0.930 30.65/0.848 29.33/0.811 29.03/0.869 34.49/0.950
RFANet 34.79/0.930 30.67/0.849 29.34/0.816 29.15/0.872 34.59/0.951
Ours 34.75/0.928 30.64/0.848 29.32/0.814 29.09/0.871 34.59/0.952
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evaluate the reconstruction uncertainties of these HR can-
didates by inferencing the optimal probability distribution of
the results, which can provide the optimal mean and cor-
responding variance at the same time.

During the implementation, we take advantage of deep
learning technologies on SISR problem and build up a more
detailed model named climate downscaling network (CDN).
According to our proposed stepwise reconstruction and
ensemble inference, we build up a model with two corre-
sponding stages. stage 1 consists of an N-path process, and
each path divides the entire process into different steps to
gradually enlarge the data. -ese paths will dynamically
design the enlargement step size. -en every path will
generate an HR candidate, respectively. In stage 1, the most
basic module is the dense block proposed by us. We design
such blocks by making an analogy between the concept of
receptive field in deep learning and multiscale spatial cor-
relations of climate events. -is block is a stair-like structure
with dense connections. stage 2 is composed of a fully
convolution network, which is used to infer the optimal
probability distributions. A classic symmetrical encoder-
decoder structure is used in stage 2 with dense connections,
where the uncertainty of the network is controlled by a
trainable spatial dropout layer between encoder and de-
coder. According to the proposed model, we design loss
functions for these two stages, respectively, and combine
them together as the final loss. SSIM and PSNR are set as the
evaluation metrics.

We collect and make two different datasets to train and
evaluate our proposed model: climate science dataset (CSD)
and benchmark image dataset (BID). CSD contains the real-
world observed daily precipitation data with different 3
resolutions covering the globe, which are 0.5° (Europe only),
1°, and 2.5°, respectively. BID is composed of 6 different
image datasets, where DIV2K is for training and validation,
and SET5, SET14, BSDS100, URBAN100, and MANGA109
are for testing.

After building up the deep learning model and collecting
the dataset, we design two series of comparison experiments
to determine the optimal network structure and depth.
Firstly, we confirm and evaluate our proposed 3 different
path strategies with 2 other adaptive strategies and find that
the paths and step sizes should not be set too dense, which
leads to heavy overfitting. -e Prime-strategy (PS) is a better
structure for the model. -en, to find the trade-off between
the speed and performance, we gradually change the depth
of the dense block in stage 1 and the depth of encoder-
decoder in stage 2. In terms of the SSIM and PSNR, we
determine the optimal model structure.

-en, we measure and investigate the performance of
our model on the above-mentioned two datasets, respec-
tively. In CSD, we use a real-world observed daily precip-
itation dataset covering Europe and Asia to train our model.
We use different LR-HR pairs’ dataset to conduct climate
downscaling. Our proposed model effectively learns the
mapper projection from LR to HR. -e results demonstrate
the efficiency and superiority of our model in downscaling
daily precipitation data from 2.5 degrees to 0.5 degrees over
Asia and Europe. Although as the magnification increases,

the model performance will decrease slightly, it still main-
tains at a relatively high level. In addition, the sizes of input
and output will not affect the performance of the model. We
further carry out downscaling simulations on several real-
world observation data; the results show that the large
uncertainties are always located in the areas where the events
are relatively strong, which indicates that the chaos of the
dynamic system is always a severe obstacle for climate
forecasting. Despite this, our model progressively down-
scales the original climate data with low variances.

In BID, we compare our model with 8 other state-of-the-
art models in SSIM and PSNR. Sufficient experiments
demonstrate that it is reasonable to use our proposed for-
malization which provides a reliable forecast up to at least 2
and 3 magnifications. Furthermore, our model is not limited
in the magnification size compared to other models, tapping
its great potentials in exploring detailed dynamic mecha-
nisms for various climate events. What the model learns is
not a fixed resolution mapping from LR to HR but the
enlarged size, which can be applied to any resolution en-
largement and convenient for transfer learning.

Accurate climate forecasting not only depends on
models and experience but also requires an overall grasp of
the laws of nature. -us, we will use this approach to in-
vestigate the climate predictability. In the future, we will
explore dynamical mechanism by downscaling more dif-
ferent physical variables (such as sea surface level and
thermocline depth). Furthermore, through absorbing more
effective meteorological knowledge, we will build a more
targeted model structure to improve the model performance
and reduce the computational complexity.

Data Availability

-e original daily precipitation dataset can be accessed online
(https://opendata.dwd.de/climate_environment/GPCC/html
/HOGP_V002.html). -e image datasets are also available
online (https://data.vision.ee.ethz.ch/cvl/DIV2K/; https://
www.kaggle.com/brunoqin/super-resolution).
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