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Due to initial cracks, careless construction, and extreme load conditions, components with brittle behavior may exist in a
structural system. (e presence of brittle behavior of components usually is accompanied by a low strength. However, existing
methods for calculating the reliability of structures of components with brittle behavior are rather complicated or impossible. By
means of decomposing the entire system into a set of subsystems, this paper proposed a method to estimate the bounds on failure
probability of k-out-of-n system of components with potentially brittle behavior by using universal generating function (UGF)
and linear programming (LP). Based on the individual component state probabilities and joint probabilities of the states of a small
number of components, the proposed method can provide the bounds for the failure probability of a system with a large number
of components. (e accuracy and efficiency of the proposed method are investigated using numerical examples.

1. Introduction

A k-out-of-n system can be defined as a system with n
components which functions if and only if k or more of the
components function. (e k-out-of-n system is one of the
most popular and widely used systems in practice. Both series
and parallel systems are special cases of the k-out-of-n system.
A series system is equivalent to an n-out-of-n system, while a
parallel system is equivalent to a 1-out-of-n system. A series of
effective reliability methods of systems have been developed,
including the first-order reliability method (FORM) [1],
second-order reliability method (SORM) [2], logical differ-
ential calculus [3–5], Monte Carlo (MC) simulations [6], and
so on [7–12]. However, most methods have assumed that
there are ideal structures with perfectly ductile components.
(e ductile components have perfectly elastic-plastic be-
havior, i.e., the ductile component retains its load-bearing
capacity after ductile failure. However, there could be

components with brittle behavior in reality. (e perfectly
brittle failure of components indicates that deformation is
zero after the peak capacity has been reached. (e inter-
mediate semibrittle behavior is also possible.

Bennett introduced a method of analysis for determining
the reliability of frames with a few brittle components [13].
Based on the assumption of monotonic loading and the
failure graph of frame structure, an accurate estimate of
failure probability can be obtained. Heidweiller and Vrou-
wenvelder proposed a method of analysis for calculating the
reliability of structures with potentially brittle components
[14]. Important fundamental assumptions of the method are
that the probability of the presence of a brittle component is
relatively low and that only one component has brittle failure
in the structure. A few research studies for evaluating the
reliability of structures with brittle components have been
done [15, 16]. It has been noted that most methods of the
above research are rather complicated.
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Because of the complexity and the incomplete proba-
bility information of structure, the exact evaluation of
structural failure probability is often time-consuming or
unavailable. In order to reduce the computational com-
plexity, methods of computing bounds on structural failure
probability have been proposed [17, 18]. Based on the in-
dividual component failure probabilities and the joint failure
probabilities of components, the linear programming (LP)
bounds methods for determining the upper and lower
bounds on structural failure probability by using LP have
been proposed [19, 20]. In order to overcome the size
problem of the LP bounds method, the relaxed linear
programming (RLP) bounds method has been proposed. It
employs the universal generating function (UGF) to reduce
the number of design variables from 2n in LP bounds
method to n2 − n+ 2 [21, 22]. However, the above methods
of computing bounds are used for the structural system of
components with ductile behavior, not for the structural
system especially for the k-out-of-n system of components
with potentially brittle behavior.

In order to accurately evaluate the failure probability of
k-out-of-n system, a method will be proposed in this paper
for components with potentially brittle behavior. Based on
the individual component failure probabilities and the joint
failure probabilities of a few components, the proposed
method can obtain narrow bounds by using UGF and LP.
(e accuracy and applicability of proposed method will be
demonstrated using numerical examples.

2. Fundamental Assumptions

2.1. Overview. Because of the complexity of properties of
actual material, it is impossible to divide the behavior of a
component by drawing a sharp demarcation. For the sake of
simplicity, three basic behaviors of a component have been
distinguished artificially in this paper as shown in Figure 1
[23].

(e perfectly brittle behavior of a component means that
there is no further capacity of displacement when the peak
capacity has been reached. (e component would com-
pletely lose its capacity after brittle failure. A component can
be called perfectly ductile if it has sufficient displacement
capacity. (e component could maintain its load-bearing
capacity after ductile failure. (e intermediate mode can be
called semibrittle, and the component would maintain
partial load-bearing capacity after failure. For the sake of
simplicity, this paper will focus on the structure of com-
ponents with perfectly ductile behavior and perfectly brittle
behavior, and the influence of the difference in the behavior
of a component, either brittle or ductile, is only the statistical
characteristics of the strength of a component depending on
whether it is brittle or ductile.

2.2. Fundamental Assumptions. Most components in the
structure and the governing components related to the
failure should be ductile in reality. (e presence of brittle
behavior of a component often results from the initial cracks,
the lack of care in construction, and the extreme loading

conditions. On the basis of these considerations, the fol-
lowing fundamental assumptions have been arrived:

(1) (e brittle behavior and ductile behavior of a
component cannot exist at the same time

(2) (e presence of brittle or ductile behavior of a
component is independent of each other

(3) (e probability of the presence of brittle behavior of
a component is low

(4) (e presence of brittle behavior of a component is
independent of that of another

(5) (e correlation coefficients among components have
no change when the brittle behavior appears

For an ideal brittle component, its failure causes an
immediate or a somewhat delayed redistribution of internal
forces. Sometimes, dynamic effects need to be considered.
(us, based on the above fundamental assumptions, the
concept that a component with potentially brittle behavior,
which means an imperfectly ductile component could exhibit
brittle behavior with some probability, has been introduced.
For the sake of simplicity, both for brittle failure of an im-
perfectly ductile component (a component with potentially
brittle behavior) and for subsequent failure of structure, it
considers only just a few obvious dominant mechanisms. (e
redistribution of internal forces and the dynamic effects are
ignored in this paper. For an imperfectly ductile component,
the correlation coefficient with other components is inde-
pendent of whether there is ductile behavior or brittle be-
havior. (e method for evaluating the reliability of k-out-of-n
system of components with potentially brittle behavior will be
introduced in the next section.

3. Methodology

3.1. Reliability Analysis Procedure. Considering a structure
with n components, the behavior of most components is
ductile, and the other is potentially brittle. Since the ductile
components should be the governing components that relate to
the failure in reality, the main mode of structural failure is the
plastic failure. According to the presence of brittle behavior of
components, the failure of a structure can be divided into two
categories, i.e., ductile failure mode or brittle-ductile failure
mode, as shown in Figure 2. If there is no brittle behavior of
components in a structure, the structural failure can be con-
sidered as the ductile failure mode. Otherwise, the structural
failure should be considered as the brittle-ductile failure mode.

According to the fundamental assumptions in Section 2,
the brittle behavior and ductile behavior of a component are
mutually exclusive events.(us, the ductile failure mode and
the brittle-ductile failure mode of structure are mutually
exclusive events. (e failure probability of series structure
can be expressed as

PS � Pb × PSb
+ 1 − Pb(  × PSd

, (1)

where S represents the structural system and PS is its failure
probability; Sb is the category of subsystems with brittle-
ductile failure mode, Psb

is the corresponding failure
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probability, and Pb is the probability of presence of brittle-
ductile failure mode; and Sd is the category of subsystemwith
ductile failure mode, Psd

is its failure probability, and (1 −

Pb) is the probability of presence of ductile failure mode.

3.1.1. One Component with Potentially Brittle Behavior.
When a structure only includes one known component with
potentially brittle behavior, the structural system can be divided
into two categories of subsystems (Sb and Sd). For example, if
component 1 in a series structure is a component with po-
tentially brittle behavior, this series structure can be divided
into two subsystems (Sb and Sd) as shown in Figure 3.

If the structure only includes one known component
with potentially brittle behavior, the reason of presence of
brittle-ductile failure mode is the presence of brittle behavior
of component i. (en, Pb (the probability of presence of
brittle-ductile failure mode) can be expressed as Pbi

(the
probability of presence of brittle behavior of component i).
(erefore, 1 − Pb (the probability of presence of ductile
failure mode) can be expressed as 1 − Pbi

(the probability of
presence of ductile behavior of component i). (e above
structural failure probability can be expressed as

PS � Pbi
× PSb

+ 1 − Pbi
  × PSd

. (2)

Taking the series system as the example, when the series
number of component with potentially brittle behavior is
unknown, the structure can be divided into one of com-
bination of two categories of subsystems (Sb and Sd) as
shown in Figure 4. (e maximum failure probability of
combination in Figure 4 is the upper bound of failure
probability of this series system. (e combination of sub-
systems (Sb and Sd) of other k-out-of-n systems is similar to

the series system. (e maximum failure probability of
combination would be taken as the structural failure
probability in this paper. (en, the failure probability can be
expressed as

PS � max pbi
× PSb

+ 1 − pbi
  × PSd

 ; i ∈ (1, n). (3)

3.1.2. Two Components with Potentially Brittle Behavior.
When a structure only includes two known components
with potentially brittle behavior, the structure can be divided
into three categories of subsystems (Sb1, Sb2, and Sd). For
example, if components 1 and 2 in a parallel structure are
components with potentially brittle behavior, this parallel
structure can be divided into three subsystems (Sb1, Sb2, and
Sd) as shown in Figure 5. Sb1 is the category of subsystems

Load
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Figure 1: Force-displacement relationships for three types of a component behavior. (a) Perfectly brittle behavior. (b) Perfectly ductile
behavior. (c) Semibrittle behavior.
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(with brittle behavior)
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Figure 2: Schematic diagram of structural failure analysis.

1
S

2 n

1b
Sb

2 n 1d
Sd

2 n
. . .

. . .

. . .

Figure 3: Schematic diagram of subsystems of series structure
(component 1 with potential brittle behavior).
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Figure 4: Schematic diagram of subsystems of series structure (one
component with potential brittle behavior).
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that only one component with brittle behavior, Sb2 is the
category of subsystems that two components with brittle
behavior, and Sd is the category of subsystems that com-
ponents only with ductile behavior. (e structural failure
probability can be expressed as

PS � Pbi
1 − Pbj

  + Pbj
1 − Pbi

  PSb1
+ Pbi,j

PSb2

+ 1 − Pbi
  1 − Pbj

 PSd
, i≠ j; i ∈ (1, n); j ∈ (1, n),

(4)

where PSb1
is the failure probability of category of subsystems

(Sb1) that only one component with brittle behavior; PSb2
is

the failure probability of category of subsystems (Sb2) that
only two component with brittle behavior, Pbi,j

denotes
Pbi

× Pbj
; PSd

is the failure probability of category of sub-
system (Sd) that components only with ductile behavior.

It has been noted that Sbi is not a single subsystem, but a
category of subsystems. For example, Sb1 in equation (4) is
the subsystems that only components i or components jwith
brittle behavior. (erefore, the probability of presence of Sb1
can be expressed as Pbi

(1 − Pbj
) + Pbj

(1 − Pbi
). Sb2 in

equation (4) is the subsystems that both components i and j
with brittle behavior. According to fundamental assump-
tions in Section 2.2, the probability of presence of Sb2 can be
expressed as Pbi

× Pbj
. Sd in equation (4) is the subsystem

that both components i and j with ductile behavior.
(erefore, the probability of presence of Sd can be expressed
as (1 − Pbi

)(1 − Pbj
).

Similarly, when the series number of components with
potentially brittle behavior is unknown, the structure can be
divided into one of combination of three categories of
subsystems (Sb1, Sb2, and Sd). (e maximum failure prob-
ability of combination would be taken as the failure prob-
ability of series structure in this paper. (en, the failure
probability can be expressed as

PS � max Pbi
1 − Pbj

  + Pbj
1 − Pbi

  PSb1
+ Pbi,j

PSb2


+ 1 − Pbi
  1 − Pbj

 PSd
, i≠ j; i ∈ (1, n); j ∈ (1, n).

(5)

3.1.3. n1 Components with Potentially Brittle Behavior.
Similarly, when a structure includes n1 known components
with potentially brittle behavior, its failure probability can be
expressed as

Ps � Pbi


m∈A;m≠i
1 − pbm

  + Pbj


m∈A;m≠ j

1 − Pbm
  + · · · + Pbr


m∈A;m≠ r

1 − Pbm
 ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦PSb1

· Pbi,j


m∈A;m≠ i≠ j

1 − pbm
  + Pbi,k


m∈A;m≠ i≠ k

1 − Pbm
  + · · · + Pbq,r


m∈A;m≠q≠r

1 − Pbm
 ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦PSb2

+ Pbi,j,k


m∈A;m≠ i≠ j≠ k

1 − pbm
  + · · · + Pbp,q,r


m∈A;m≠p≠ q≠ r

1 − Pbm
 ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦PSb3

+ · · ·

+ Pbi,j,k,···,p,q,r
PSbn1

+ 
m∈A

1 − Pbm
 PSd

,

i≠ j≠ k≠ · · · ≠p≠ q≠ r; i ∈ (1, n), j ∈ (1, n), k ∈ (1, n), · · · , q ∈ (1, n), r ∈ (1, n);

· i, j, k, · · · , p, q, r  ∈ A; n1 ≤ n,

(6)
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Figure 5: Schematic diagram of subsystems of parallel structure
(two components with potential brittle behavior).
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where n is the number of components and n1 is the number
of components with potentially brittle behavior; i, j, k, . . ., p,
q, r, are the series numbers of components with potentially
brittle behavior; A is the set of them; Pbi

is the probability of
presence of brittle behavior of component i; 1 − Pbi

is the
probability of presence of ductile behavior of component i;
Pbi,j

denotes Pbi
× Pbj

; Pbi
m∈A;m≠i(1 − Pbm

) +

Pbj
m∈A;m≠ j(1 − Pbm

) + · · · + Pbr
m∈A;m≠ r(1 − Pbm

) is the
probability of presence of category of subsystems (Sb1) only

one component with brittle behavior; and PSb1
is the failure

probability of category of subsystems (Sb1); other symbols
have similar meanings.

When the series number of components with potentially
brittle behavior is unknown, the structure can be divided into
one of combination of (n1+1) categories of subsystems (Sb1, Sb2,
. . ., Sbn1, and Sd). (e maximum failure probability of com-
bination would be taken as the structural failure probability in
this paper. (en, the failure probability can be expressed as

Ps � max Pbi


m∈A;m≠ i

1 − Pbm
  + Pbj


m∈A;m≠ j

1 − Pbm
  + · · · + Pbr


m∈A;m≠ r

1 − Pbm
 ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦PSb1

⎧⎪⎨

⎪⎩

+ Pbi,j


m∈A;m≠ i≠ j

1 − Pbm
  + Pbi,k


m∈A;m≠ i≠ k

1 − Pbm
  + · · · + Pbq,r


m∈A;m≠ q≠ r

1 − Pbm
 ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦PSb2

+ Pbi,j,k


m∈A;m≠ i≠ j≠ k

1 − Pbm
  + · · · + Pbp,q,r


m∈A;m≠p≠ q≠ r

1 − Pbm
 ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦PSb3

+ · · ·

+Pbi,j,k,···,p,q,r
PSbn1

+ 
m∈A

1 − Pbm
 PSd

⎫⎬

⎭,

i≠ j≠ k≠ · · · ≠p≠ q≠ r; i ∈ (1, n), j ∈ (1, n), k ∈ (1, n), · · · , q ∈ (1, n), r ∈ (1, n);

· i, j, k, · · · , p, q, r  ∈ A; n1 ≤ n.

(7)

3.2. Reliability Bounds. Usually, the structural failure
probability can be expressed as

PS �  · · ·

gx(X)≤0

 fX x1, x2, x3, . . . xn( dx1 · · · dxn,
(8)

where gx (X) is the limit state function and fX (x) is the joint
probability density function for the n-dimensional vector X of
basic variables. Since the structural state consists of com-
ponent states, the basic variables X can also be expressed as
the variables of component states in equation (8). However,
even for 2 possible states components (safe state and failure
state), when the components states are not independent, this
is extremely difficult for calculating multiple integral.

3.2.1. Revised RLP Bounds Method for K-out-of-n Systems.
Chang and Mori proposed a RLP bounds method to cal-
culate the bounds on failure probability of a structure only
with 2 possible state components (ductile safe state and
ductile failure state) [21, 22]. A conceptually simplified UGF
of the system can be expressed as

U(z) � p1z
0

+ p2z
x1 + p3z

x2 + ... + pn+1z
xn

+ pn+2z
2x1 + pn+3z

2x2 + ... + p2n+1z
2xn

+ p2n+2z
3x1 + p2n+3z

3x2 + ... + p3n+1z
3xn + ...

+ p(n−2)n+2z
(n−1)x1 + p(n−2)n+3z

(n− 1)x2 + ...

+ p(n−1)n+1z
(n−1)xn + pn2−n+2z

nx
,

(9)

where zx is called the z-transform of x [24–26], 0 of z0
encodes the subset of the state in which no component
survives, and p1 is the probability corresponding to the state
encoded by the 0 of z0; x1 of zx1 encodes the subset of the
state in which only component 1 survives, and p2 is the
probability corresponding to the state encoded by the x1 of
zx1 ; 2x1 of z2x1 encodes the portion of subset of state for
which only two components including component 1 survive,
pn+2 is the probability corresponding to the state encoded by
the 2x1 of z2x1 , and so on.

(e lower bound and the upper bound of the system failure
probability are obtained as the minimum and the maximum of
the objective function of the LP, respectively. (e equation of
LP appropriate for this analysis has the following form:

minimize(maximize) CTp

subject to A1P
� B1

A2P
≥B2,

(10)

where p� {p1, p2,...,pn2−n+2} is the vector of design variables
and represents the probabilities of the basic events in equation
(10); C is a matrix that relates the system failure event with the
component failure events; CTp is the linear objective function;
and A1,A2, B1, and B2 are the coefficient matrices and vectors,
respectively, which represent the information given in terms of
joint failure probabilities of k components. (e above prob-
abilities (B1 and B2) associating with the related matrices (A1
and A2) consist of the constraints of the LP problem.

Taking a system with 3 components as an example, the
UGF of the system can be expressed as
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U(z) � p1z
0

+ p2z
x1 + p3z

x2 + p4z
x3 + p5z

2x1 + p6z
2x2

+ p7z
2x3 + p8z

3x
,

(11)
where p1 is the probability corresponding to the state
encoded by 0 of z0 (no component survives); p2 is the
probability corresponding to the state encoded by x1 of zx1

(only component 1 survives); p5 is the probability corre-
sponding to the state encoded by 2x1 of z2x1 (only two
components including component 1 survive), and so on.

The bounds of failure probability of components 1, 2,
and 3 can be expressed as

P F1( >p1 + p3 + p4

< p1 + p3 + p4 + p6 + p7,

P F2( >p1 + p2 + p4

< p1 + p2 + p4 + p5 + p7,

P F3( >p1 + p2 + p3

< p1 + p2 + p3 + p5 + p6.

(12)

p1 + p3 + p4 corresponds to the probabilities of states that
no component survives and only one component except
component 1 survives. p5 + p6 + p7 corresponds to the
probabilities of states that only two components survives. It
is obvious that P (F1), the failure probability of component 1,
is greater than p1 + p3 + p4 and smaller than
p1 + p3 + p4 + p5 + p6 + p7. Because p5 is the probability
corresponding to the state that only two components in-
cluding component 1 survive, it can be excluded from the
inequality. (e other inequalities can be derived similarly.

(e sum of failure probability of components 1, 2, and 3
can also be expressed as

P F1(  + P F2(  + P F3(  � 3p1 + 2 p2 + p3 + p4(  + p5 + p6 + p7.

(13)
Note that p� {p1,p2,...,p8} is the vector of design vari-

ables, and it can be obtained by using LP. If one knows P
(F1)� 0.01, P (F2)� 0.02, and P (F3)� 0.03,A1, B1,A2, and B2
in equation (10) can be expressed as

A1 � 3 2 2 2 1 1 1 0 ,

B1 � [0.06],

A2 �

1 0 1 1 0 0 0 0
−1 0 −1 −1 0 −1 −1 0
1 1 0 1 0 0 0 0

−1 −1 0 −1 −1 0 −1 0
1 1 1 0 0 0 0 0

−1 −1 −1 0 −1 −1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B2 �

0.01
−0.01
0.02

−0.02
0.03

−0.03

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

By defining the matrix CT as [1 1 . . . 1 0] or [1 0 . . . 0],
the original RLP bounds method can solve problems in-
volving only a pure series system or a pure parallel system.
When CT is expressed as [1 1 . . . 1 0], CTp means the
objective function for the failure of a series system that as
least any one of components failed; when CT is expressed as
[1 0 . . . 0], CTp means the objective function for the failure
of a parallel system that every one of components failed.
Obviously, one main drawback of the RLP method is that it
is only available to a pure series system or a pure parallel
system.

It can be found that the objective function CTp could
have different means when matrix CT is changing. (e
objective function CTp for the survival probability of k-out-
of-n systems can be obtained when CT is expressed as

C
T

� 0 0 · · · 0√√√√
n

0 · · · 0√√√√
n

· · ·

√√√√√√√√√√√√√√√√
(k−1)n

1 · · · 1√√√√
n

1 · · · 1√√√√
n

· · ·

√√√√√√√√√√√√√√√√
(n−k)n

1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(15)

(en, a revised RLP bounds method for k-out-of-n
systems is proposed by changing matrix CT as equation (15).
For example, for the above system with 3 components, the
objective function for the survival probability of 1-out-of-n
systems can be obtained when CT is expressed as

C
T

� 0 1 1 1 1 1 1 1 . (16)

(e objective function for the survival probability of 2-
out-of-n systems can be obtained when CT is expressed as

C
T

� 0 0 0 0 1 1 1 1 . (17)

It should be noted that the above objective function
CTpm for k-out-of-n systems is the survival probability of k-
out-of-n systems, and its failure probability can be obtained
by subtracting the survival probability from 1.

3.2.2. Bounds of System of Components with Potentially
Brittle Behavior. For a component with potentially brittle
behavior, it has 4 possible states, i.e., brittle safe state, brittle
failure state, ductile safe state, and ductile failure state. (e
calculation of failure probability of a structure of compo-
nents with potentially brittle behavior is very difficult.
According to equation (7), the failure probability of such a
structure can be expressed as the sum of failure probability
of a series of subsystems, Sb1, Sb2, . . ., Sbn1, and Sd. A
component in any one of above subsystems has either brittle
behavior or ductile behavior, which means each component
has only 2 possible state components, i.e., either brittle safe
state and brittle failure state or ductile safe state and ductile
failure state.

Obviously, the state of each subsystem in equation (7),
Sb1, Sb2, . . ., Sbn1, and Sd, can be expressed as its com-
ponent states. Each subsystem can be expressed a con-
ceptually simplified UGF by using equation (9), and its
failure probability can be obtained by the revised RLP
bounds method. (us, by using the revised RLP bounds

6 Mathematical Problems in Engineering



method, the failure probability of a structure of compo-
nents with potentially brittle behavior can be expressed as
the sum of failure probability of a series of subsystems, Sb1,
Sb2, . . ., Sbn1, and Sd, as shown in Figure 6.

4. Numerical Example

4.1. Roof Truss with 47 Components. Consider a symmet-
rical roof truss of factory building with 47 components as
a large series structure as shown in Figure 7. (e left
symmetrical distribution of internal force is shown in
Figure 8. For the sake of simplicity, suppose the intensity
of the load is deterministic, and the component strengths,
i.e., the random variables Xi, i � 1, 2, . . ., 47, are jointly
normally distributed. Also, the reliability index of com-
ponents with ductile behavior is assumed to be the same,
and the reliability index of components with brittle be-
havior is also assumed to be the same as shown in Table 1.
Suppose n1 could be 1, 2 and 3, and its series number is
unknown. (en, the failure probability of this truss can be
obtained by equation (7).

4.1.1. One Component with Potentially Brittle Behavior
(n1 � 1). (e probability of presence of brittle behavior of
each component, i.e. Pbi, i ∈ (1, n), has been supposed to be
identical. When n1 equals to 1, the relationship between
structural failure probability and Pbi is shown in Table 2 and
Figure 9. Obviously, with the increase of Pbi, the structural
failure probability increases; along with the increase of
correlation relationship among components, its bounds
become wider. (ere are two reasons for the above wider
bounds. One is that the bounds of failure probability by LP
will become wider with the increase of the correlation
coefficient. (e other is related to the assumption that the
failure probability can be estimated by the maximum of the
combination considered such as equation (3). However,
even if the bound of failure probability becomes wider with
the increase of correlation coefficient, the bound of failure
probability is relatively small. (e bounds are still ac-
ceptable. Taking Pbi � 0.05, i ∈ (1, n) as the example, one
can find that with the increase of correlation coefficient
among components, the failure probability decreases as
shown in Figure 10. Also, the structural failure probability
is estimated by the MC simulations with 107 samples. (e
result of proposed method is consistent with that of MC
simulations.

4.1.2. Comparing the Effects of Different n1. (e structural
failure probability obtained by the proposed method is
shown in Table 3 and Figure 11. Similarly, the figure of
relationship between structural failure probability and Pbi
when n1 equals to 2 or 3 is similar to its figure when n1 equals
to 1, and it has the same regular pattern as shown in Section
4.1.1 for structural failure probability, correlation coefficient,
and Pbi. Also, the structural failure probability is estimated

by the MC simulations as shown in Figure 12. MC simu-
lations are conducted with 107 samples. Similar to the results
of n1 equals to 1, the result of proposed method is consistent
with that of MC simulations.

4.2. Parallel System with 20 Components. Consider a par-
allel system with 20 components. (e correlation coeffi-
cient is considered identical, and the reliability index of
components is shown in Table 4. Suppose n1 could be 1, 2,
and 3, and its series number is unknown. (en, the failure
probability of this parallel system can be obtained by
equation (7).

4.2.1. One Component with Potentially Brittle Behavior
(n1 � 1). Similarly, the probability of presence of brittle
behavior of each component, i.e. Pbi, i ∈ (1, n), has been
supposed to be identical in this example. When n1 equals
to 1, the structural failure probability is obtained by the
proposed method. (e relationship between structural
failure probability and Pbi is shown in Table 5 and
Figure 13; then, taking Pbi � 0.05, i ∈ (1, n) as the ex-
ample, the relationship between correlation coefficient
and structural failure probability is shown in Figure 13.
From Figure 13, Figure 14, and Table 5, one can find that
it has the same regular pattern for structural failure
probability, correlation coefficient, and Pbi as shown in
Section 4.1.1. Also, the structural failure probability is
estimated by the MC simulations with 107 samples. (e
result of proposed method is consistent with that of MC
simulations.

4.2.2. Comparing the Effects of Different n1. (e structural
failure probability obtained by the proposed method is
shown in Table 6 and Figure 15. Similarly, the figure of
relationship between structural failure probability and Pbi
when n1 equals to 2 or 3 is similar to its figure when n1 equals
to 1, and it has the same regular pattern as shown in Section
4.1.1 for structural failure probability, correlation coefficient,
and Pbi. Also, the structural failure probability is estimated
by the MC simulations with 107 samples as shown in Fig-
ure 16. Similar to the results of n1 equals to 1, the result of
RLP bounds method is consistent with that of MC
simulations.

4.3. k-out-of-n System. For comparison purposes, the par-
allel structural system in Section 4.2 is considered as a k-out-
of-n system in this Section. Since a parallel system is
equivalent to a 1-out-of-n system, the 3-out-of-20 system is
considered in this example.

4.3.1. One Component with Potentially Brittle Behavior
(n1 � 1). (e relationship between structural failure prob-
ability and Pbi is shown in Table 7 and Figure 17, and the
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Subsystem Sb1

Bounds of Sb1 Bounds of Sb2 Bounds of Sb3 Bounds of Sd

Bounds of system of components with potentially brittle behavior

Subsystem Sb2 Subsystem Sb3 Subsystem Sd

System of components with potentially brittle behavior

Subsystems only with
two-state components

Revised RLP
bounds method

Revised RLP
bounds method

Revised RLP
bounds method

Revised RLP
bounds method

Figure 6: Schematic diagram of bounds of system of components with potentially brittle behavior.
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Figure 7: Roof truss of factory building as a large series structure.

–44.04
–123.81 –182.50

–227.48
–263.05

–291.90
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–67.25 49.50

–52.24
41.36

–42.49
35.52

–35.74
31.15

–30.83
27.74

–8.06

89.98 155.14 204.52 243.23 274.38 291.96

Figure 8: Left symmetrical distribution of internal force of roof truss.

Table 1: Basic parameters of components with potentially brittle behavior.

Series number of components Behavior of component Reliability index

i� 1, 2,. . .,47 Ductile 3.42
Brittle 2.60

Table 2: Failure probability of roof truss of components with potentially brittle behavior.

Pbi
i ∈ (1, n)

Bounds by RLP bounds method (×10−2)
ρ� 0.1 ρ� 0.5 ρ� 0.9

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound
0.05 1.451 1.454 0.641 1.198 0.119 0.598
0.1 1.472 1.477 0.652 1.216 0.137 0.615
0.2 1.514 1.524 0.674 1.252 0.174 0.650
0.3 1.556 1.571 0.696 1.288 0.211 0.685
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relationship between correlation coefficient and structural
failure probability is shown in Figure 18. From Figure 17,
Figure 18, and Table 7, one can find that it has the same
regular pattern for structural failure probability, correlation
coefficient, and Pbi as shown in Section 4.2.1. It should be
noted that the failure probability increases with the increase
of k in k-out-of-n system. Also, the structural failure

probability is estimated by the MC simulations with 107

samples. (e result of proposed method is consistent with
that of MC simulations.

4.3.2. Comparing the Effects of Different n1. (e structural
failure probability obtained by the proposed method is

1.44
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1.48

1.50

1.52

1.54

1.56

1.58
P S

 (×
10

–2
)
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Pbi

(a)
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0.7
0.8
0.9
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1.1
1.2
1.3
1.4

P S
 (×

10
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)

0.05 0.10 0.15 0.20 0.25 0.30
Pbi

(b)
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0.4

0.5

0.6

0.7

P S
 (×

10
–2

)

0.05 0.10 0.15 0.20 0.25 0.30
Pbi

(c)

Figure 9: Relationship between structural failure probability and Pbi. (a) ρ� 0.1. (b) ρ� 0.5. (c) ρ� 0.9.

0.1 0.3 0.5 0.7 0.9
0.0

0.5

1.0

1.5

ρ

P S
 (×

10
–2

)

Proposed method
MC simulations

Figure 10: Relationship between structural failure probability and correlation coefficient.

Table 3: Failure probability for different ρ and n1.

ρ
Bounds on failure probability (×10−2)

n1 � 0 n1 � 1 n1 � 2 n1 � 3
Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

0.1 1.430 1.430 1.451 1.454 1.472 1.477 1.493 1.500
0.3 1.220 1.320 1.238 1.340 1.256 1.359 1.274 1.378
0.5 0.630 1.180 0.641 1.198 0.652 1.216 0.663 1.234
0.7 0.270 0.960 0.280 0.978 0.290 0.995 0.299 1.012
0.9 0.100 0.580 0.119 0.598 0.136 0.615 0.153 0.631
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Figure 11: Relationship between structural failure probability and n1. (a) ρ� 0.1, ρ� 0.3, and ρ� 0.5. (b) ρ� 0.7 and ρ� 0.9.
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Figure 12: Relationship between structural failure probability and n1 for different methods (ρ� 0.9).

Table 4: Basic parameters of components with potentially brittle behavior.

Series number of components Behavior of component Reliability index

i� 1, 2,. . .,10 Ductile 2.0
Brittle 1.5

Table 5: Failure probability of parallel system of components with potentially brittle behavior.

Pbi
i ∈ (1, n)

Bounds by RLP bounds method (×10−3)
ρ� 0.1 ρ� 0.5 ρ� 0.9

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound
0.05 0 0.050 0 1.105 0 9.515
0.1 0 0.050 0 1.110 0 9.530
0.2 0 0.050 0 1.120 0 9.560
0.3 0 0.050 0 1.130 0 9.590
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shown in Table 8 and Figure 19. Similarly, the figure of
relationship between structural failure probability and Pbi
when n1 equals to 2 or 3 is similar to its figure when n1 equals

to 1, and it has the same regular pattern as shown in Section
4.2.2 for structural failure probability, correlation coefficient,
and Pbi. Also, the structural failure probability is estimated

0
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5
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 (×
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)

0.05 0.10 0.15 0.20 0.25 0.30
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10
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10
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)
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Figure 13: Relationship between structural failure probability and Pbi. (a) ρ� 0.1. (b) ρ� 0.5. (c) ρ� 0.9.
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Figure 14: Relationship between structural failure probability and correlation coefficient.

Table 6: Failure probability for different ρ and n1.

ρ
Bounds on failure probability (×10−3)

n1 � 0 n1 � 1 n1 � 2 n1 � 3
Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

0.1 0 0.050 0 0.050 0 0.050 0 0.050
0.3 0 0.295 0 0.298 0 0.301 0 0.304
0.5 0 1.100 0 1.105 0 1.110 0 1.115
0.7 0 3.200 0 3.210 0 3.220 0 3.231
0.9 0 9.500 0 9.515 0 9.531 0 9.547
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Figure 15: Relationship between structural failure probability and n1. (a) ρ� 0.1, ρ� 0.3, and ρ� 0.5. (b) ρ� 0.7 and ρ� 0.9.
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Figure 16: Relationship between structural failure probability and n1 for different methods (ρ� 0.9).

Table 7: Failure probability of parallel system of components with potentially brittle behavior.

Pbi
i ∈ (1, n)

Bounds by RLP bounds method (×10−3)
ρ� 0.1 ρ� 0.5 ρ� 0.9

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound
0.05 0 0.100 0 1.605 0 14.430
0.1 0 0.100 0 1.610 0 14.460
0.2 0 0.100 0 1.620 0 14.520
0.3 0 0.100 0 1.630 0 14.580
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by the MC simulations with 107 samples as shown in Fig-
ure 20. Similar to the results of n1 equals to 1, the result of
RLP bounds method is consistent with that of MC
simulations.

Note that the lower bounds of the failure probability of
the system are considered as a parallel system and k-out-of-n

system is not always equals to zero. With the increase of k,
the failure probability of k-out-of-n system will increase.
(en, the lower bound of failure probability could be not
zero. Also, even for the parallel system, if the system failure
probability is not small, the lower bound of failure proba-
bility is not zero.
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Figure 17: Relationship between structural failure probability and Pbi. (a) ρ� 0.1. (b) ρ� 0.5. (c) ρ� 0.9.
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Figure 18: Relationship between structural failure probability and correlation coefficient.

Table 8: Failure probability for different ρ and n1.

ρ
Bounds on failure probability (×10−3)

n1 � 0 n1 � 1 n1 � 2 n1 � 3
Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

0.1 0 0.100 0 0.100 0 0.100 0 0.100
0.3 0 0.400 0 0.405 0 0.410 0 0.414
0.5 0 1.600 0 1.605 0 1.610 0 1.616
0.7 0 4.700 0 4.715 0 4.730 0 4.746
0.9 0 14.400 0 14.430 0 14.460 0 14.491
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5. Conclusion

(is paper proposed a method to estimate the failure
probability of k-out-of-n system of components with po-
tentially brittle behavior. By decomposing the entire system
that a component has 4 possible states into subsystems that a
component has only 2 possible states, i.e., either brittle safe
state and brittle failure state or ductile safe state and ductile
failure state, the bounds on failure probability can be ob-
tained by using the UGF and LP. Based on the individual
component failure probabilities and the joint failure prob-
abilities of a few components, narrow bounds can be
obtained.

(e accuracy and applicability of the proposed method
are investigated along with the MC simulations using nu-
merical examples. (e proposed method can be used to
estimate a structure with a large number of components and
provides a result comparable to that of MC simulations. Not
like MC simulations, it should be noted that the proposed
method only based individual component failure proba-
bilities and the joint failure probabilities, the incomplete sets
of joint failure probabilities can also be handled.
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