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Sine Cosine Algorithm (SCA) has been proved to be superior to some existing traditional optimization algorithms owing to its
unique optimization principle. However, there are still disadvantages such as low solution accuracy and poor global search ability.
Aiming at the shortcomings of the sine cosine algorithm, a multigroupmultistrategy SCA algorithm (MMSCA) is proposed in this
paper. ,e algorithm executes multiple populations in parallel, and each population executes a different optimization strategy.
Information is exchanged among populations through intergenerational communication. Using 19 different types of test
functions, the optimization performance of the algorithm is tested. Numerical experimental results show that the performance of
the MMSCA algorithm is better than that of the original SCA algorithm, and it also has some advantages over other intelligent
algorithms. At last, it is applied to solving the capacitated vehicle routing problem (CVRP) in transportation. ,e algorithm can
get better results, and the practicability and feasibility of the algorithm are also proved.

1. Introduction

With the rapid development of human society and the
continuous improvement of computer technology, people are
facing more and more optimization problems in scientific
research and engineering practice.,e optimization problems
can be understood as choosing a most suitable solution
among many options for solving a complex problem without
changing the constraints. However, with the increasing scale
of the problem, the computing time also shows an exponential
growth trend. When solving large-scale optimization prob-
lems, traditional algorithms seem powerless. For quite some
time, people have been working hard to find new ways to
better solve optimization problems. With the robustness,
parallelism, and intelligence of its methods, computational
intelligence (CI) can well solve many optimization problems,
which has attracted the attention of many scholars. Also,
computational intelligence (CI) plays an important role in
scientific research and production practice.

Computational intelligence is a general term for a class of
algorithms that are inspired by natural and human wisdom.
Computational intelligence includes three basic areas: fuzzy
computing [1–3], neural networks [4, 5], and evolutionary
computing [6]. Evolutionary computing is one of the im-
portant research fields of intelligent computing. Up to now,
scholars have put forward many excellent intelligent opti-
mization algorithms. Typical examples are as follows: genetic
algorithm (GA) by simulating the genetic evolution of the
biological world [7]; particle swarm optimization (PSO) by
simulating bird swarm predation [8–10]; and ant colony
algorithm (ACO) by simulating ant colony foraging be-
havior [11, 12]. ,ere are many intelligent optimization
algorithms proposed by simulating other phenomena in
nature, such as cat swarm algorithm (CSO) [13–15], artificial
bee colony algorithm (ABC) [16, 17], differential evolution
algorithm (DE) [18–21], multiverse optimizer (MVO)
[22, 23], flower pollination algorithm [24, 25], gray wolf
algorithm (GWO) [26–28], pigeon-inspired algorithm (PIO)
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[29, 30], bat algorithm (BA) [31, 32], symbiotic organism
search algorithm (SOS) [33, 34], and QUATRE [35–37].

At present, there are so many optimization algorithms,
which can solve some complex optimization problems well.
Why do we need so many optimization algorithms? As
demonstrated by the No Free Lunch (NFL) [38] proposed by
Wolpert and Macready, no single optimization algorithm is
applicable to all problems. Inspired by this, a new intelligent
optimization algorithm was proposed by Australian scholar
Mirjalili in 2016, which is called Sine Cosine Algorithm
(SCA) [39]. ,e SCA algorithm iterates through the prop-
erties of the sine and cosine functions to achieve optimi-
zation. It has fewer parameter settings, is easy to implement,
and has a strong optimization ability. It has been proved that
it is better than PSO algorithm, genetic algorithm (GA), and
firefly algorithm (FA) in convergence with accuracy and
speed [39].

With the rapid development of software and hardware,
parallel computing has become a form of high-performance
computing. In evolutionary computing, parallelism often
represents the iterative updating of multiple populations at
the same time. ,e advantage of this method is to ensure
population diversity, to further improve the search ability
and performance of the algorithm. Especially when solving
complex optimization problems, parallelizing the algorithm
is an effective way to improve the efficiency and accuracy of
the algorithm. At present, many existing algorithms have
successfully applied the parallel mechanism, such as parallel
PSO [40], parallel ACO [41], and parallel QUATRE [42].
Inspired by this, this paper introduces the multigroup and
multistrategy optimization mechanism to further improve
the SCA algorithm. It is calledMMSCA.When the algorithm
is solved, multiple populations execute in parallel, and each
population adopts different updating strategies. By com-
paring the results of test functions, MMSCA is better than
SCA in solving accuracy and convergence ability and has
certain advantages over other intelligent optimization
algorithms.

At present, transportation is gradually moving towards
intelligent transportation. One of the important components
of an intelligent transportation system is wireless sensor
network technology (WSN).With the help of wireless sensor
network technology [43–48], the safety, unblocking, and
environmental protection problems that plague modern
transportation can be fundamentally alleviated. However,
there are still many transportation problems to be solved.
,e capacitated vehicle routing problem (CVRP) in trans-
portation problems is taken as the application object of
MMSCA in this paper. On the one hand, the practicability of
the algorithm is further confirmed. On the other hand, it
brings a new solution to CVRP problem.

,e remaining chapters of the article are arranged as
follows: the original SCA algorithm and related improve-
ments around it are reviewed in Section 2. Section 3 de-
scribes the MMSCA design process in detail. ,e results of
numerical experiments are presented and discussed in
Section 4. How to apply MMSCA to CVRP is covered in
Section 5. At last, Section 6 is a summary of the article and an
outlook for future work.

2. Related Works

2.1. Original Sine Cosine Algorithm. In the SCA algorithm, a
population X is initialized first, where the population X
contains m individuals, and each individual has n dimen-
sions. ,e fitness function is used to evaluate each indi-
vidual, and the best individual position Pb � (Pb1, Pb2,

. . . , Pbn)T among all the current individuals is selected.,en,
the algorithm iterates according to the set number of iter-
ations. During the iteration, the position of the individual is
updated. ,e update formula is as follows:

X
t+1
i �

Xt
i + r1 × sin r2( 􏼁 × r3 × Pt

b − Xt
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, r4 < 0.5,

Xt
i + r1 × cos r2( 􏼁 × r3 × Pt

b − Xt
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, r4 ≥ 0.5,

⎧⎨

⎩

(1)

where Xt
i represents the position of the ith (i� 1, 2, . . ., m)

individual in the tth iteration; r2 ∈ [0, 2π], r3 ∈ [0, 2], and
r4 ∈ [0, 1] are three random numbers. Pt

b represents the best
individual position after t iterations. r1 is the control pa-
rameter, which balances the exploration and exploitation
stages of the algorithm. ,e updated formula is as follows:

r1 � a − a
t

T
, (2)

where a is a constant, t is the number of current iterations,
and T is the maximum number of iterations.

Since equation (1) uses sine and cosine functions, the
algorithm is named Sine Cosine Algorithm (SCA). Four
important parameters play different roles in the process of
iterative optimization of the algorithm: the parameter r1 is
used as a control parameter to determine the moving di-
rection of the individual position in the next iteration; the
parameter r2 determines how far to move in the next it-
eration; as a random weight, parameter r3 affects the role of
the optimal individual in the next iteration; the parameter r4
enables the algorithm to iteratively update the individual
positions in the sine and cosine parts with equal probability.
Like other intelligent optimization algorithms, there need to
be two phases: local exploitation and global exploration. In
SCA algorithm, when r1 sin(r2) or r1 cos(r2) function value
is between −1 and 1, the algorithm performs local exploi-
tation; when r1 sin(r2) or r1 cos(r2) function value is less
than −1 or greater than 1, the algorithm performs global
exploration.

2.2. Related Improvements to the SCA Algorithm. With its
unique optimization principles and theoretical advantages,
the SCA algorithm has been proved to be superior to PSO,
genetic algorithm (GA), and other existing algorithms in the
most of the examples and has been applied in many practical
problems. However, there are still some disadvantages such
as low solution accuracy and poor global search ability. ,is
is because when the SCA algorithm updates the individual
location, the next generation location of the individual is
only expanded around the current optimal individual lo-
cation. In particular, with the decrease of the diversity of the
population in the later period of the algorithm, the global
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search ability becomes worse, which easily leads to the al-
gorithm falling into the local optimal trap.

In view of the shortcomings of the SCA algorithm,
scholars at home and abroad have made some improve-
ments. Some scholars introduced search strategies of other
algorithms or improved the setting of the parameters of the
SCA algorithm itself: Long et al. [49] introduced nonlinear
weight factor and inertial weight based on Gaussian dis-
tribution, respectively, to improve the ability to avoid falling
into the trap of local optimization and convergence speed;
Qu et al. [50] proposed an improved SCA algorithm based
on neighborhood search and Greedy LevyMutation to better
balance the phases of local exploitation and global explo-
ration of the algorithm. Some scholars have also integrated
the SCA algorithm with other algorithms to further improve
the optimization ability of the algorithm: Chegini et al. [51]
proposed to mix the SCA algorithm with the PSO algorithm
to improve the global search capability of the algorithm and
the calculation accuracy; Nenavath and Jatoth [52] mixed
the SCA algorithm and the DE algorithm to further improve
the convergence speed of the algorithm and the ability to
avoid local optimization.

,ere are many improvements to the SCA algorithm,
and the improvement methods can be summarized into the
abovementioned two categories. Aiming at the shortcom-
ings of the SCA algorithm, this paper adopts a multigroup
and multistrategy optimization mechanism to further im-
prove the accuracy of the solution and the global search
ability of the algorithm. ,e next section will detail how to
improve the SCA algorithm.

3. Sine Cosine Algorithm with Multigroup and
Multistrategy (MMSCA)

,is section describes in detail how to apply the multigroup
and multistrategy mechanism to improve the Sine Cosine
Algorithm (SCA).

3.1. Algorithm Idea. ,e use of a single population in basic
SCA algorithm inevitably leads to the problem of falling
into the local optimal trap. At the same time, when the
algorithm updates individual location in each iteration, the
location of candidate individuals is only expanded around
the global optimal location, which results in the strong local
search capability of the basic SCA algorithm and the weak
global search capability. Based on the shortcomings of the
abovementioned basic SCA algorithm, the concept of
multigroup and multistrategy is introduced to enhance the
optimization ability of SCA algorithm. In the multigroup
multistrategy SCA algorithm (MMSCA), each population
has the same number of individuals and uses a different
update strategy. Before a certain number of generations,
each population is optimized according to its own strategy,
and the population does not interfere with each other. After
reaching a certain number of generations, the populations
communicate with each other and perform the optimal
individual migration between the populations. ,e worst
individual in each population will be replaced by the

optimal individual in the other populations. Repeat the
abovementioned steps until the algorithm iterates to the
maximum number of iterations or the optimal solution is
found.

In this article, the update strategies are divided into two
types: rand strategy and best strategy. In the rand strategy,
the roulette wheel selection scheme in the genetic algorithm
(GA) is borrowed, and the optimal individual in the group is
no longer selected as the solution target of other individuals.
Instead, the algorithm uses multiple roulette methods to
choose the next generation of solving goals to increase the
diversity of population solutions. In this way, the ability of
global optimization can be enhanced and the possibility of
local optimal trap will be increased. In the best strategy, the
best individual in all populations is still the solution target.
,e purpose of doing this is to maintain the strong local
optimization ability of the original algorithm and avoid the
instability of the algorithm caused by the introduction of the
rand strategy.

,e update formula is as follows:

X
t+1
i,j �

Xt
i,j + r1 × sin r2( 􏼁 × r3 × Pt

b − Xt
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, r4 < 0.5,

Xt
i,j + r1 × cos r2( 􏼁 × r3 × Pt

b − Xt
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, r4 ≥ 0.5,

⎧⎪⎨

⎪⎩

(3)

where Xt
i,j represents the position of the jth individual in the

ith population in the tth iteration and Pt
b represents the

selected target individual after multiple generations of
roulette wheel selection in the rand strategy executing
population. Also, in the population that executes the best
strategy, it represents the globally optimal individual.

3.2. Algorithm Steps. Based on the abovementioned de-
scription, the specific steps of the MMSCA algorithm are
given below:

Step 1: randomly generate N (N is an even number)
populations of size m, each population having n di-
mensions. Initialize the maximum number of itera-
tions, independent evolution algebra, iteration counter
etc.
Step 2: evaluate each population and calculate the
fitness value of each individual in each population. ,e
population with odd group numbers executes the rand
strategy, and the target individual is selected using the
roulette wheel selection scheme; the population with
even group numbers executes the best strategy, sorts
and selects the best individual.
Step 3: use formula (3) to update the individual po-
sitions in the population.
Step 4: if the communication conditions are met, in-
terpopulation communication is conducted. ,e worst
individual in a population is replaced by the best in-
dividual in another population. If the communication
condition is not met, return to step 2.
Step 5: if the algorithm iterates to the maximum
number of iterations or the optimal individual is found
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to meet the convergence conditions, the algorithm is
terminated; otherwise return to step 2.

,e algorithm flow chart is shown in Figure 1.

4. Results and Discussion

4.1. Comparison with SCA Algorithm. In order to test the
influence of multigroup and multistrategy mechanism on
SCA algorithm, 19 standard test functions (f1 − f7 as
unimodal benchmark function, f8 − f13 as multimodal
benchmark function, and f14 − f19 as composite bench-
mark function) in the SCA algorithm literature [39] are used
for testing. ,e minimum value of test function f1 − f15 is 0
except f8, f8 and f16 − f19 are −2094.9145, −1.036.0.398, 3,
−3.86, respectively. For the fairness of comparison, the
maximum number of iterations is 1000 and each population
size is set to 30. In the proposed algorithm, the independent
evolutionary algebra is set to 50 and the number of groups is
two. For each test function, each algorithm is run inde-
pendently for 30 times and the average value is calculated.
Table 1 records the experimental results, with the best op-
timization results in bold. All simulation experiments are
implemented on the same computer, and the programming
tool is Matlab2018a.

As shown in the abovementioned table, in the test
functions f1 − f15, except f8, the MMSCA algorithm has
better solution accuracy than the original SCA algorithm.
For function f16 − f19, both algorithms show the same
optimization performance, and the results are close to or
reach the expected minimum. In general, the optimization
ability of the SCA algorithm has been improved to some
extent after the introduction of the multigroup and multi-
strategy mechanism. Figure 2 shows the convergence curves
of the two algorithms on the unimodal functions f2 and f3,
the multimodal functions f9 and f11, and the composite
function f14. As can be seen from the figure, MMSCA al-
gorithm has also significantly improved the convergence
speed compared with SCA algorithm.

4.2. Comparison with Other Intelligent Optimization
Algorithms. To further verify the effectiveness of the
MMSCA algorithm, this article also compares it with other
three intelligent optimization algorithms: the PSO algo-
rithm, the parallel PSO algorithm, and the DE algorithm.
,e population size is set to 30. 1000 is the maximum
number of iterations. For each test function, each algorithm
is tested 30 times and the average value is obtained. ,e
other parameters of other algorithms are shown in Table 2.
,e test results of MMSCA and other three intelligent
optimization algorithms on 19 test functions are shown in
Table 3.,e bold type in the table indicates the best results of
all comparison algorithms.

As shown in Table 3, compared with the PSO algorithm,
PPSO algorithm, and DE algorithm, the MMSCA algorithm
has obtained better results on 11 test functions.,eMMSCA
algorithm has the same test results on the test functions f6
and f18 − f19 as the other three algorithms, and they all
obtain the expected minimum. However, the test results on

the test functions f6 and f13 are significantly worse than
those of the other three optimization algorithms; the
MMSCA algorithm obtains better results on the test function
f11, and obtains a minimum value of 0.

Based on the comparison results of the two subsections,
compared with the original SCA algorithm, the optimization
performance of the algorithm is improved after the intro-
duction of multigroup and multistrategy mechanism;

Start
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Figure 1: Flowchart of sine cosine algorithm with multigroup and
multistrategy.
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compared with other intelligent optimization algorithms, it
also shows strong competitiveness. So as to further study the
feasibility and practicability of the MMSCA algorithm in
processing practical problems, this paper selects the
capacitated vehicle routing problem (CVRP) in trans-
portation as the application object. ,e next section will
describe in detail how to apply the MMSCA algorithm and
solve it.

5. Applying MMSCA to Solve CVRP

VRP (Vehicle Routing Problem) has always been the focus of
research in the field of transportation. At the same time,
there are many applications in real life, including express
delivery, air transportation, bus route planning, and so on.
VRP was first proposed by scholars Dantzing and Ramser
[53] in the late 1950s. Since it was proposed, it has received
extensive attention from scholars at home and abroad, and
scholars have also carried out a lot of fruitful work on it.
After years of research and development, more models of
VRP have been derived, and the solving algorithms have
become more diverse. Solution algorithms can be divided
into two categories: the first type is accurate algorithm and
the second is approximate algorithm or heuristic algorithm.
Since the VRP problem has been proved to be an NP-Hard
problem, the second kind of solution algorithm is the main
method to solve it [54]. ,e GA algorithm, the ACO al-
gorithm, the SA (simulated annealing) algorithm, the PSO
algorithm, and other algorithms have been successfully
applied to solve VRP problems and achieved good results. In
this paper, CVRP (Capacitated Vehicle Routing Problem) is
selected as the application object of MMSCA algorithm to
further verify the practicability of the algorithm.

5.1. CVRP Problem Description and Model. Problem de-
scription: a central warehouse has k distribution vehicles,
and the maximum load capacity of each distribution vehicle

is Q. Now, we need to transport and distribute materials to n
customers (nodes), how to arrange a certain number of
vehicles to meet the needs of these customers, and make the
total driving distance of vehicles shortest. ,e following
constraints must also be met:

(1) All delivery vehicles start from the central warehouse
and eventually return to the central warehouse

(2) Each delivery vehicle is not allowed to exceed the
maximum load capacity Q

(3) Each customer can only be served once, and each
vehicle can only take one route

For the convenience of description, the following
symbols are defined:

D: total length of all vehicle paths
k: total number of vehicles
n: total number of customers
v: vehicle number (1, 2, ..., k)

xijv �
1, if vehicle v travels from customer i to customer j,

0, else,
􏼨

yiv �
1, if customer i needs to be fulfilled by vehicle v,

0, else,
􏼨

(4)

cij: the distance between customer point i and j
gi: the demand of the i-th customer (i� 1, 2, . . ., n)
Q: the maximum loading capacity of the vehicle

,e central warehouse number is 0, and the customer
number is i (i� 1, 2, . . ., n). ,e CVRP mathematical model
is expressed as follows:

Objective function:

minD � 􏽘
n

i�0
􏽘

n

j�0
􏽘

k

v�0
cijxijv. (5)

Constraint conditions:

􏽘

n

i�0
xijv � yjv, j � 1, 2, . . . , n; v � 1, 2, . . . , k, (6)

􏽘

n

j�0
xijv � yjv, i � 1, 2, . . . , n; v � 1, 2, . . . , k, (7)

􏽘

n

i�0
giyiv ≤Q, v � 1, 2, . . . , k, (8)

􏽘

k

v�1
yiv � 1, i � 1, 2, . . . , n. (9)

Among them, equations (6) and (7) are traffic flow
constraints, requiring a car to leave a customer node after it

Table 1: Comparison of test results with SCA algorithm.

Function SCA MMSCA
f1 5.86E− 28 2.95E− 30
f2 2.19E− 17 8.02E− 20
f3 1.46E− 08 6.73E− 30
f4 1.31E− 07 1.56E− 08
f5 7.05E+ 00 7.02E+ 00
f6 3.73E− 01 2.98E− 01
f7 1.82E− 03 1.83E− 04
f8 −2.22E+ 03 −2.29E+ 03
f9 6.83E− 01 3.30E− 06
f10 6.48E− 14 2.91E− 14
f11 2.34E− 02 0.00E+ 00
f12 6.92E− 02 5.60E− 02
f13 2.68E− 01 2.59E− 01
f14 1.86E+ 00 9.98E− 01
f15 9.20E− 04 6.85E− 04
f16 −1.03E+ 00 −1.03E+ 00
f17 3.99E− 01 3.99E− 01
f18 3.00E+ 00 3.00E+ 00
f19 −3.86E+ 00 −3.86E+ 00
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Figure 2: Convergence curve of benchmark functions:f2, f3, f9, f11, f14. (a) f2. (b) f3. (c) f9. (d) f11. (e) f14.
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has completed service; formula (8) represents the vehicle
capacity constraint and indicates that the total customer
demand on the route served by vehicle v cannot exceed the
vehicle loading capacity Q; formula (9) ensures that each
customer can only be served by one vehicle.

5.2. MMSCA Algorithm for CVRP. ,e MMSCA algorithm
is a continuous space algorithm, but the CVRP problem is an
integer programming problem, so it needs to be modified in
the implementation process.

(1) Encoding and decoding
Encoding: using natural number coding, each in-
dividual in the population corresponds to a unique
arrangement from 1 to n, and each individual cor-
responds to a distribution scheme.
Decoding: arrange the vehicles according to the
sequence of customers in the distribution scheme

and the constraint of maximum loading capacity.
,at is, it is sequentially included in the path of the
first car according to the customer’s coding order,
and the second car’s path is arranged until the
maximum load of the first car is exceeded.

(2) Evaluation criteria
,e total length of the vehicle path is used to evaluate
all individuals and the merits of each distribution
scheme.

(3) Implementation process
According to the abovementioned coding method,
each population is generated. Each individual (dis-
tribution scheme) is evaluated according to the
evaluation criteria. Update each individual with
formula (3) to generate a new distribution scheme.
According to the constraint conditions, the actual
vehicle path is generated and evaluated. In the
process of updating with formula (3), integer

Table 3: Test results compared with other optimization algorithms.

Function MMSCA PSO PPSO DE
f1 2.95E − 30 6.92E− 03 3.03E− 28 8.14E− 15
f2 8.02E− 20 2.46E− 01 5.93E− 13 1.58E− 08
f3 6.73E− 30 8.03E− 02 1.08E− 25 6.38E+ 01
f4 1.56E− 08 7.92E− 02 6.67E− 08 9.47E− 02
f5 7.02E+ 00 1.70E+ 01 1.16E+ 00 2.94E+ 01
f6 2.98E− 01 6.48E− 03 1.50E− 09 6.89E− 15
f7 1.83E− 04 1.30E− 02 2.07E− 03 2.87E− 02
f8 −2.29E+ 03 −2.40E+ 03 −2.70E+ 03 −1.18E+ 02
f9 3.30E− 06 3.34E+ 00 6.70E+ 00 5.81E+ 01
f10 2.91E− 14 2.77E− 01 3.68E− 13 5.08E− 08
f11 0.00E+ 00 2.29E− 01 3.32E− 01 9.88E− 15
f12 5.60E− 02 6.44E− 02 1.04E− 02 2.25E− 16
f13 2.59E− 01 7.68E− 03 2.28E− 03 1.86E− 15
f14 9.98E− 01 3.86E+ 00 1.99E+ 00 3.26E+ 00
f15 6.85E− 04 4.52E− 03 1.80E− 03 7.23E− 04
f16 −1.03E+ 00 −1.03E+ 00 −1.03E+ 00 −1.03E+ 00
f17 3.99E− 01 3.99E− 01 3.99E− 01 3.98E− 01
f18 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00
f19 −3.86E+ 00 −3.86E+ 00 −3.86E+ 00 −3.86E+ 00

Table 4: Comparison of MMSCA and other two algorithms.

Data set Best known results
MMSCA PSO GA

Best Dev (%) Best Dev (%) Best Dev (%)
A-n32-k5 784 808 3.06 829 5.73 818 4.34
A-n33-k5 661 690 4.39 705 6.65 674 1.97
A-n39-k6 831 868 4.45 872 6.08 866 5.35
A-n46-k7 914 964 5.47 977 6.89 957 4.7
A-n60-k9 1408 1426 1.28 1476 4.83 1410 0.14

Table 2: Parameter settings.

Algorithm Parameters
PSO c1� c2� 2, ω� 0.9
PPSO ,e number of groups is 2, c1� c2� 2, ω� 0.7
DE pCR� 0.2, βmax � 0.8, βmin � 0.2
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specification constraints are required to avoid gen-
erating infeasible solutions.

5.3. Simulation and Results Analysis. In this paper, five
standard VRPLIB test samples are selected for testing, and
the test results of the MMSCA algorithm are compared with
the PSO algorithm [55] and the GA algorithm. Table 4 shows
the experimental results. In the experiment, the population
number of MMSCA algorithm is divided two groups, the
number of individuals in each group is 50, the solution is
thirty times, and the number of iterations is 10,000. During
the solution process, the best solution result is recorded.

Where the Best column represents the known optimal
results, the Dev column indicates the deviation between the
optimal solutions obtained by the algorithm and the best
known results. As can be seen from the abovementioned
table, the MMSCA algorithm has achieved better results and
has certain advantages compared with the PSO algorithm
and the genetic algorithm. But, there is still a certain gap with
the currently known optimal solutions, indicating that the
algorithm still has room for improvement. Figure 3 shows
the convergence curve when the MMSCA algorithm solves
the CVRP instance A-n60-k9.

6. Conclusion

Firstly, in view of the problems existing in the SCA algo-
rithm update process, this paper proposes multigroup
multistrategy SCA algorithm (MMSCA). ,e algorithm
contains multiple populations with the same number of
individuals, and each population performs a different update
strategy. Multiple strategies include rand strategy and best
strategy. ,e rand strategy can improve the global optimi-
zation ability of the algorithm, and the algorithm can still be
disturbed at the later stage to avoid algorithm stagnation.
,e best strategy is responsible for keeping the algorithm
stable and speeds up the convergence speed of the algorithm.
,rough numerical experiments on the test function, the

MMSCA algorithm has a certain improvement in the ac-
curacy and convergence speed of the original SCA algo-
rithm. Finally, this paper successfully applies the MMSCA
algorithm to solve CVRP (Capacitated Vehicle Routing
Problem) and obtains better results, which further confirms
the practicability and effectiveness of the algorithm.,e next
research direction will continue to improve the algorithm
and apply it to more practical engineering problems.
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