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Under U-model control design framework, a fixed-time neural networks adaptive backstepping control is proposed.'e majority
of the previously described adaptive neural controllers were based on uniformly ultimately bounded (UUB) or practical finite
stable (PFS) theory. For neural networks control, it makes the control law as well as stability analysis highly lengthy and
complicated because of the unknown ideal weight and unknown approximation error. Moreover, there has been very limited
research focus on adaptive law for neural networks adaptive control in finite time. Based on fixed-time stability theory, a fixed-
time bounded theory is proposed for fixed-time neural networks adaptive backstepping control. 'e most outstanding novelty is
that fixed-time adaptive law for training weights of neural networks is proposed for fixed-time neural networks adaptive control.
Furthermore, by combining fixed-time adaptive law and Lyapunov-based arguments, a valid fixed-time controller design al-
gorithm is presented with universal approximation property of neural networks to ensure the system is fixed-time bounded, rather
than PFS or UUB. 'e controller guarantees closed-loop system fixed-time bounded in the Lyapunov sense. 'e benchmark
simulation demonstrated effectiveness and efficiency of the proposed approach.

1. Introduction

Recently, neural networks control has increasingly attracted
attention and intensive research has been performed in
adaptive law for training neural networks weights and ap-
plication in different fields [1–3]. Neural network technique
is a typical data-driven modelling method [4–6], which used
measured data to find proper control in reversion of some
expected closed-loop performance [7–9]. U-model control
[10, 11] played an important role in some complex systems.
U-model control, due to its capability to solve some complex
problems as model separated design, provides a general way
to separate system design process and control design pro-
cess. U model control method makes control process ex-
plicitness and is easy to control. It provides a control
direction to design the system controller. U model NNs
control makes system control easy and clear based on the
approximation ability of NNs.

'e majority of the neural networks controllers pre-
viously used for nonlinear systems [12] are based on UUB
theory and sliding mode schemes [13–15]. 'e conven-
tional adaptive law for training neural networks and
feedback control is linear feedback which makes the system
exponential stabile [16, 17] or exponentially bounded
[18–20]. Finite time [21, 22] and fixed-time [14] stable
results are more meaningful for uncertain nonlinear
systems.

Motivated by the above critical analyses, fixed-time
adaptive neural networks controller for uncertain non-
linear systems is proposed. We extend the prior works
[23, 24] to the fixed-time case in which closed-loop
systems are global bounded with fixed time. Fixed-time
neural networks control is proposed in order to deal with
convergence time of the neural networks control. 'e
main contributions of this paper can be summarized as
follows:
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(1) Fixed-time adaptive neural networks for uncertain
nonlinear systems are proposed. As mentioned, this
paper is the first study to propose convergence time
as the fixed time for neural networks control.

(2) For training neural networks weights, a new adaptive
law is proposed to realize the fixed-time neural
networks adaptive control for training neural net-
work weights based on Lyapunov bounded theory.

(3) U-model control technology, which is a model-in-
dependent design technology, is used to realize the
model-independent control system design.

'e rest of this paper is organized as follows. Section 2
gives problem formulation and preliminaries, including
necessary inequality and some lemmas with necessary proof.
In Section 3, a fixed-time bounded theory is proposed for
fixed-time neural networks adaptive backstepping control
based on U-model control. Based on fixed-time theory, a
new fixed-time adaptive law is developed for training neural
networks to control the the nonlinear system, and Lyapunov
fixed-time bounded theory is used to guaranteeing the
closed-loop system signals bounded in fixed time in Section
4. In Section 5, a bench test is proposed to indicate efficiency
and effectiveness of the procedure. 'e conclusion is pro-
vided in Section 6.

2. Problem Description and Preliminaries

In this paper, a general dynamic system can be described as
follows:

y
(n)

+ f1(y)y
(n− 1)

+ · · · + fi(y)y
(n− i)

+ · · · + fn(y)y � u,

(1)

where y ∈ R and u ∈ R are state variable and control input,
respectively, and fi(·) is nonlinear with system state. 'is
model is generally used in some areas, such as mechanical
dynamic of the PMSM servo system.

To design the neural networks control, radial basis
function (RBF) NN is adopted in order to approximate the
continuous function F(x) :Rn⟶ R over a compact set

FNN(x, W) � W
TΨ(x), (2)

where x ∈ Ω ⊂ Rn is neural networks input,
W � [w1, . . . , wl]

T ∈ Rl is weight vector,
Ψ(x) � [ψ1(x), . . . ,ψl(x)]T is node vector, and element
ψi(x) is Gaussian function in form of

ψi(x) � exp
− x − μi( 􏼁

T
x − μi( 􏼁

η2i
􏼢 􏼣, i � 1, 2, . . . l, (3)

where μi � [μi1, . . . , μin]T is the center of the basis function
and ηi is the scalar width of the Gaussian function.

'e RBF NNs can be used to approximate any contin-
uous function over a compact set Ωx ⊂ R

n as

F(x) � W
∗TΨ(x) + ε(x), (4)

where ε(x) is the NN approximation error and W∗ is the
ideal NN weight which is given as

W
∗

� arg min
W∈Rl

sup F(x) − W
TΨ(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛, (5)

where 􏽢W is estimated weight and 􏽥W � 􏽢W − W∗.
To design the fixed-time bounded theory, some lemmas

are proposed based on a general nonlinear system:
_x � f(x), (6)

where x is system state.

Lemma 1 (see [25]). Suppose that V(·): Rn⟶ R+ ∪ 0{ } is a
continuous radically unbounded function and the following
two conditions hold:

(1) V(x) � 0⟺x � 0
(2) Any solution x(t) of system (6) satisfies

_V(x(t)) ≤ − aV
p
(x(t)) − bV

q
(x(t)), (7)

for some a, b> 0, 0≤p< 1, and q> 1.

'en, the origin of system (6) can achieve fixed-time
stability, and Tmax � (1/(a(1 − p))) + (1/(b(q − 1))).

Remark 1. In Lemma 1, if p � 1 − (1/(2μ)) and
q � 1 + (1/(2μ)), where μ≥ (1/2), then the origin of system
(6) can achieve fixed-time stability, and Tmax � ((πμ)/

��
ab

√
).

Lemma 2. For xi ∈ R, i � 1, 2, . . . , n, q> 1, 0<p< 1, then

􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

p

≤ 􏽘
n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p ≤ n

1− p
􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

p

,

n
1− q

􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

q

≤ 􏽘
n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q ≤ 􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

q

.

(8)

Lemma 3 (Young’s inequality). For any constant a, b ∈ R,
the following inequality holds:

ab≤
1
p

a
p

+
1
q
b

q
, (9)

where p> 1, q> 1, and (1/p) + (1/q) � 1.

3. Fixed-Time U-Model Control

In this section, a fixed-time bounded theory is proposed for
fixed-time neural networks adaptive control based on
U-model control.

Theorem 1. Suppose that V(·): Rn⟶ R+ ∪ 0{ } is a con-
tinuous radically unbounded function and the following two
conditions hold:

(1) V(x) � 0⟺x � 0
(2) Any solution x(t) of system (6) satisfies
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_V(x(t))≤ − aV
p
(x(t)) − bV

q
(x(t)) + c, (10)

for some a, b> 0, 0≤p< 1, q> 1, and p, q are odd rational
number, which means numerator and denominator are both
odd numbers.

'en states of system (6) can achieve fixed-time
bounded, and the bound ξ is roots of the equation.

2p− 1aξp
+ bξq

� c, fixed-time Tmax � (1/2p− 1a(1 − p))+

(1/b(q − 1)).

Proof. Assume that V> ξ; based on Lemma 2, we have
_V≤ − aV

p
− bV

q
+ c,

2p− 1
aξp

+ bξq
� c,

(11)

and

− aV
p

− bV
q

+ c � − aV
p

− bV
q

+ 2p− 1
aξp

+ bξq
, (12)

because

− aV
p

+ 2p− 1
aξp ≤ − 2p− 1

a(V − ξ)
p
,

− bV
q

+ bξq ≤ − b(V − ξ)
q
.

(13)

'erefore,
_V≤ − 2p− 1

a(V − ξ)
p

− b(V − ξ)
q
. (14)

Let

Vξ � V − ξ. (15)

'en,
_Vξ ≤ − 2p− 1

aV
p

ξ − bV
q

ξ . (16)

Based on Lemma 1, Vξ is fixed-time stable and fixed
time; therefore, V is fixed-time bounded with ξ and
Tmax � (1/(2p− 1a(1 − p))) + (1/(b(q − 1))), and if p � 1 −

(1/(2μ)) and q � 1 + (1/(2μ)), where μ≥ (1/2),
Tmax � ((πμ)/

������
2p− 1ab

√
).

'e proof is completed.
For system (1), based on U-model technology, let

x1 � y − yd,

xi � y(i− 1) − y
(i− 1)
d , 2≤ i≤ n.

⎧⎨

⎩ (17)

'en, the system can be changed as
_x1 � x2,

_xi � xi+1, 2≤ i≤ n − 1,

_xn � − f1 x1( 􏼁xn − · · · fi x1( 􏼁xn− i+1 − fn x1( 􏼁x1 + u,

y � x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

and then the system can be changed as

_x1 � x2,

_xi � xi+1, 2≤ i≤ n − 1,

_xn � U,

y � x1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where

U � − f1 x1( 􏼁xn − · · · fi x1( 􏼁xn− i+1 − fn x1( 􏼁x1 + u, (20)

which is a single-input single-output nonlinear system;
U-model is used to design the control procedure.

In the first step,

z1 � x1, (21)

and then we have

_z1 � x2, (22)

and to design fixed-time control, choose the virtual control
law

α1 � − a1z
p
1 − b1z

q
1, (23)

where for some a1, b1 > 0, 0≤p< 1, q> 1, and p, q are odd
rational numbers, which means numerator and denomi-
nator are both odd numbers; then,

_z1 � − a1z
p
1 − b1z

q
1 + z2, (24)

where

z2 � x2 − α1. (25)

'erefore, in the ith step (2≤ i≤ n − 1),
_zi � xi+1 − _αi− 1, (26)

and to design fixed-time control, choose the virtual control
law

αi � − zi− 1 − aiz
p
i − biz

q
i + _αi− 1, (27)

where for some ai, bi > 0, 0≤p< 1, q> 1, and p, q are odd
rational numbers, which means numerator and denomi-
nator are both odd numbers; then,

_zi � − zi− 1 − aiz
p
i − biz

q
i + zi+1, (28)

where

zi+1 � xi+1 − αi. (29)

In the last stage, because

zn � xn − αn− 1, (30)

we have

_zn � U − _αn− 1, (31)

and to design fixed-time control, choose the U-model
control

U � − zn− 1 − anz
p
n − bnz

q
n + _αn− 1, (32)
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where for some an, bn > 0, 0≤p< 1, q> 1, and p, q are odd
rational numbers, which means numerator and denomi-
nator are both odd numbers; then,

_zn � − zn− 1 − anz
p
n − bnz

q
n. (33)

Under U-model control design framework and fixed-
time theory, choose Lyapunov candidate functional

V �
1
2

􏽘

n

i�1
z
2
i , (34)

and take time derivative of function (34) along with (24) and
(28); (33) is derived as

_V � − 􏽘
n

i�1
aiz

p+1
i − 􏽘

n

i�1
biz

q+1
i

≤ − a 􏽘
n

i�1
z

p+1
i − b 􏽘

n

i�1
z

q+1
i ,

(35)

where a � min(ai), b � min(bi), i � 1, 2, . . . , n; based on
Lemma 2,

− 􏽘
n

i�1
z
2
i􏼐 􏼑

(1+p)/2
≤ − 􏽘

n

i�1
z
2
i

⎛⎝ ⎞⎠

(1+p)/2

− 􏽘
n

i�1
z
2
i􏼐 􏼑

(1+q)/2
≤ − n

(1− q)/2
􏽘

n

i�1
z
2
i

⎛⎝ ⎞⎠

(1+q)/2

.

(36)

'erefore,
_V≤ − 2p1 a V

p1 − 2q1n
1− q1 b V

q1 , (37)

where p1 � ((1 + p)/2), q1 � ((1 + q)/2), and 0≤p1 < 1,
q1 > 1. □

4. Neural Networks Fixed-Time Control

In the last step of backstepping in equation (32), neural
networks are used to approximate the nonlinear system

_zn � − f1 x1( 􏼁xn − · · · fi x1( 􏼁xn− i+1 − fn x1( 􏼁x1 − _αn− 1 + u,

(38)

u
∗

� − zn− 1 + f1 x1( 􏼁xn + · · · fi x1( 􏼁xn− i+1 + fn x1( 􏼁x1 + _αn− 1,

(39)

− f1 x1( 􏼁xn − · · · fi x1( 􏼁xn− i+1 − fn x1( 􏼁x1 − _αn− 1 � W
∗TΨ xn( 􏼁 + ε.

(40)

Choose adaptive law

_􏽢W � Γ znΨn xn( 􏼁 − aσ
􏽢W

p
− bσ

􏽢W
q

􏽨 􏽩, (41)

where Γ � ΓT > 0, and aσ > 0, bσ > 0 are positive constant
design parameters.

Finally, choose the controller as

u � − 􏽢W
TΨ xn( 􏼁 − zn− 1 − an +

ζ
p + 1

􏼠 􏼡z
p
n − bn +

1 − ζ
q + 1

􏼠 􏼡z
q
n,

(42)

where 0≤ ζ ≤ 1; then, the system

_zn � − 􏽥W
TΨ xn( 􏼁 − zn− 1 − an +

ξ
p + 1

􏼠 􏼡z
p
n − bn +

1 − ξ
q + 1

􏼠 􏼡z
q
n + ε,

(43)

where 􏽥W � 􏽢W − W∗.

Theorem 2. With regard to nonlinear system (1), the model
dynamic is approximated by neural networks (40), with fixed-
time adaptive law (41), with virtual control (23), (27), with
controller (42), then the closed loop signal converge to a
compact set with fixed-time

Tmax �
1

2p2− 1a 1 − p2( 􏼁
+

1
b q2 − 1( 􏼁

. (44)

Proof. Consider system (1) and Lemmas 1–3.
In ith (1≤ i≤ n − 1) step, choose Lyapunov candidate

functional

Vi �
1
2
z
2
i . (45)

In the last step, choose Lyapunov candidate functional

Vn �
1
2
z
2
n +

1
2

􏽥WΓ− 1 􏽥W
T

, (46)

and then take time derivative of function (46) along with
trajectory (41), and (43) is derived as

_Vn � zn _zn + 􏽥WΓ− 1 _􏽢W
T

� − zn
􏽥W

TΨ xn( 􏼁 − zn− 1zn − an +
ξ

p + 1
􏼠 􏼡z

p
n

− bn +
1 − ξ
q + 1

􏼠 􏼡z
q
n + znε

+ zn
􏽥WΨn xn( 􏼁 − aσ

􏽥W 􏽢W
p

− bσ 􏽥W 􏽢W
q
.

(47)

Based on Lemma 3,
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znε≤ ζ
1

p + 1
z

p+1
n +

p

p + 1
ε(p+1)/p

􏼠 􏼡 +(1 − ζ)
1

q + 1
z

q+1
n +

q

q + 1
ε(q+1)/q

􏼠 􏼡

− aσ
􏽥W 􏽢W

p ≤ − cp
􏽥W

(1+p)/2Γ− 1 􏽥W
((1+p)/2)T

+ apW
∗((1+p)/2)

W
∗((1+p)/2)T

− bσ
􏽥W 􏽢W

q ≤ − cq
􏽥W

(1+q)/2Γ− 1 􏽥W
((1+q)/2)T

+ bqW
∗((1+q)/2)

W
∗((1+q)/2)T

,

(48)

where 0≤ ζ ≤ 1, cp > 0, cq > 0, ap > 0, bq > 0 exist.

_Vn ≤ − zn− 1zn − an +
ζ

p + 1
􏼠 􏼡z

p
n − bn +

1 − ζ
q + 1

􏼠 􏼡z
q
n

+ ζ
1

p + 1
z

p+1
n +

p

p + 1
ε(p+1)/p

􏼠 􏼡 +(1 − ζ)

·
1

q + 1
z

q+1
n +

q

q + 1
ε(q+1)/q

􏼠 􏼡

− cp
􏽥W

(1+p)/2Γ− 1 􏽥W
((1+p)/2)T

+ apW
∗((1+p)/2)

W
∗((1+p)/2)T

− cq
􏽥W

(1+q)/2Γ− 1 􏽥W
((1+q)/2)T

+ bqW
∗((1+q)/2)

W
∗((1+q)/2)T

.

(49)

'erefore,

V � 􏽘
n

i�1
Vi,

_V≤ − 􏽘
n

i�1
aiz

p+1
i − 􏽘

n

i�1
biz

q+1
i +

pζ
p + 1

ε(p+1)/p
+

q(1 − ζ)

q + 1
ε(q+1)/q

− cp
􏽥W

(1+p)/2Γ− 1 􏽥W
((1+p)/2)T

+ apW
∗(1+p)/2

W
∗((1+p)/2)T

− cq
􏽥W

(1+q)/2Γ− 1 􏽥W
((1+q)/2)T

+ bqW
∗((1+q)/2)

W
∗((1+q)/2)T

≤ − aV
p2 − bV

q2 + c,

(50)

where

a � 2(p+1)/2 min cp, ai, i � 1, 2, . . . , n􏼐 􏼑,

b � 2(q+1)/2
(n + 1)

(1− q)/2 min cq, bi, i � 1, 2, . . . , n􏼐 􏼑,

c �
pζ

p + 1
ε

p+1
p +

q(1 − ζ)

q + 1
ε(q+1)/q

+ apW
∗((1+p)/2)

W
∗((1+p)/2)

+ bqW
∗((1+q)/2)

W
∗((1+q)/2)T

,

p2 �
1 + p

2
,

q2 �
1 + q

2
,

(51)

and based on Lemma 3, V is bounded with fixed time.
'erefore, it can be concluded that for all 1≤ i≤ n, the error
signals zi, 􏽥Wi are bounded with fixed time
Tmax � (1/(2p2− 1a(1 − p2))) + (1/(b(q2 − 1))). If
p � 1 − (1/(2μ)) and q � 1 + (1/(2μ)), where μ≥ (1/2),
fixed-time Tmax � ((πμ)/

������
2p− 1ab

√
).

'e proof is completed. □

Remark 2. For the virtual control in equation (26), to avoid
singularity problem, we assume that |zi|> ε, oth-
erwise _αi− 1 � 0. Because this is bounded theory, the moti-
vation is control |zi|< ε.
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t (s)

–70
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Figure 1: Trajectories of error system.
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5. Simulation Example

A simulation has been performed for the nonlinear system in
order to show the effectiveness and efficiency of the pro-
posed approach.

y
(3)

+(1 + y)y
(2)

+ 2 − y
2

􏼐 􏼑y
(1)

+ y � u. (52)

Based on U-model and neural networks technology,
design the controller; the initial state is y(0) � 1 and the
reference output is yd � sin(t); then, based on U-model
technology,

x1 � y − yd,

x2 � y(1) − y
(1)
d ,

x3 � y(2) − y
(2)
d ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(53)

and the system can be changed as
_x1 � x2,

_x2 � x3,

_x3 � f + u,

y � x1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(54)

where f � − (1 + x1 + yd) (x3 + y
(2)
d ) − (2 − (x1 + yd)2)

(x2 + y
(1)
d ) − x1 − yd.

'e initial conditions of NN weights are chosen as zero
and p � (1/3), q � 3. 'e motivation is to design the
adaptive finite time neural tracking controller for a system
such that all the system outputs follow the given reference
signal yd with finite time. To illustrate the ability of con-
troller, Figures 1–4 show the better tracking performance.
Figure 1 shows the states of error system convergence to
origin point in finite time. Figure 2 shows the system output
y and system reference output yd and output tracked ref-
erence output quickly. Figure 3 shows the approximation of
NNs, and Figure 4 shows the controller.

6. Conclusion

A fixed-time neural networks adaptive backstepping control
is proposed under U-model control design framework. 'e
proposed controller guarantees closed-loop system fixed-
time bounded and not only uniformly ultimately bounded
UUB or PFS. 'e benchmark simulation has well demon-
strated effectiveness and efficiency of the proposed
approach.
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