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In this paper, the existence and uniqueness results of the generalization nonlinear fractional integro-differential equations with
nonseparated type integral boundary conditions are investigated. A natural formula of solutions is derived and some new
existence and uniqueness results are obtained under some conditions for this class of problems by using standard fixed point
theorems and Leray–Schauder degree theory, which extend and supplement some known results. Some examples are discussed for
the illustration of the main work.

1. Introduction

Fractional derivatives provide an excellent tool for the de-
scription of memory and hereditary properties of various
materials and processes. Characteristics of the fractional
derivatives make the fractional-order models more realistic
and practical than the classical integral-order models.
Fractional differential equations have gained considerable
importance due to their application in various sciences, such
as physics, polymer rheology, aerodynamics, capacitor
theory, chemistry, biology, control theory, and electrody-
namics of complex medium. ,e initial and boundary value
problems for nonlinear fractional differential equations arise
from the study of models of viscoelasticity, electrochemistry,
porous media, and electromagnetics. In consequence, the
subject of fractional differential equations is gaining much
importance and attention [1–4]. ,e recent development in
the theory and methods for fractional differential equations
indicates its popularity. For more details, we refer the reader
to [5–9] and the references cited therein.

Moreover, the existence and uniqueness of solutions for
fractional differential equations have been mathematically
studied from different methods [10–15], yielding methods

for solving fractional differential equations [16–19]. As we all
know, boundary value problems of fractional differential
equations have been investigated for many years. Now, there
are many papers dealing with the problem for different kinds
of boundary conditions such as periodic or antiperiodic
boundary condition [20, 21], multipoint boundary condition
[22, 23], and integral boundary condition [24–28] as well as
stability and convergence analysis [29–32]. Integral
boundary conditions have various applications in applied
fields such as blood flow problems, chemical engineering,
thermoelasticity, underground water flow, and population
dynamics. For a detailed description of some recent work on
the integral boundary conditions, we refer the reader to
some recent papers [33–35] and the references therein
[36–39].

In [20], Ahmad and Nieto investigated the fractional
differential equations with antiperiodic fractional boundary
conditions as the following form:

CD
α
t u(t) � f(t, u(t)), t ∈ [0, T], T> 0, 1< α≤ 2,

u(0) � − u(T), CD
β
t u(0) � − CD

β
t u(T), 0< β< 1,

⎧⎨

⎩

(1)
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where CD
α
t and CD

β
t denote the Caputo fractional derivative

of order α, β; f: [0, T] × R⟶ R is a given continuous
function; and T is a fixed positive constant. ,e results are
based on some standard fixed point principles.

Recently, in [24], the author discussed the nonlinear
fractional differential equations with nonseparated type
integral boundary conditions

CD
α
t u(t) � f(t, u(t)), t ∈ [0, T], T> 0, 1< α≤ 2,

u(0) + λ1u(T) � μ1 􏽚
T

0
g(s, u(s))ds,

u′(0) + λ2u′(T) � μ2 􏽚
T

0
h(s, u(s))ds,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where CD
α
t denotes the Caputo fractional derivative of order

α, f, g, h: [0, T] × R⟶ R are given continuous function,
and λ1, λ2, μ1, μ2 are suitably chosen real constants with
λ1≠ − 1, λ2≠ − 1. By applying the Leray–Schauder degree
theory and some standard fixed point theorems, some new
existence and uniqueness results are obtained.

Motivated by the abovementioned papers and many
known results, in this paper, we concentrate on the existence
and uniqueness of solutions for the nonlinear fractional
integro-differential equations and inclusions of order α ∈ (1, 2],
with nonseparated type integral boundary conditions

CD
α
t u(t) � f(t, u(t), (φu)(t), (ψu)(t)), t ∈ [0, T], 1< α≤ 2,

u(0) + μ1u(T) � σ1 􏽚
T

0
g(s, u(s))ds, T> 0,

CD
β
t u(0) + μC

2 D
β
t u(T) � σ2 􏽚

T

0
h(s, u(s))ds, 0< β< 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

where CD
α
t and CD

β
t denote the Caputo fractional derivative

of order α, β; f: [0, T] × R × R × R⟶ R is a given con-
tinuous function satisfying some assumptions that will be
specified later; Γ is the Euler gamma function; and μ1≠ − 1,
μ2≠ 0, κ, ξ: [0, T]× [0, T]⟶ [0, ∞), φ, ψ are linear op-
erators defined by

(φu)(t) � 􏽚
t

0
κ(t, s)u(s)ds,

(ψu)(t) � 􏽚
t

0
ξ(t, s)u(s)ds,

(4)

g, h: [0, T] × R⟶ R, σ1, σ2 ∈ R. Here, C: � C([0,T],R)

denotes the Banach space of all continuous functions from
[0, T] toR endowed with a topology of uniform convergence
with the norm ‖u‖ � sup |u(t)|,{ t ∈ [0,T]}.

To the best of our knowledge, no paper has considered
the generalization of nonlinear fractional integro-differential
equations with nonseparated type integral boundary con-
ditions (3). Our purpose here is to give some existence and
uniqueness results for solution to (3).

Compared with the previous research problems, (3) has
more general integral boundary value conditions. ,is paper
is organized as follows: in Section 2, we present the notations
and give some preliminary results via a sequence of defi-
nitions and lemmas. In Section 3, we prove new existence
and uniqueness results for problem (3). ,ese results are

based on fixed point theorems and Leray–Schauder degree
theory. In Section 4, two examples are demonstrated which
support the theoretical analysis.

2. Preliminaries and Lemmas

In this section, we present some basic notations, definitions,
and preliminary results which will be used throughout this
paper. Let us recall some definitions of fractional calculus.
For more details, see [1, 2].

Definition 1. ,e fractional integral of order α with the
lower limit zero for a function f: [0,∞)⟶ R is defined as

I
α
f(t) �

1
Γ(α)

􏽚
t

0
(t − s)

α− 1
f(s)ds, t> 0, n − 1< α< n,

(5)

provided the integral exists.

Definition 2. For a function f: [0,∞)⟶ R with the lower
limit zero, the Caputo derivative of fractional order α is
defined as

C
D

α
t f(t) �

1
Γ(n − α)

􏽚
t

0
(t − s)

n− α− 1
f

(n)
(s)ds,

t> 0, n − 1< α< n,

(6)
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where n� [α] + 1 and [α] denote the integer part of the real
number α.

Definition 3. ,e Riemann–Liouville fractional derivative of
order αwith the lower limit zero for a function f(t) is defined
by

R
D

α
t f(t) �

1
Γ(n − α)

d
dt

􏼠 􏼡

n

􏽚
t

0
(t − s)

n− α− 1
f(s)ds,

n � [α] + 1,

(7)

where n� [α] + 1 and [α] denote the integer part of real
number α, provided that the right side is pointwise defined
on (0, ∞).

Lemma 1. For α> 0, the general solution of the fractional
differential equation CD

α
t u(t) � 0 is given by

u(t) � c0 + c1t + c2t
2

+ · · · + cn− 1t
n− 1

, (8)

where ci ∈ R, i � 0, 1, . . . , n − 1(n � [α] + 1).
In view of Lemma 1, it follows that

I
αC

D
α
t u(t) � u(t) + c0 + c1t + c2t

2
+ · · · + cn− 1t

n− 1
, (9)

for some ci ∈ R, i � 0, 1, . . . , n − 1(n � [α] + 1).
In the following, we derive a natural formula of solution

to the integral boundary value problem for integro-differ-
ential equation (3).

Lemma 2. Assume that y ∈ C([0, T],R), T> 0, 1< α≤ 2. A
function u(t) is a solution of the boundary value problem

CD
α
t u(t) � y(t), t ∈ [0, T], 1< α≤ 2,

u(0) + μ1u(T) � σ1 􏽚
T

0
g(s, u(s))ds, T> 0,

CD
β
t u(0) + μ2CD

β
t u(T) � σ2 􏽚

T

0
h(s, u(s))ds, 0< β< 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

if and only if u is a solution of the integral equation

u(t) � 􏽚
t

0

(t − s)α− 1

Γ(α)
y(s)ds −

μ1
1 + μ1

􏽚
T

0

(T − s)α− 1

Γ(α)
y(s)ds

+
Γ(2 − β) μ1T − 1 + μ1( 􏼁t􏼂 􏼃

1 + μ1( 􏼁T1− β 􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
y(s)ds

+
σ1

1 + μ1
􏽚

T

0
g(s, u(s))ds −

σ2Γ(2 − β)Tβ− 1

μ2 1 + μ1( 􏼁

· μ1T − 1 + μ1( 􏼁t􏼂 􏼃 􏽚
T

0
h(s, u(s))ds.

(11)

Proof. Assume that y satisfies (10). Using Lemma 1, for some
constants c0, c1 ∈ R, we have

u(t) � I
α
y(t) − c0 − c1t

�
1
Γ(α)

􏽚
t

0
(t − s)

α− 1
y(s)ds − c0 − c1t.

(12)

Using the facts that CD
β
t c � 0 (c is a constant),

CD
β
t t � t1− β/Γ(2 − β), and CD

α
t I

β
t y(t) � Iβ− αy(t), we get

C
D

β
t u(t) �

1
Γ(α − β)

􏽚
t

0
(t − s)

α− β− 1
y(s)ds − c1

t1− β

Γ(2 − β)
.

(13)

Applying the boundary conditions for problem (3), we
find that

c0 �
μ1

1 + μ1
􏽚

T

0

(T − s)α− 1

Γ(α)
y(s)ds −

μ1TβΓ(2 − β)

1 + μ1
􏽚

T

0

(T − s)α− β− 1

Γ(α − β)
y(s)ds

−
σ1

1 + μ1
􏽚

T

0
g(s, u(s))ds +

μ1σ2Γ(2 − β)Tβ

μ2 1 + μ1( 􏼁
􏽚

T

0
h(s, u(s))ds,

c1 �
Γ(2 − β)

T1− β
1
Γ(α − β)

􏽚
T

0
(T − s)

α− β− 1
y(s)ds −

σ2
μ2

􏼠 􏼡 􏽚
T

0
h(s, u(s))ds.

(14)
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Substituting the value of c0 and c1 in (12), we obtain the
unique solution of (10) which is given by

u(t) � 􏽚
t

0

(t − s)α− 1

Γ(α)
y(s)ds −

μ1
1 + μ1

􏽚
T

0

(T − s)α− 1

Γ(α)
y(s)ds

+
Γ(2 − β) μ1T − 1 + μ1( 􏼁t􏼂 􏼃

1 + μ1( 􏼁T1− β 􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
y(s)ds

+
σ1

1 + μ1
􏽚

T

0
g(s, u(s))ds −

σ2Γ(2 − β)Tβ− 1

μ2 1 + μ1( 􏼁

· μ1T − 1 + μ1( 􏼁t􏼂 􏼃 􏽚
T

0
h(s, u(s))ds.

(15)

Conversely, we assume that u is a solution of the integral
equation (11), and in view of the relations CD

α
t I

β
t y(t) � y(t),

for α> 0, we get

C
D

α
t u(t) � y(t), t ∈ [0, T], 1< α≤ 2. (16)

Moreover, it can easily be verified that the boundary
conditions

u(0) + μ1u(T) � σ1 􏽚
T

0
g(s, u(s))ds,

C
D

β
t u(0) + μ2

C
D

β
t u(T) � σ2 􏽚

T

0
h(s, u(s))ds,

(17)

are satisfied. ,e proof is completed.
By Lemma 2, problem (3) is reduced to the fixed point

problem

u � Φ(u), (18)

where Φ: C⟶ C is given by

(Φu)(t) � 􏽚
t

0

(t − s)α− 1

Γ(α)
f(s, u(s), (φu)(s), (ψu)(s))ds

−
μ1

1 + μ1
􏽚

T

0

(T − s)α− 1

Γ(α)
f(s, u(s), (φu)(s), (ψu)(s))ds

+
Γ(2 − β) μ1T − 1 + μ1( 􏼁t􏼂 􏼃

1 + μ1( 􏼁T1− β 􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
f(s, u(s), (φu)(s), (ψu)(s))ds

+
σ1

1 + μ1
􏽚

T

0
g(s, u(s))ds −

σ2Γ(2 − β)Tβ− 1

μ2 1 + μ1( 􏼁
μ1T − 1 + μ1( 􏼁t􏼂 􏼃 􏽚

T

0
h(s, u(s))ds.

(19)

□

3. Main Results

In this section, we will show the existence and uniqueness of
solutions for problem (3). Now we state some known fixed
point theorems which are needed to prove the existence of
solutions for equation (3).

Theorem 1. Let X be a Banach space. Assume that Φ:
X⟶X is a completely continuous operator and the set V�

{u ∈X ∣ u� μΦu, 0< μ< 1} is bounded. Ben, Φ has a fixed
point in X.

Theorem 2. Let X be a Banach space. Assume that Ω is an
open bounded subset of X with 0 ∈Ω and let Φ: Ω⟶ X be a
completely continuous operator such that

‖Φu‖≤ ‖u‖, ∀u ∈ zΩ . (20)

Then Φ has a fixed point in Ω.

Theorem 3. Suppose that f: [0, T] × R × R × R⟶ R is a
jointly continuous function and maps bounded subsets of
[0, T] × R × R × R into relative compact subsets of R, κ,
ξ : [0, T]× [0, T]⟶ [0, ∞) is continuous with

k0 � max |κ(t, s)|: (t, s) ∈ [0, T] ×[0, T]{ }, (21)

ξ0 � max |ξ(t, s)|: (t, s) ∈ [0, T] ×[0, T]{ },

K � max κ0, ξ0􏼈 􏼉,
(22)

and g, h: [0, T] × R⟶ R are continuous functions. Fur-
thermore, there exist positive constants Ci(i� 1, . . ., 5) such that

(H1) | f(t, u1, u2, u3) − f(t, v1, v2, v3) | ≤ C1|u1 − v1| +

C2|u2 − v2| + C3|u3 − v3|, ∀t ∈ [0, T], ui, vi ∈ R, i �

1, 2, 3
(H2) |g(t, u) − g(t, v)|≤C4|u − v|, |h(t, u) − h(t, v)|≤
C5|u − v|, ∀u, v ∈ R

Ben the boundary value problem (3) has a unique so-
lution provided

r1 � 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣

· C1 + C2 + C3( 􏼁TK􏼂 􏼃 +
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
C4T +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
C5 < 1.

(23)
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Proof. Setting supt∈[0,T] |f(t, 0, 0, 0)| � M1, supt∈[0,T]

|g(t, 0)| � M2, and supt∈[0,T]|h(t, 0)| � M3. For a positive
number r, let Br � u ∈ C: ‖u‖≤ r{ } and r≥ r2/(1 − r1), with

r1 is given by (23), we will show that ΦBr⊂Br, where Φ is
defined by (19), and

r2 � 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣M1 +

σ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
M2T +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
M3. (24)

First, ∀u(t) ∈Br, there exists {un}⊂Br, and when
n⟶∞, un⟶ u, it is easy to know that

Φun(t) − Φu(t)
����

����⟶ 0. (25)

,en Φ is continuous on Br.
Furthermore, for u ∈Br, t ∈ [0, T], we have

|Φu(t)|≤ 􏽚
t

0

(t − s)α− 1

Γ(α)
|f(s, u(s), (φu)(s), (ψu)(s))|ds

+
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0

(T − s)α− 1

Γ(α)
|f(s, u(s), (φu)(s), (ψu)(s))|ds

+ Γ(2 − β)T
β

􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
|f(s, u(s), (φu)(s), (ψu)(s))|ds

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0
|g(s, u(s))|ds +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β
􏽚

T

0
|h((s, u(s))|ds

≤ 􏽚
t

0

(t − s)α− 1

Γ(α)
[|f(s, u(s), (φu)(s), (ψu)(s)) − f(s, 0, 0, 0)| +|f(s, 0, 0, 0)|]ds

+
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0

(T − s)α− 1

Γ(α)
[|f(s, u(s), (φu)(s), (ψu)(s)) − f(s, 0, 0, 0)| +|f(s, 0, 0, 0)|]ds

+ Γ(2 − β)T
β

􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
[|f(s, u(s), (φu)(s), (ψu)(s)) − f(s, 0, 0, 0)| +|f(s, 0, 0, 0)|]ds

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0
[|g(s, u(s)) − g(s, 0)| +|g(s, 0)|]ds

+
σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β
􏽚

T

0
[|h(s, u(s)) − h(s, 0)| +|h(s, 0)|]ds

≤ 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣 C1 + C2 + C3( 􏼁TK􏼂 􏼃r + M1􏼈 􏼉

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
T C4r + M2( 􏼁 +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β
T C5r + M3( 􏼁

≤ 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣 C1 + C2 + C3( 􏼁TK􏼂 􏼃 +

σ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
C4T +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
C5􏼨 􏼩r

+ 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣M1 +

σ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
M2T

+
σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
M3, ≤ r1r + r2 ≤ r.

(26)
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Now, for u, v ∈ C and for each t ∈ [0, T], we obtain

|(Φu)(t) − (Φv)(t)|

≤ 􏽚
t

0

(t − s)α− 1

Γ(α)
|f(s, u(s), (φu)(s), (ψu)(s)) − f(s, v(s), (φv)(s), (ψv)(s))|ds

+
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0

(T − s)α− 1

Γ(α)
|f(s, u(s), (φu)(s), (ψu)(s)) − f(s, v(s), (φv)(s), (ψv)(s))|ds

+ Γ(2 − β)T
β

􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
|f(s, u(s), (φu)(s), (ψu)(s)) − f(s, v(s), (φv)(s), (ψv)(s))|ds

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0
|g(s, u(s)) − g(s, v(s))|ds +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β
􏽚

T

0
|h(s, u(s)) − h(s, v(s))|ds

≤ 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣 C1 + C2 + C3( 􏼁TK􏼂 􏼃 +

σ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
C4T +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
C5􏼨 􏼩‖u − v‖

≤ r1‖u − v‖.

(27)

Observe that r1 depends only on the parameters involved
in the problem. As r1< 1, then Φ is a contraction map.
Hence, the conclusion of the theorem follows by the con-
traction mapping principle, and Φ has a unique fixed point
u. ,at is, the boundary value problem (3) has a unique
solution. ,is completes the proof.

Our next existence results are based on Krasnoselskii’s
fixed point theorem [40].

Theorem 4. LetM be a closed convex and nonempty subset of
a Banach space X. Let A and B be the operators such that

(i) Ax +By ∈M, whenever x, y ∈M
(ii) A is compact and continuous
(iii) B is a contraction mapping

Ben, there exists z ∈M such that z�Az+Bz.

Theorem 5. Assume (H1) and (H2) hold, f: [0, T] × R ×

R × R⟶ R is a jointly continuous function. Further, we
assume that

(H3) |f(t, u,φu,ψu)|≤p(t), |g(t, u)|≤ q(t), |h(t, u)|≤
](t), ∀(t, u,φu,ψu) ∈ [0, T] × R × R × R, p, q, ] ∈ C

([0, T],R+);

(H4) [|μ1/(1+μ1)|Tα/(Γ(α+1))+(Γ(2 − β)Tα)/ (Γ(α −

β+1))][C1 +(C2 +C3)TK]+ |σ1/(1+μ1)|C4T+|σ2/μ2|Γ
(2 − β)Tβ+1C5<1.

Ben, problem (3) has at least one solution on [0, T].

Proof. Let supt∈[0,T]|p(t)| � ‖p‖, supt∈[0,T]|q(t)| � ‖q‖, and
supt∈[0,T]|](t)| � ‖]‖, we fix

R � 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

1
Γ(α + 1)

+
Γ(2 − β)

Γ(α − β + 1)
􏼢 􏼣T

α
‖φ‖

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
T‖ψ‖ +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
‖]‖,

(28)

and considering BR � u ∈ C: ‖u‖≤R􏼈 􏼉, we define the op-
erators Φ1 and Φ2 on BR as

Φ1u( 􏼁(t) � 􏽚
t

0

(t − s)α− 1

Γ(α)
f(s, u(s), (φu)(s), (ψu)(s))ds,

Φ2u( 􏼁(t) � −
μ1

1 + μ1
􏽚

T

0

(T − s)α− 1

Γ(α)
f(s, u(s), (φu)(s), (ψu)(s))ds

+
Γ(2 − β) μ1T − 1 + μ1( 􏼁t􏼂 􏼃

1 + μ1( 􏼁T1− β 􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
f(s, u(s), (φu)(s), (ψu)(s))ds

+
σ1

1 + μ1
􏽚

T

0
g(s, u(s))ds −

σ2Γ(2 − β)Tβ− 1

μ2 1 + μ1( 􏼁
μ1T − 1 + μ1( 􏼁t􏼂 􏼃 􏽚

T

0
h(s, u(s))ds.

(29)
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For u, v ∈ BR, we find that

Φ1u +Φ2v
����

����≤ 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

1
Γ(α + 1)

+
Γ(2 − β)

Γ(α − β + 1)
􏼢 􏼣T

α
‖p‖

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
T‖q‖ +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
‖]‖

≤R.

(30)

,us, Φ1u +Φ2v ∈ BR. It follows from the assumptions
(H1) and (H2) that Φ2 is a contraction mapping if

μ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣 C1 + C2 + C3( 􏼁TK􏼂 􏼃 +

σ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
C4T +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
C5 < 1. (31)

Moreover, the continuity of f implies that the operator
Φ1 is continuous. Also, Φ1 is uniformly bounded on BR as

Φ1
����

����≤
‖p‖Tα

Γ(α + 1)
. (32)

Now, we prove compactness of the operator Φ1. In view
of (H3), we define

sup
(t,u)∈[0,T]×B

R

|f(t, u,φu,ψu)| � fmax, (33)

and consequently, we have

Φ1u( 􏼁 t2( 􏼁 − Φ1u( 􏼁 t1( 􏼁
����

���� � 􏽚
t1

0

t2 − s( 􏼁
α− 1

− t1 − s( 􏼁
α− 1

Γ(α)
f(s, u(s), (φu)(s), (ψu)(s))ds

���������

+ 􏽚
t2

t1

t2 − s( 􏼁
α− 1

Γ(α)
f(s, u(s), (φu)(s), (ψu)(s))ds

���������

≤
fmax

Γ(α + 1)
2 t2 − t1( 􏼁

α
+ t

α
1 − t

α
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(34)

which is independent of u and tends to zero as t2 − t1⟶ 0.
So Φ1 is relatively compact on BR. Hence, by the
Arzelá–Ascoli theorem, Φ1 is compact on BR. ,us, all the
assumptions of ,eorem 4 are satisfied. ,erefore, the
conclusion of ,eorem 4 applies that the fractional
boundary value problem (3) has at least one solution on [0,
T]. ,is completes the proof.

As an immediate consequence of,eorem 5, we have the
following.

Corollary 1. Assume that f: [0, T] × R × R × R⟶ R is a
jointly continuous function. If there exists nonnegative func-
tions, ai(t)∈ L[0, T](i� 0, 1, 2, 3), bi(t), ci(t)∈C[0, T](i� 0, 1),

0< ρj< 1(j� 1, 2, 3), 0< θ1, θ2< 1, and κ0, ξ0 are given by (21)
and (22) such that

(H5) |f(t,u,φu,ψu)|≤ a0(t) + a1(t)|u|ρ1 + a2(t)|φu|ρ2 +

a3(t)|ψu|ρ3

(H6) |g(t,u)|≤b0(t)+b1(t)|u|θ1 , |h(t,u)|≤ c0(t) + c1(t)|

u|θ2

For all t ∈ [0, T], u,φu,ψu ∈ R, then the boundary value
problem (3) has at least one solution.

Proof. Let us define a ball in the Banach space
B � u ∈ C | ‖u‖≤Λ{ }, where Λ is fixed later. Setting
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I
α
a � max

t∈[0,T]
I
α
ai(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, i � 0, 1, 2, 3􏽮 􏽯,

I
α
a(T) � max

t∈[0,T]
I
α
ai(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, i � 0, 1, 2, 3􏽮 􏽯,

ρ � max
i�1,2,3

ρi,

bm � max
i�1,2

bi(t),

cm � max
i�1,2

ci(t),

‖Φu(t)‖≤ 􏽚
t

0

(t − s)α− 1

Γ(α)
a0(s) + a1(s)|u|

ρ1 + a2(s)|φu|
ρ2 + a3(s)|ψu|

ρ3( 􏼁ds

+
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0

(T − s)α− 1

Γ(α)
a0(s) + a1(s)|u|

ρ1 + a2(s)|φu|
ρ2 + a3(s)|ψu|

ρ3( 􏼁ds

+ Γ(2 − β)T
β

􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
a0(s) + a1(s)|u|

ρ1 + a2(s)|φu|
ρ2 + a3(s)|ψu|

ρ3( 􏼁ds

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
T b0(s) + b1(s)|u|

θ1􏼐 􏼑 +
σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
c0(s) + c1(s)|u|

θ2􏼐 􏼑ds

≤ I
α
a0(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + I

α
a1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Λρ1 + I

α
a2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌T

ρ2k
ρ2
0 Λ

ρ2 + I
α
a3(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌T

ρ3ξρ30 Λ
ρ3

+
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
I
α
a0(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + I

α
a1(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Λρ1 + I

α
a2(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌T

ρ2k
ρ2
0 Λ

ρ2 + I
α
a3(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌T

ρ3ξρ30 Λ
ρ3􏼐 􏼑

+ Γ(2 − β)T
β

I
α− β

a0(T)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + I
α− β

a1(T)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Λ
ρ1 + I

α− β
a2(T)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌T
ρ2k

ρ2
0 Λ

ρ2􏼒

+ I
α− β

a3(T)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌T
ρ3ξρ30 Λ

ρ3􏼓 +
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Tbm 1 + Λθ1􏼐 􏼑 +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
cm 1 + Λθ2􏼐 􏼑

≤ I
α
a 1 + T

ρ2k
ρ2
0 + T

ρ3ξρ30( 􏼁Λρ + I
α
a0

+
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
I
α
a(T) 1 + T

ρ2k
ρ2
0 + T

ρ3ξρ30( 􏼁Λρ + I
α
a0(T)􏼂 􏼃

+ Γ(2 − β)T
β

I
α− β
a (T) 1 + T

ρ2k
ρ2
0 + T

ρ3ξρ30( 􏼁Λρ + I
α− β

a0(T)􏽨 􏽩

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Tbm 1 + Λθ1􏼐 􏼑 +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
cm 1 + Λθ2􏼐 􏼑

� I
α
a0 + I

α
a0(T) + Γ(2 − β)T

β
I
α− β

a0(T) +
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Tbm 1 + Λθ1􏼐 􏼑

+
σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
cm 1 + Λθ2􏼐 􏼑 + 1 + T

ρ2k
ρ2
0 + T

ρ3ξρ30( 􏼁 ΛρIαa +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
I
α
a(T) + Γ(2 − β)T

β
I
α− β
a (T)􏼢 􏼣.

(35)
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Choosing Λ sufficient large, then Φ :B⟶B. On the
other hand, the continuity of f implies that the operator Φ is
continuous. Also, since Φ :B⟶B, we have Φ(B) which is
uniformly bounded on B.

Let

M � max
(t,u,φu,ψu)∈[0,T]×B×B×B

|f(t, u,φu,ψu)|, (36)

and consequently, we obtain

(Φu) t2( 􏼁 − (Φu) t1( 􏼁
����

���� � 􏽚
t1

0

t2 − s( 􏼁
α− 1

− t1 − s( 􏼁
α− 1

Γ(α)
f(s, u(s), (φu)(s), (ψu)(s))ds

���������

+ 􏽚
t2

t1

t2 − s( 􏼁
α− 1

Γ(α)
f(s, u(s), (φu)(s), (ψu)(s))ds

+ Γ(2 − β)T
β− 1

t1 − t2( 􏼁 􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
f(s, u(s), (φu)(s), (ψu)(s))ds

−
σ2Γ(2 − β) t1 − t2( 􏼁

μ2
T
β
cm(1 +‖u‖)

��������

≤
M

Γ(α + 1)
2 t2 − t1( 􏼁

α
+ t

α
1 − t

α
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

M(T − s)α− 1Γ(2 − β)

Γ(α − β + 1)
t1 − t2( 􏼁

+
σ2Γ(2 − β)

μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
T
β
cm(1 +‖u‖) t1 − t2( 􏼁.

(37)

It follows that Φ is equicontinuous, so Φ(B) is relatively
compact on B. Hence, Φ(B) is relatively compact on B by
Arzelá–Ascoli theorem. ,us, by Schauder fixed-point
theorem, problem (3) has at least one solution.

Theorem 6. Assume that there exist positive constants pi,
qi(i� 1, 2, 3) such that |f(t, u,φu,ψu)|≤ ( p1/Tα􏼁|u| + q1,
|g(t, u)|≤ ( p2/T􏼁|u| + q2, and |h(t, u)|≤ ( p3/Tβ+1􏼁|u| + q3
for all t ∈ [0, T], u ∈C[0, T]. If

1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

1
Γ(α + 1)

+
Γ(2 − β)

Γ(α − β + 1)
􏼢 􏼣p1

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
p2 +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
p3 < 1,

(38)

then the boundary value problem (3) has at least one solution.

Proof. In view of the fixed point problem (19), we just need
to prove the existence of at least one solution u ∈ R sat-
isfying (19). Define a suitable ball BS ∈ C with radius S> 0
as

BS � u ∈ C: max
t∈[0,T]

|u(t)|< S􏼨 􏼩, (39)

where S will be fixed later. ,en, it is sufficient to show that
F: BS⟶ C satisfies

u≠ λFu, ∀u ∈ zBS, ∀λ∈[0, 1]. (40)

,en, by the Arzelá–Ascoli theorem, hλ(u) � u −

H(λ, u) � u − λFu is completely continuous. If (40) is true,
then the following Leray–Schauder degrees are well defined
and by the homotopy invariance of topological degree, it
follows that

deg hλ, BS, 0( 􏼁 � deg I − λF, BS, 0( 􏼁 � deg h1, BS, 0( 􏼁

� deg h0, BS, 0( 􏼁 � deg I, BS, 0( 􏼁 � 1≠ 0, 0 ∈ BS,

(41)

where I denotes the unit operator. By the nonzero property
of Leray–Schauder degree, we have h1(t) � u − Fu � 0 for
at least one u ∈BS. In order to prove (40), we assume that
u � λFu for some λ ∈ [0, 1] and for all t ∈ [0, T] so that
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|u(t)| � |λFu(t)|

≤ 􏽚
t

0

(t − s)α− 1

Γ(α)
|f(s, u(s), (φu)(s), (ψu)(s))|ds

+
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0

(T − s)α− 1

Γ(α)
|f(s, u(s), (φu)(s), (ψu)(s))|ds

+ Γ(2 − β)T
β

􏽚
T

0

(T − s)α− β− 1

Γ(α − β)
|f(s, u(s), (φu)(s), (ψu)(s))|ds

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

T

0
|g(s, u(s))|ds +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β
􏽚

T

0
|h(s, u(s))|ds

≤ 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+

(2 − β))Tα

Γ(α − β + 1)
􏼢 􏼣

p1

Tα |u| + q1􏼒 􏼓

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
T

p2

T
|u| + q2􏼒 􏼓 +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β
T

p3

Tβ+1 |u| + q3􏼒 􏼓

≤ 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

1
Γ(α + 1)

+
Γ(2 − β)

Γ(α − β + 1)
􏼢 􏼣p1 +

σ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
p2 +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)p3􏼨 􏼩|u|

+ 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣q1 +

σ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Tq2 +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
q3

� h1|u| + h2,

(42)

which by taking norm ‖u‖ � sup |u(t)|, t ∈ [0, T]{ } and
solving for ‖u‖, we have

‖u‖≤
h2

1 − h1
, (43)

where

h1 � 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

1
Γ(α + 1)

+
Γ(2 − β)

Γ(α − β + 1)
􏼢 􏼣p1 +

σ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
p2 +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)p3,

h2 � 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣q1 +

σ1
1 + μ1

Tq2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
q3.

(44)

Setting

S �
h2

1 − h1
+ 1, (45)

it follows that (40) holds. ,is completes the proof.

4. Examples

Example 1. Consider the following nonlinear fractional
integro-differential equation with nonseparated type inte-
gral boundary conditions of α � 3/2, β � 1/2, and T�1:
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CD
3/2
t u(t) �

1
(t + 10)2

|u(t)|

1 +|u(t)|
+ cos2t􏼢 􏼣 +

1
120

􏽚
t

0

e− t

(3 + t)2
u(s)ds +

1
140

􏽚
1

0

1
(4 + t)2

u(s)ds,

u(0) + u(1) � 􏽚
1

0

|u(s)|

50 +|u(s)|
ds,

CD
1/2
t u(0) + CD

1/2
t u(1) � 􏽚

1

0

1
t + 10

􏼒 􏼓
2 |u(s)|

1 +|u(s)|
ds.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Here, μ1 � μ2 � σ1 � σ2 �1 and

(φu)(t) � 􏽚
t

0

e− t

(3 + t)2
u(s)ds,

(ψu)(t) � 􏽚
1

0

1
(4 + t)2

u(s)ds,

g(s, u(s)) �
|u(s)|

50 +|u(s)|
,

h(s, u(s)) �
1

t + 10
􏼒 􏼓

2 |u(s)|

1 +|u(s)|
.

(47)

For u, v ∈ R and t ∈ [0, 1], we have

|f(t, u,φu,ψu) − f(t, v,φv,ψv)|

≤
1

t + 10
􏼒 􏼓

2
|u − v| +

1
120

|φu − φv|

+
1
140

|ψu − ψv|

≤
1
100

[|u − v| +|φu − φv| +|ψu − ψv|],

|g(s, u) − g(s, v)|≤
1
50

|u − v|,

|h(s, u) − h(s, v)|≤
1
100

|u − v|.

(48)

As C1 � C2 � C3 � 1/100 and C4 � 1/50, C5 �

1/100, K � 1/9, we obtain

r1 � 1 +
μ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣

· C1 + C2 + C3( 􏼁TK􏼂 􏼃

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
C4T +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
C5

�
2
��
π

√ +

��
π

√

2
􏼠 􏼡

1
100

+
1
450

􏼒 􏼓 +
1
100

+

��
π

√

200

≈ 0.043< 1.

(49)

,us, all the assumptions of ,eorem 3 hold. Conse-
quently, the conclusion of ,eorem 3 implies that problem
(46) has a unique solution.

Example 2. Consider the following integro-differential
fractional boundary value problem

CD
3/2
t u(t) �

e− t

10
|u(t)|

1 +|u(t)|
+ 􏽚

t

0

e− (s− t)

200
|u(t)|

1 +|u(t)|
ds + 􏽚

1

0

e− t(s + 1)

32
|u(t)|

1 +|u(t)|
ds,

u(0) + u(1) � 􏽚
1

0

|u(s)|

50 +|u(s)|
ds,

CD
1/2
t u(0) + CD

1/2
t u(1) � 􏽚

1

0

1
t + 10

􏼒 􏼓
2 |u(s)|

1 +|u(s)|
ds.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)
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Here, α � 3/2, β � 1/2, T�1, μ1 � μ2 � σ1 � σ2 �1, T�1,
and

K � sup
t∈[0,1]

κ0, ξ0􏼈 􏼉

� sup
t∈[0,1]

􏽚
t

0

e− (s− t)

200
ds, 􏽚

t

0

e− t(s + 1)

32
ds􏼨 􏼩 � 0.08.

(51)

Since

|f(t, u,φu,ψu)|≤
3e− t

10
,

|g(t, u)|≤ 1,

|h(t, u)|≤
1
100

.

(52)

Clearly, C1 � 1/10, C2 � 1/200, C3 � 1/32, C4 � 1/50,
and C5 � 1/100. Furthermore,

μ1
1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

Tα

Γ(α + 1)
+
Γ(2 − β)Tα

Γ(α − β + 1)
􏼢 􏼣 C1 + C2 + C3( 􏼁TK􏼂 􏼃

+
σ1

1 + μ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
C4T +

σ2
μ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Γ(2 − β)T

β+1
C5

�
2

3
��
π

√ +

��
π

√

2
􏼠 􏼡

1
10

+
1
200

+
1
32

􏼒 􏼓 × 0.08􏼔 􏼕 +
1
100

+

��
π

√

200

≈ 0.15< 1.

(53)

,us, by ,eorem 5, the integro-differential boundary
value problem (50) has at least one solution on [0, 1].
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