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Multicriteria group decision-making (MCGDM) problems have been a research hotspot in recent years, and prospect theory is
introduced to cope with the risk and imprecision in the process of decision-making. To guarantee the effectiveness of information
aggregation and extend the feasibility of prospect theory, this paper proposes a novel decision-making approach based on rough
numbers and prospect theory to solve risky and uncertain MCGDM problems. Firstly by combining rough numbers and the best-
worst method (BWM), we construct a linear programming model to calculate rough criteria weights, which are defined by lower
limitations and upper limitations. +en for the imprecision of value function and weighting function in prospect theory, we
propose a novel method with the aid of combining rough numbers and prospect theory to handle the risk in decision-making
problems. Finally, a numerical example involving investment is introduced to illustrate the application and validity of the
proposed method.

1. Introduction

A multiple-criteria decision-making (MCDM) problem, as
one of the most significant problems in the fields of man-
agement, economics, and engineering, is the process of
selecting the optimal option in all possible alternatives
according to diverse criteria. Since the complexity and variety
of decision-making environments determine that opinions of
different decision-makers should be taken into account,
multiple-criteria group decision-making (MCGDM) becomes
research hotspot and is widely used in practical problems [1],
such as supplier selection [2, 3], emergency management
[4, 5], and product development [6, 7]. Methods for solving
MCDM problems, e.g., AHP [8], TOPSIS [9], VIKOR [10],
and PROMETHEE [11], have been improved and applied to
group decision-making problems.

+e increase of imprecision and complexity in real-
world problems leads to the fact that decision-makers might
be unable to express personal preferences with numerical

values, so some theories dealing with imprecision are in-
troduced into MCGDM problems, especially the theory of
fuzzy sets developed by Zadeh [12]. Classical methods have
been extended to solve uncertain MCGDM problems based
on fuzzy sets as well as their generations, such as fuzzy
TOPSIS [13], triangular fuzzy AHP [14], intuitionistic fuzzy
VIKOR [15], fuzzy prospect theory [16], intuitionistic fuzzy
ELECTRE [17], and Pythagorean fuzzy PROMETHEE [18].
+ere are two defects which make it difficult to overcome
these fuzzy methods: one is that the process of group in-
formation aggregation such as weighted average is mecha-
nized, leading to the neglect of interaction among decision-
makers, and another one is that the inherent subjectivity of
membership function can easily result in the decision-
making bias. Aiming at these defects, the rough-number
method is proposed [19], which is based on the basic notion
of approximates in rough set theory, an effective method to
handle imprecision information developed by Pawlak [20].
A rough number can characterize imprecise information by
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means of rough boundary intervals bounded by the upper
and lower limits, which can be directly computed from the
raw data without any subjective adjustments, assumptions,
or membership functions. +erefore, many researches
combined traditional decision-making methods with rough
numbers, resulting in extended models like rough AHP [7],
rough VIKOR [21], rough DEMATEL [22], and rough
MABAC [23].

As a classical MCDM method, the analytic hierarchy
process (AHP) has been used widely for calculating the
weights of criteria [7, 8, 14]. +e AHP requires to compare
the relative importance of each two criteria and obtain a
comparisonmatrix, but due to the complexity of comparison
procedures of the AHP, as well as the limitation of human
cognition, the results obtained by the AHP always lack
consistency in the pairwise comparison matrix; therefore, to
improve the traditional AHP, Rezaei introduced a novel
pairwise comparison idea and proposed the best-worst
method (BWM) [24]. In the process of the BWM, decision-
makers only need to compare each criterion with the best
criterion and the worst criterion, rather than the compar-
isons between all the criteria.+erefore, the BWM yields two
comparison vectors, and then the weights of criteria can be
obtained by solving a mathematical programming model
[24]. +e BWM has been used widely in many areas, such as
water scarcity management [25], supplier evaluation and
selection [26, 27], quality assessment of scientific output
[28], and sustainable architecture [29]. Some researchers
have combined rough numbers with the BWM to handle the
MCDM problems: Željko et al. proposed a rough BWM-
SAW model to select wagons for the internal transport [30],
a rough BWM-WASPAS model to determine the location
selection for roundabout construction [31], and then a rough
BWM-SERVQUAL model for quality assessment of scien-
tific conferences [32]; Pamučar et al. integrated rough
numbers and fuzzy sets, proposed interval-valued fuzzy-
rough numbers (IVFRNs) to aggregate fuzzy evaluating
values of the decision group, and presented an IVFRN-based
BWM to obtain the weights of criteria [33]; and then
Pamučar et al. proposed a BWM-WASPAS-MABAC model
based on interval rough numbers to evaluate the third-party
logistics provider [34]. All the models based on the rough
BWM are based on the original BWM [24], which is non-
linear and may not obtain the unique solution of a math-
ematical programming model, resulting in a decision failure.
+en, Rezaei modified the model and proposed a linear
BWM, which is based on the same philosophy as the original
model but yields a unique solution [35]. +erefore, in this
paper, we intend to construct a linear rough BWM to obtain
the weights of criteria.

+e study for risk attitudes of decision-makers is another
crucial aspect of decision-making problems, and many re-
searchers introduced prospect theory to MCDM models.
Prospect theory developed by Kahneman and Tversky [36] is
a descriptive model of individual decision-making under
condition of risk. Later, Tversky and Kahneman [37] de-
veloped the cumulative prospect theory, which captures
psychological aspects of decision-making under risk. In the
prospect theory, the outcomes are expressed by means of

gains and losses from a reference alternative. +e value
function in prospect theory assumes an S-shape concave
above the reference alternative, which reflects the aversion of
risk in face of gains, and the convex part below the reference
alternative reflects the propensity to risk in case of losses.
Prospect theory has been an arisen behavioral model of
decision-making under risk, and in order for the application
in an uncertain environment, some research works have
begun to explore the combination of prospect theory and
imprecise information, such as prospect theory under the
fuzzy environment [16], linguistic environment [38], in-
terval type 2 fuzzy environment [39], and rough environ-
ment [40]. Unfortunately, the process is still at the primary
stage: the imprecise information involved only includes
fuzzy numbers and interval numbers, and although Fang
et al. referred to the rough environment in [40], they did not
explore the combination of rough numbers and prospect
theory; proposed methods only concentrate on the impre-
cision of value function in prospect theory, while they ignore
the imprecision of weighting function, and almost all the
combined methods pay no attention to group decision-
making problems. So it is essential to extend prospect theory
to imprecise MCGDM problems.

In this paper, we introduce rough numbers to MCGDM
models and combine the linear BWM and prospect theory to
handle the risk and uncertain MCGDM problems. +e rest
of this paper is arranged as follows: In Section 2, we shortly
describe some knowledge on methods and theories involved
in this paper. In Section 3, we propose the rough-number-
based MCGDM method based on the BWM and prospect
theory, including processes of criteria weighting and alter-
native ranking. In Section 4, we present a practical example
to illustrate the application and verify the feasibility and
validity of this new method. In Section 5, some conclusions
and directions for the future work are proposed.

2. Preliminaries

+is section is composed of three subsections to review some
preliminaries about the rough number, best-worst method,
and prospect theory.

2.1. Rough Number. Inspired by rough set theory, rough
number is first proposed by Zhai et al. [41] in order to handle
subjective preferences of customers in quality function
deployment. Similar to the notion of approximates in rough
sets, a rough number is constructed by lower and upper
limits, which determine a rough boundary interval to
characterize imprecise information. While the rough
number merely depends on original data without any prior
knowledge, it can capture the experts’ real perception ef-
fectively and aggregate every individual’s preference into an
objective and consistent group judgement. In this section,
we review some basic definitions of rough number.

Definition 1 (see [41]). SupposeU is the universe containing all
the objects and there are n classes expressed as
R � C1, C2, . . . , Cn􏼈 􏼉. If they are ordered asC1 <C2 < · · · <Cn,
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then for ∀Y ∈ U, ∀Ci ∈ R, the lower approximation (Apr (Ci)),
upper approximation (Apr(Ci)), and boundary region
(Bnd(Ci)) of Ci can be defined as

Apr Ci( 􏼁 �∪ Y ∈
U

R(Y) ≤ Ci

􏼨 􏼩, (1)

Apr Ci( 􏼁 �∪ Y ∈
U

R(Y)≥Ci

􏼨 􏼩, (2)

Bnd Ci( 􏼁 �∪ Y ∈
U

R(Y)≠Ci

􏼨 􏼩

� Y ∈
U

R(Y)>Ci

􏼨 􏼩∪ Y ∈
U

R(Y)<Ci

􏼨 􏼩.

(3)

Definition 2 (see [41]). Ci can be expressed by a rough
number RN(Ci), which is determined by its lower limit
RN (Ci) and upper limit RN(Ci), which are expressed as

RN Ci( 􏼁 �
1

ML
􏽘 R(Y) Y ∈ Apr Ci( 􏼁

􏼌􏼌􏼌􏼌􏼌 , (4)

RN Ci( 􏼁 �
1

MU
􏽘 R(Y) Y ∈ Apr Ci( 􏼁

􏼌􏼌􏼌􏼌 , (5)

RBnd Ci( 􏼁 � RN Ci( 􏼁 − RN Ci( 􏼁, (6)

RN Ci( 􏼁 � Ci􏼂 􏼃 � RN Ci( 􏼁,RN Ci( 􏼁􏼂 􏼃, (7)

where ML and MU are the number of objects contained in
Apr (Ci) and Apr(Ci), respectively.

For a convenient expression, RN (Ci), RN(Ci), and
RN(Ci) can be denoted as Ci , Ci, and [Ci] for short,
respectively.

According to the definition, the rough number is similar
to the interval number in form, so with the aid of arithmetic
operations of interval analysis [42], Zhai et al. proposed the
operations of rough numbers [43].

Definition 3 (see [43]). Suppose [a] � [a, a] and [b] � [b, b]

are two rough numbers and α is a real number, then the
arithmetic operations of rough numbers can be expressed as

[a] × α � α ×[a] �

α × a, α × a􏼂 􏼃, for α≥ 0,

α × a, α × a􏼂 􏼃, for α< 0,

⎧⎪⎨

⎪⎩
(8)

[a] +[b] � a + b, a + b􏽨 􏽩, (9)

[a] − [b] � a − b, a − b􏽨 􏽩, (10)

[a] ×[b] � min a b, a b, a b, ab􏼐 􏼑,􏽨

max a b, a b, a b, ab􏼐 􏼑􏽩,
(11)

[a]

[b]
� a, a􏼂 􏼃 ×

1
b
,
1
b

􏼢 􏼣, 0 ∉ b, b􏽨 􏽩. (12)

Specifically, if [a]> 0 and [b]> 0, which means a, a, b,
and b are all greater than 0, then the multiplication operation
(11) can be simplified as [a] × [b] � [a b, ab] and the divi-
sion operation (12) can be simplified as ([a]/[b]) �

[(a /b), (a/ b)].
To compare the values of different rough numbers,

Zhai et al. proposed the ranking rules [41]. For any
two rough numbers RN1 � [RN1 ,RN1] and RN2 �

[RN2 ,RN2], there are five possible cases, which are shown
in Figure 1. Denote M1 and M2 as the medians of RN1 and
RN2, and the ranking rules can be easily explained as
follows [41]:

(a) When M1 � M2,

(i) If RN1 � RN2 and RN1 � RN2, then RN1 � RN2
(see Figure 1(a))

(ii) If RN1 < RN2 and RN1 >RN2, then
RN1 >RN2(see Figure 1(b))

(b) When M1 ≠M2,

(i) If M1 <M2, then RN1 <RN2 (see Figure 1(c))
(ii) If M1 >M2, then RN1 >RN2(see Figure 1(d)

and (e))

2.2. Best-Worst Method. Pairwise comparison method, like
the AHP, has been used widely in MCDM problems [44]. It
shows the relative preferences between each two criteria,
constructs a preference matrix, and provides a way to find
the weights of criteria. As the complexity of comparison
procedures and the limitation of human cognition, the
pairwise comparison method faces an inevitable defect in
practice, which is the lack of consistency of the pairwise
comparison matrixes. Rezaei proposed a vector-based
method called the best-worst method (BWM), deriving the
weights of criteria based on pairwise comparisons in a
different way.+e steps of the BWM are described as follows
[24]:

Step 1: the best (e.g., most important) and worst (e.g.,
least important) criteria are chosen among the cri-
teria set c1, c2, . . . , cn􏼈 􏼉, denoted as cB and cW,
respectively.
Step 2: the preference of the best criterion over all the
other criteria is determined using a number between
1 and 9, and the best-to-others vector can be
expressed as AB � (aB1, aB2, ..., aBn), where aBi indi-
cates the preference of the best criterion cB over the
criterion cj.
Step 3: the preference of all the other criteria over the
worst criterion is determined using a number between
1 and 9, and the others-to-worst vector can be
expressed as AW � (a1W, a2W, . . . , anW)T, where aiW

indicates the preference of the criterion cj over the best
criterion cB.
Step 4: a nonlinear min-max mathematical program-
ming problem is constructed as model (13), which can
be transferred to the model (14), and the optimal
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weights (w∗1 , w∗2 , . . . , w ∗n ) and consistency index ξ are
found by solving the model:

min -max
j

wB

wj

− aBj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

wj

wW

− ajW

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩,

s.t. 􏽐
j

wj � 1,

wj ≥ 0, for all j,

(13)

min ξ,

s.t.
wB

wj

− aBj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ξ, for all j,

wj

wW

− ajW

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ξ, for all j,

􏽐
j

wj � 1,

wj ≥ 0, for all j.

(14)

Compared with standard pairwise comparison methods
such as the AHP, the BWM uses only integer numbers
in describing preferences, reduces the times of compari-
sons, and most importantly provides more consistent and
reliable results [24]. Due to the inconsistency of evalua-
tion vectors and the nonlinearity of programming model
(13), there may be multiple optimal solutions in some
cases [35]. In order to obtain a unique solution, Rezaei
improved the mathematical programming by trans-
forming the objective function to the set {|wB − aBjwj|,

|wj − ajWwW|}. +e programming model can be formu-
lated as follows [35]:

min -max
j

wB − aBjwj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, wj − ajWwW

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

s.t. 􏽐
j

wj � 1,

wj ≥ 0, for all j.

(15)

Model (15) is equivalent to the following programming
problem:

min ξL

s.t. wB − aBjwj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ξ
L
, for all j,

wj − ajWwW

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ξ
L
, for all j,

􏽐
j

wj � 1,

wj ≥ 0, for all j.

(16)

Apparently, programming model (16) is a linear problem,
so we can obtain a unique solution (w∗1 , w∗2 , . . . , w∗n ) and the
consistency of comparisons ξL by solving problem (16).

2.3. Prospect /eory. Prospect theory, which was initially
established by Kahneman and Tversky in 1979, can describe
the actual decision behavior of decision-makers under risk
and uncertainty [36]. Two core concepts of prospect theory
are the value function and decision weighting function.
Value function, reflecting the relationship between the de-
cision-maker’s subjective utility and the expected results, can
be expressed as

v(x) �
Δxα, Δx≥ 0,

− λ(− Δx)β, Δx ≤ 0,
􏼨 (17)

where Δx is the gain or loss of the outcome relative to the
reference point: Δx> 0 for a gain, while Δx< 0 for a loss; α
and β are adjustable coefficients determining the concavity
and convexity of the value function, respectively, satisfying
0< α and β< 1; and λ is a parameter describing loss aversion
and λ> 1. Regarding the adjustable coefficients α and β, the
values are larger and the decision-maker is more prone to
risk: when α � β � 1, the decision-maker shows no change of
risk preference for the gain and loss, the value function
degenerates to utility function, and the utility v(x) is linear
to the variable Δx, which is depicted as the solid line in
Figure 2; in contrast, when α< 1 and β< 1, the decision-
maker is sensitive to the gain and loss and the utility v(x) is

RN1

RN1 RN2

RN2

RN1

RN2

RN1 RN2

RN1

RN2

RN1

RN2

RN1

RN2
RN1

RN2

RN1 RN2 RN1
RN2

M1 M1 M1
M1 M1M2 M2

M2

M2
M2

RN1 = RN2 RN1 < RN2 RN1 < RN2 RN1 > RN2 RN1 > RN2 
(a) (b) (c) (d) (e)

Figure 1: Ranking rules for rough numbers.
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nonlinear to the variable Δx, which can be illustrated as the
dashed line in Figure 2.

Tversky and Kahneman considered that decision weights
are subjective judgements about the likelihood of occur-
rence, and they described the form of weighting function as
[37]

π(p) �

pc

pc +(1 − p)c
( 􏼁

1/c, x≥ 0,

pδ

pδ +(1 − p)δ􏼐 􏼑
1/δ, x ≤ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where c and δ are the risk parameters for gains and losses,
respectively, satisfying 0< c and δ < 1.

Many empirical researches have explored the value of
parameters in equations (17) and (18). According to Tversky
and Kahneman [37], results are consistent with empirical
data when α � β � 0.88, 2.0 ≤ λ ≤ 2.5, c � 0.61, and
δ � 0.72. Abdellaoui [45] suggested that parameters in
equation (17) should be α � 0.89, β � 0.92, and λ � 2.25, and
Gonzalez and Wu [46] considered that c � δ � 0.74 in
equation (18).

Alternatives can be ranked by the prospect value
resulting from the value function and weighting function,
whose form is defined as

V � 􏽘 v(Δx)π(p). (19)

3. The Proposed Decision Model

+is section proposes a new method for MCDGM problems.
Firstly, we describe the MCDGM problem under risk and
imprecision and then develop rough-number-based
methods for criteria weighting and alternative ranking,
respectively.

3.1. Framework of the Proposed Method. Suppose in an
MCGDM problem that A � A1, A2, . . . , Am􏼈 􏼉 is the set of all
the alternatives and C � c1, c2, . . . , cn􏼈 􏼉 is the set of criteria;
w � w1, w2, . . . , wn􏼈 􏼉 represents the weights of criteria,

where wj is the weight of cj; the decision group is composed
by h decision-makers, expressed as E � e1, e2, . . . , eh􏼈 􏼉; there
are l states of events in the problem, which can be repre-
sented as S � S1, S2, . . . , Sl􏼈 􏼉, with an occurrence probability
pk

t of the state St estimated by the decision-maker ek; each
decision-maker has an expectation for every criterion as the
reference point in prospect theory, and the expectation
vector of the decision-maker ek under the state St can be
denoted as Rkt � rkt

1 , rkt
2 , . . . , rkt

n􏼈 􏼉. So the score table made
by ek can be expressed as in Table 1.

+e framework of the proposed method is depicted in
Figure 3.

3.2. RoughBWMforCriteriaWeighting. As an advanced and
efficient pairwise comparison method, the BWM has a
special superiority to handle MCDM problems. For the
subjectivity and imprecision in the criteria weighting pro-
cedure, this section proposes a new criteria weighting
method by combining the rough-number method and
BWM. +e procedure of the rough BWM is described as
follows:

Step 1: the best criterion cB and the worst criterion cW

are determined by the decision group. Based on
common rational cognition of individuals in the de-
cision group, each could reach a consensus in choosing
the best and worst criteria. If not, an extra criterion c0
can be introduced as the best (or worst) criterion,
which makes no difference in the results.
Step 2: comparison vectors of each decision-maker are
determined. ek can get the best-to-others vector
expressed as Ak

B � (ak
B1, ak

B2, . . . , ak
Bn) and the others-

to-worst vector as Ak
W � (ak

1W, ak
2W, . . . , ak

nW) using a
number between 1 and 9.
Step 3: the integrated comparison vectors are con-
structed. +e integrated best-to-others vector and in-
tegrated others-to-worst vector can be expressed as

AB � aB1, aB2, . . . , aBn( 􏼁,

AW � a1W, a2W, . . . , anW( 􏼁,
(20)

where aBj � {a1
Bj, a2

Bj, . . . , as
Bj} and ajW � {a1

jW,

a2
jW, . . . , as

jW}, in which aBj denotes the collection of
preferences of cB over cj made by all the decision-
makers and ajW denotes the collection of preferences of
cj over cW made by all the decision-makers.
Step 4: rough comparison vectors are constructed based
on the rough-number method. According to equations
(1)–(7), the preferences of each decision-maker ek can
be transformed to a rough number:

RN a
k
Bj􏼐 􏼑 � a

k
Bj , ak

Bj􏼔 􏼕,

RN a
k
jW􏼐 􏼑 � a

k
jW , ak

jW􏼔 􏼕,

(21)

and then the rough sequences are formed as

α = 1

α < 1

β = 1

β < 1

v (x)

Δx

Figure 2: Value function of prospect theory with different α and β.
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RN 􏽥aBj􏼐 􏼑 � a
1
Bj , a1

Bj􏼔 􏼕, a
2
Bj , a2

Bj􏼔 􏼕, . . . , a
s
Bj , as

Bj􏼔 􏼕􏼚 􏼛,

RN 􏽥ajW􏼐 􏼑 � a
1
jW , a1

jW􏼔 􏼕, a
2
jW , a2

jW􏼔 􏼕, . . . , a
s
jW , as

jW􏼔 􏼕􏼚 􏼛.

(22)

So the integrated comparison vectors can be expressed
as

RAB � aB1 , aB1􏽨 􏽩, aB2 , aB2􏽨 􏽩, . . . , aBn , aBn􏽨 􏽩􏼐 􏼑,

RAW � a1W , a1W􏽨 􏽩, a2W , a2W􏽨 􏽩, . . . , anW , anW􏽨 􏽩􏼐 􏼑,
(23)

where [aBj , aBj] � (1/h) 􏽐
s
k�1[ak

Bj , ak
Bj] and

[ajW , ajW] � (1/h) 􏽐
s
k�1[ak

jW , ak
jW].

Step 5: the rough weight of each criterion is calculated.
Similar to the analysis in the BWM, the optimal rough
weight for criteria is the one where, for each pair of
[wB]/[wj] and [wj]/[wW], there are [wB]/[wj] � [aBj]

and [wj]/[wW] � [ajW], which can be rewritten as
[wB /wj, wB/wj ] � [aBj , aBj] and [wj /wW, wj/wW ] �

[ajW , ajW], respectively. To satisfy these conditions for
all j, we should find a solution where the maximum
absolute differences |(wB /wj) − aBj |, |(wB/wj ) − aBj|,
|(wj /wW) − ajW |, and |(wj/wW ) − ajW| for all j are
minimized. To obtain a unique solution of the model,
Rezaei improved the original BWM [35], where the
conditions can be transferred to | wB − aBj wj|,

|wB − aBj wj |, | wj − ajW wW|, and |wj − ajW wW|,

Table 1: Score table of the decision-maker ek.

Criteria c1 c2 . . . cn

States S1 S2 · · · Sl S1 S2 . . . Sl . . . S1 S2 . . . Sl

Alternatives

A1 xk1
11 xk2

11 · · · xkl
11 xk1

12 xk2
12 . . . xkl

12 . . . xk1
1n xk2

1n . . . xkl
1n

A2 xk1
21 xk2

21 · · · xkl
21 xk1

22 xk2
22 . . . xkl

22 . . . xk1
2n xk2

2n . . . xkl
2n

⋮ ⋮ ⋮ ⋱ ⋮
Am xk1

m1 xk2
m1 · · · xkl

m1 xk1
m1 xk2

m2 . . . xkl
m2 . . . xk1

mn xk2
mn . . . xkl

mn

Expectation rk1
1 rk2

1 · · · rkl
1 rk1

2 rk2
2 . . . rkl

2 . . . rk1
n rk2

n . . . rkl
n

Construct evaluation system

Experts’ opinion

Construct the best-worst
comparison vectors

Integrate group best-worst
comparison vectors

Construct rough comparison
vectors

Calculate rough-number
weights

Construct a group
evaluation matrix

Calculate rough-number
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Figure 3: Framework of the proposed method.
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respectively. So we can construct the programming
problem as

min -max
j

wB − aBj wj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, wB − aBj wj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, wj − ajW wW

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, wj − ajW wW

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

s.t.
1
2

􏽘
j

wj + wj􏼒 􏼓 � 1,

wj > wj ≥ 0, for all j,

(24)

where (1/2)􏽐j(wj+ wj) � 1 is the normalization condition
of rough-number vectors. Problem (24) can be transferred to
the following problem:

min ζ,

s.t. wB − aBj wj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 ≤ ζ, for all j,

wB − aBj wj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 ≤ ζ, for all j,

wj − ajW wW

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 ≤ ζ, for all j,

wj − ajW wW

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ, for all j,

1
2

􏽘
j

wj +wj􏼒 􏼓 � 1,

wj > wj > 0, for all j.

(25)

Solving problem (25), the optimal rough weight
([w1 , w1], [w2 , w2], . . . , [wn , wn]) is obtained.

In pairwise comparison methods, the consistency ratio
plays a significant role to illustrate the consistency of
evaluating values of criteria. Rezaei proposed the definition
of consistency of criteria made by one decision-maker and
built the consistency index (CI), as shown in Table 2, for the
evaluating values between 1 and 9 [24]. To demonstrate the
validity of integrated group information in the rough BWM,
we define the consistency of integrated comparison as
follows.

Definition 4. +e integrated comparison is fully consistent
if [aBj] × [ajW] � [aBW] for all j, where [aBj], [ajW], and
[aBW] are, respectively, the integrated preference of the
best criterion over the criterion j, the integrated prefer-
ence of the criterion j over the worst criterion, and the
integrated preference of the best criterion over the worst
criterion.

However, there is usually a situation that some
pairs of criteria are not completely consistent in practical

decision-making problems. +erefore to indicate how
consistent an integrated comparison is, we discuss
the consistency ratio of an integrated comparison as
follows.

According to the discussion above, the maximum
comparison value of aBW identified by each decision-maker
is 9, so the highest integrated rough value is [aBW] � [9, 9].
Consistency decreases when there exists a difference be-
tween [aBj] × [ajW] and [aBW], which means [aBj] ×

[ajW]≠ [aBW], and it is clear that the biggest difference
occurs when [aBj] and [ajW] have the maximum value
which is equal to [aBW], leading to the value of ξ. +e
consistent condition can be rewritten as ([wB]/[wj]) ×

([wj]/[wW]) � ([wB]/[wW]), and as the biggest differ-
ence occurs when assigning the maximum value to
[aBj] and [ajW], we should subtract the value ξ from [aBj]

and [ajW] and add it to [aBW]. So we can obtain the
equation as

aBj􏽨 􏽩 − ξ􏼐 􏼑 × ajW􏽨 􏽩 − ξ􏼐 􏼑 � aBW􏼂 􏼃 + ξ( 􏼁. (26)

As for the minimum consistency [aBj] � [ajW] � [aBW],
we obtain

aBW􏼂 􏼃 − ξ( 􏼁 × aBW􏼂 􏼃 − ξ( 􏼁 � aBW􏼂 􏼃 + ξ( 􏼁

⟹ ξ2 − 1 + 2 aBW􏼂 􏼃( 􏼁ξ + aBW􏼂 􏼃
2

− aBW􏼂 􏼃􏼐 􏼑 � 0. (27)

[aBW] is the integrated preference of the best crite-
rion over the worst criterion, and in this paper, it is a
rough number, which means [aBW] � [aBW , aBW].
According to aBW ≤ aBW, we can conclude that the in-
tegrated preference of the best criterion over the worst
criterion cannot be greater than aBW. It is easy to find that
the value of ξ is increasing in a ∈ [1, 9] for the function
ξ2 − (1 + 2a)ξ + (a2 − a) � 0, so we choose the upper limit
aBW to calculate the value of CI, which ensures the
consistency ratio (CR) satisfying CR ∈ [0, 1]. So equation
(27) can be transformed as

ξ2 − 1 + 2aBW( 􏼁ξ + aBW
2

− aBW􏼐 􏼑 � 0. (28)

Solving equation (28) for different values of aBW, we
can obtain the maximum possible values of ξ, which
compose the consistency index of the rough BWM. As [aBW]

is obtained by aggregating the evaluating information of
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decision-makers, aBW is varied according to different
values, so we cannot predefine the values of ξ. If there is an
agreement among all the decision-makers about their
preference for the best criterion over the worst, [aBW] is a
crisp number (e.g., aBW � aBW) and belongs to 1, 2, . . . , 9{ }

and then the values of ξ can be determined from the data
in Table 2. Based on the value of ξ∗ obtained by model (25)
and values of CI, we can calculate the consistency ratio
(CR) as

CR �
ξ∗

CI
. (29)

3.3. Rough Prospect /eory for Alternative Evaluation. It is
important to consider decision-makers’ expectations for
alternatives in the evaluation process. In prospect theory,
expectations of decision-makers can be seen as refer-
ences, relative to which gains and losses are obtained.+is
section combines the rough number and prospect theory
to handle criteria values, criteria expectations, and
probabilities of states and proposes a new method for
alternative ranking and selection. +e procedure is de-
scribed as follows.

3.3.1. Step 1: Construction of the Group Rough Evaluation
Matrix and Expectation Vector. +e evaluation matrix Dt

k

and expectation vector Rt
k from the decision-maker ek under

the state St can be expressed as

D
t
k �

xkt
11 xkt

12 · · · xkt
1n

xkt
21 xkt

22 · · · xkt
2n

⋮ ⋮ ⋱ ⋮

xkt
m1 xkt

m2 · · · xkt
mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

R
t
k � rkt

1 rkt
2 . . . rkt

n􏼐 􏼑. (31)

Evaluation matrixes and expectation vectors are aggre-
gated, and equations (1)–(7) are used to obtain the group
rough evaluation matrix and expectation vector under the
state St as

Dt �

xt
11 , xt

11􏼔 􏼕 xt
12 , xt

12􏼔 􏼕 · · · xt
1n , xt

1n􏼔 􏼕

xt
21 , xt

21􏼔 􏼕 xt
22 , xt

22􏼔 􏼕 · · · xt
2n , xt

2n􏼔 􏼕

⋮ ⋮ ⋱ ⋮

xt
m1 , xt

m1􏼔 􏼕 xt
m2 , xt

m2􏼔 􏼕 · · · xt
mn , xt

mn􏼔 􏼕

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

Rt � rt
1 , rt

1􏼔 􏼕 rt
2 , rt

2􏼔 􏼕 . . . rt
n , rt

n􏼔 􏼕􏼒 􏼓. (33)

3.3.2. Step 2: Calculation of Group Gain and Loss Matrixes.
Group evaluation values and expectations are both rough
numbers, which are in the form of interval numbers, so we
can calculate gains and losses by means of the relationship
between interval numbers shown in Table 3. +e group gain
matrix Gt and group loss matrix Lt under the state St can be
expressed as

Gt �

Gt
11 Gt

12 · · · Gt
1n

Gt
21 Gt

22 · · · Gt
2n

⋮ ⋮ ⋱ ⋮

Gt
m1 Gt

m2 · · · Gt
mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Lt �

Lt
11 Lt

12 · · · Lt
1n

Lt
21 Lt

22 · · · Lt
2n

⋮ ⋮ ⋱ ⋮

Lt
m1 Lt

m2 · · · Lt
mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(34)

3.3.3. Step 3: Calculation of Group Rough Decision Weights.
+e probability vector of states given by the decision-maker ek

can be expressed as (pk
1, pk

2, . . . , pk
l ), where pk

t > 0 and 􏽐tp
k
t �

1. According to the rough-number method, all the probability
vectors from the decision group can be transformed to a rough
probability vector ([p1 , p1], [p2 , p2], . . . , [pl , pl]). Referring
to the definition of consistency of interval probability initiated
by Yager and Kreinovich [47], the following theorem proves
that rough probability satisfies the property of consistency.

Theorem 1. /e rough probability vector ([p1 , p1],

[p2 , p2], . . . , [pl , pl]) is consistent; in other words, 􏽐tpt ≤ 1
and 􏽐tpt ≥ 1.

Proof. Denote (p1
t , p2

t , . . . , ph
t ) as the probability vector of the

state St given by h decision-makers, and it can be transformed
to a rough number [pt , pt]. For an easy and convenient ex-
pression, suppose p1

t ≤ p2
t ≤ · · · ≤ ph

t . Let
(1/h) 􏽐

h
k�1 pk

t � mt, and according to equations (4) and (5),
p1

t � ph
t � mt. So pk

t ≤ ph
t and pk

t ≥p1
t for ∀pk

t , which lead
to pt � (1/h) 􏽐

h
k�1 pk

t ≤ mt and pt � (1/h) 􏽐
h
k�1 pk

t ≥mt.
+erefore, we can get

􏽘

l

t�1
pt � 􏽘

l

t�1

1
h

􏽘

h

k�1
p

k
t

⎛⎝ ⎞⎠ ≤
1
h

􏽘

h

k�1
􏽘

l

t�1
p

k
t � 1,

􏽘

l

t�1
pt � 􏽘

l

t�1

1
h

􏽘

h

k�1
pk

t
⎛⎝ ⎞⎠≥

1
h

􏽘

h

k�1
􏽘

l

t�1
p

k
t � 1.

(35)

+e theorem is proven.
+e group rough decision weights of gain

[π+
t ] � [π+

t , π+
t ] can be expressed as

Table 2: Consistency index (CI) table.

aBW 1 2 3 4 5 6 7 8 9

CI 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23
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π+
t �

pt􏼐 􏼑
c

pt􏼐 􏼑
c

+ 1 − pt􏼐 􏼑
c

􏽨 􏽩
1/c,

π+
t �

pt( 􏼁
c

pt( 􏼁
c

+ 1 − pt( 􏼁
c

􏼂 􏼃
1/c.

(36)

And the group rough decision weights of loss [π−
t ] �

[π−
t , π−

t ] can be expressed as

π−
t �

pt􏼐 􏼑
δ

pt􏼐 􏼑
δ

+ 1 − pt􏼐 􏼑
δ

􏼔 􏼕
1/δ,

π−
t �

pt( 􏼁
δ

pt( 􏼁
δ

+ 1 − pt( 􏼁
δ

􏽨 􏽩
1/δ.

(37)

□

3.3.4. Step 4: Calculation of the Group Prospect Matrix.
According to equation (34), the value matrixes for gain and
loss under the state St are expressed as

V
+
t � G

t
ij􏼐 􏼑

α
􏼐 􏼑

m×n
,

V
−
t � − λ − L

t
ij􏼐 􏼑

β
􏼒 􏼓

m×n
,

(38)

where α, β, and λ are parameters discussed in classical
prospect theory.

Denote the prospect matrix by V � ([Vij])m×n, where Vij

is the prospect value of the alternative Ai at the criterion cj.
+e calculation formula of Vij is expressed as

Vij � 􏽘
l

t�1
V

t+
ij π+

t􏼂 􏼃 + 􏽘
l

t�1
V

t−
ij π−

t􏼂 􏼃. (39)

3.3.5. Step 5: Calculation of Prospect Values and Arranging
the Alternatives. Standardizing the prospect matrix to
eliminate the effect of diverse dimensions, we can obtain the
standardized prospect matrix V′ � ([Vij

′ ])m×n, where

Vij
′􏽨 􏽩 �

Vij􏽨 􏽩

V∗j
, V
∗
j � max

i
Vij

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, Vij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (40)

According to the rough weight obtained by the rough
BWM, the overall prospect value Ui of the alternative Ai is
calculated by

Ui � 􏽘

n

j�1
wj􏽨 􏽩 × Vij

′􏽨 􏽩. (41)

By the ranking rules for rough numbers shown in
Figure 1, alternatives are arranged according to their overall
prospect values and the maximal one is selected as the
optimal alternative.

4. An Illustrative Example

In this section, a practical MCGDM example in a risk en-
vironment is given to illustrate the feasibility and validity of
the proposed method. +e description of this example is as
follows.

An investment company is planning to select an optimal
alternative to invest a sum of money. After the initial
screening, there remain six possible alternatives, which are
an Internet company (A1), a car company (A2), two food
companies (A3 and A4), an education company (A5), and a
chemical company (A6). Four criteria, direct benefits (c1),
indirect benefits (c2), social benefits (c3), and environmental
protection (c4), are taken into account in order to evaluate
the six alternatives and make the best choice. And there are
three natural statuses according to the market forecast,
including good (S1), fair (S2), and poor (S3), which in-
fluence the evaluating values of alternatives in criteria. To
obtain objective and comprehensive results, the investment
company chooses five experts from different departments to
constitute a decision committee, which is expressed as
E � e1, e2, . . . , e5􏼈 􏼉, and the committee needs to compare the
relative importance of each criterion as well as the evaluating
values of each alternative according to individual
experiences.

4.1. Criteria Weighting. According to the discussion of the
decision committee, c1 and c4 are determined as the best
criterion and the worst criterion, respectively. Five decision-
makers determine their comparison vectors by the scoring
method in the BWM, and the results are collected in Tables 4
and 5.

Gathering the comparison vectors, we can obtain the
integrated comparison vectors as

A1 � ( 1, 1, 1, 1, 1{ }, 1, 3, 1, 3, 1{ }, 3, 5, 5, 3, 3{ }, 5, 7, 7, 5, 7{ }),

A4 � ( 5, 7, 7, 5, 7{ }, 3, 3, 5, 3, 3{ }, 1, 1, 3, 1, 1{ }, 1, 1, 1, 1, 1{ }).

(42)

Integrated comparison vectors are transformed to rough
comparison vectors as

Table 3: Gains and losses for all possible cases.

Types Gains Losses
a: rj < xij 0.5(xij +xij) − rj 0
b: xij < rj 0 0.5(xij +xij) − rj

c: rj < xij < rj <xij 0.5(xij − rj) 0
d: xij < rj < xij < rj 0 0.5(xij − rj )

e: rij < xj <xij < rj 0 0
f: xij < rj < rij < xj 0.5(xij − rj) 0.5(xij − rj )
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RA1 � ([1, 1], [1.32, 2.28], [3.32, 4.28], [5.72, 6.68]),

RA4 � ([5.72, 6.68], [3.08, 3.72], [1.08, 1.72], [1, 1]).

(43)

A programming problem is constructed according to
(21) as

min ζ,

s.t. w1 − 1.32w2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ, w1 − 2.28w2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ,

w1 − 3.32w3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ, w1 − 4.28w3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ,

w1 − 5.72w4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ, w1 − 6.68w4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ,

w2 − 3.08w4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ, w2 − 3.72w4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ,

w3 − 1.08w4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ, w3 − 1.72w4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ζ,

1
2

􏽘
j

wj + wj􏼒 􏼓 � 1,

wj > wj > 0, for j � 1, 2, 3, 4.

(44)

LINGO 16.0 is used to solve this problem, and we can
obtain the unique solution as w1 � 0.464, w1 � 0.528,
w2 � 0.242, w2 � 0.333, w3 � 0.117, w3 � 0.147,
w4 � 0.083, w4 � 0.086, and ξ � 0.025.

Since c1 and c4 are the best criterion and the worst
criterion, respectively, and [a14] � [5.72, 6.68], we use a14 �

6.68 to calculate the value of CI. According to equation (28),
we solve ξ2 − (1 + 2 × 6.68)ξ + (6.682 − 6.68) � 0 and obtain
CI � 3.499 and then CR � 0.025/3.499 � 0.007, which im-
plies a very good consistency.

So the optimal rough weights can be denoted as

W �([0.464, 0.528], [0.242, 0.333], [0.117, 0.147], [0.083, 0.086]).

(45)

+e rough weights of criteria are shown in Figure 4,
which illustrates that the ranking of weights is c1 > c2 >
c3 > c4.

4.2. Alternative Ranking. +e evaluation values of alterna-
tives in each criterion are linguistic variables {very poor,
poor, fair, good, very good}, corresponding to the numerical
variables {1, 3, 5, 7, 9}. Table 6 shows the evaluation scores of
alternatives by the decision group, and with the aid of
transforming them to rough numbers by equations (1)–(7),
we can obtain the rough scores shown in Table 7. +en, the
gain and loss matrixes under different risk statuses can be
calculated according to the results in Table 3.

Gain and loss matrixes under the status S1 are

G1 �

0 0 1.68 0.28

0 0.295 0 0

0.28 0.39 0 0.88

0.28 0 0.99 2.08

0.48 0 0 0.28

0.28 0.295 2.48 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L1 �

− 0.39 − 0.28 0 0

0 − 0.28 − 0.48 − 1.28

0 0 − 1.695 0

− 0.259 − 0.48 0 0

0 − 0.28 0 − 0.295

− 0.259 − 0.72 0 − 2.08

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(46)

Table 4: Scores of best-to-others vectors.

c1 c2 c3 c4

c1

e1 1 1 3 5
e2 1 3 5 7
e3 1 1 5 7
e4 1 3 3 5
e5 1 1 3 7

Table 5: Scores of others-to-worst vectors.

c4

e1 e2 e3 e4 e5

c1 5 7 7 5 7
c2 3 3 5 3 3
c3 1 1 3 1 1
c4 1 1 1 1 1
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Figure 4: Rough weights of criteria.

Table 6: Scores and expectations of alternatives.

Criteria c1 c2 c3 c4
States S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Alternatives

A1
(7, 9, 7,
5, 7)

(9, 9, 7,
7, 7)

(5, 5, 7,
7, 5)

(5, 7, 7,
5, 7)

(3, 5, 5,
5, 7)

(3, 3, 1,
1, 3)

(7, 7, 9,
7, 7)

(3, 3, 5,
5, 7)

(3, 5, 3,
5, 5)

(5, 5, 7,
7, 5)

(3, 5, 3,
5, 5)

(1, 3, 1,
3, 3)

A2
(7, 7, 9,
7, 7)

(5, 3, 3,
7, 7)

(3, 3, 5,
7, 7)

(5, 7, 5,
9, 7)

(5, 7, 7,
5, 5)

(3, 1, 5,
5, 3)

(5, 5, 3,
5, 5)

(3, 1, 3,
3, 1)

(5, 7, 5,
7, 5)

(3, 5, 3,
5, 3)

(3, 3, 1,
3, 3)

(1, 1, 3,
5, 1)

A3
(9, 7, 7,
9, 7)

(7, 9, 5,
5, 9)

(3, 1, 3,
3, 5)

(7, 9, 7,
7, 5)

(5, 5, 7,
5, 5)

(3, 5, 5,
3, 5)

(3, 5, 1,
3, 5)

(1, 3, 1,
3, 1)

(5, 5, 5,
5, 7)

(7, 5, 7,
7, 7)

(7, 5, 5,
7, 5)

(5, 3, 3,
5, 3)

A4
(5, 7, 9,
9, 7)

(5, 5, 7,
5, 5)

(5, 3, 5,
5, 3)

(5, 5, 5,
7, 7)

(3, 7, 5,
7, 5)

(1, 5, 3,
5, 7)

(9, 7, 7,
5, 7)

(7, 5, 5,
5, 5)

(7, 7, 3,
1, 5)

(7, 7, 9,
7, 9)

(7, 7, 7,
7, 7)

(7, 5, 7,
7, 5)

A5
(9, 9, 7,
9, 7)

(7, 9, 5,
5, 5)

(5, 5, 3,
3, 7)

(7, 7, 7,
5, 5)

(5, 5, 7,
7, 5)

(3, 3, 5,
5, 3)

(7, 5, 5,
5, 7)

(5, 5, 3,
5, 5)

(3, 5, 3,
5, 5)

(7, 7, 3,
5, 5)

(7, 5, 3,
5, 5)

(5, 3, 3,
3, 5)

A6
(7, 5, 9,
9, 7)

(7, 7, 9,
7, 5)

(5, 5, 7,
5, 5)

(5, 3, 7,
7, 9)

(3, 1, 5,
7, 7)

(3, 3, 5,
5, 7)

(9, 9, 7,
9, 7)

(7, 7, 7,
7, 5)

(5, 5, 7,
5, 7)

(3, 3, 5,
3, 1)

(3, 1, 3,
1, 3)

(1, 1, 3,
3, 3)

Expectations (7, 7, 7,
9, 7)

(5, 5, 5,
7, 5)

(5, 5, 5,
3, 3)

(7, 7, 5,
7, 7)

(5, 7, 5,
7, 5)

(3, 5, 3,
5, 3)

(5, 5, 7,
5, 5)

(5, 3, 5,
5, 5)

(5, 3, 5,
3, 3)

(5, 7, 5,
5, 5)

(5, 5, 3,
3, 5)

(3, 3, 1,
1, 3)

Table 7: Rough scores and expectations of alternatives.

Criteria c1 c2 c3 c4
States S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Alternatives

A1
[6.30,
7.70]

[7.32,
8.28]

[5.32,
6.28]

[5.72,
6.68]

[4.30,
5.70]

[1.72,
2.68]

[7.08,
7.72]

[3.72,
5.50]

[3.72,
4.68]

[5.32,
6.28]

[3.72,
4.68]

[1.72,
2.68]

A2
[7.08,
7.72]

[3.93,
6.07]

[4.67,
6.07]

[5.72,
7.51]

[5.32,
6.28]

[2.49,
4.28]

[4.28,
4.92]

[1.72,
2.68]

[5.32,
6.28]

[3.32,
4.28]

[2.28,
2.92]

[1.34,
3.12]

A3
[7.32,
8.28]

[5.93,
8.07]

[2.30,
3.70]

[6.30,
7.70]

[5.08,
5.72]

[3.72,
4.68]

[2.49,
4.28]

[1.32,
2.28]

[5.08,
5.72]

[6.28,
6.92]

[5.32,
6.28]

[3.32,
4.28]

A4
[6.49,
8.28]

[5.08,
5.72]

[3.72,
4.68]

[5.32,
6.28]

[4.49,
6.28]

[2.84,
5.51]

[6.30,
7.70]

[5.08,
5.72]

[3.04,
6.09]

[7.32,
8.28]

[7.00,
7.00]

[5.72,
6.68]

A5
[7.72,
8.68]

[5.34,
7.12]

[3.72,
5.51]

[5.72,
6.68]

[5.32,
6.28]

[3.32,
4.28]

[5.32,
6.28]

[4.28,
4.92]

[3.72,
4.68]

[4.49,
6.28]

[4.30,
5.70]

[3.32,
4.28]

A6
[6.49,
8.28]

[6.30,
7.70]

[5.08,
5.72]

[4.84,
7.51]

[3.04,
6.09]

[3.72,
5.51]

[7.72,
8.68]

[6.28,
6.92]

[5.32,
6.28]

[2.30,
3.70]

[1.72,
2.68]

[1.72,
2.68]

Expectations [7.08,
7.72]

[5.08,
5.72]

[3.72,
4.68]

[6.28,
6.92]

[5.32,
6.28]

[3.32,
4.28]

[5.08,
5.72]

[4.28,
4.92]

[3.32,
4.28]

[5.08,
5.72]

[3.72,
4.68]

[1.72,
2.68]
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Gain and loss matrixes under the status S2 are

G2 �

2.08 0 0.29 0

0.175 0 0 0

1.28 0 0 1.12

0 0 0.48 2.32

0.70 0 0 0.51

1.28 0 1.68 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L2 �

0 − 0.51 − 0.28 0

− 0.575 0 − 2.08 − 1.12

0 − 0.12 − 2.48 0

0 − 0.415 0 0

0 0 0 0

0 − 1.14 0 − 1.52

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(47)

Gain and loss matrixes under the status S3 are

G3 �

1.12 0 0.2 0

0.695 0 1.52 0.22

0 0.2 1.12 1.12

0 0.615 0.905 3.52

0.415 0 0.2 1.12

0.72 0.615 1.54 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L3 �

0 − 1.12 0 0

0 − 0.415 0 − 0.19

− 0.72 0 0 0

0 − 0.24 − 0.14 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(48)

+e weight vector of states given by each decision-maker
and group rough decision weights derived by equations
(31)–(34) are described in Table 8. Here, we take the values of
parameters given by Gonzalez and Wu in [46], so the rough
decision weights of gain and loss are the same.

Taking α � 0.89, β � 0.92, and λ � 2.25, the value ma-
trixes for gain and loss under different states can be
expressed as

V
+
1 �

0 0 1.587 0.322

0 0.337 0 0

0.322 0.433 0 0.893

0.322 0 0.991 1.919

0.520 0 0 0.322

0.322 0.337 2.244 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V
−
1 �

− 0.946 − 0.698 0 0

0 − 0.698 − 1.145 − 2.824

0 0 − 3.656 0

− 0.649 − 1.145 0 0

0 − 0.698 0 − 0.732

− 0.649 − 1.663 0 − 4.414

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V
+
2 �

1.919 0 0.332 0

0.212 0 0 0

1.246 0 0 1.106

0 0 0.520 2.115

0.728 0 0 0.549

1.246 0 1.587 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V
−
2 �

0 − 1.211 − 0.698 0

− 1.352 0 − 4.414 − 2.497

0 − 0.320 − 5.189 0

0 − 1.002 0 0

0 0 0 0

0 − 2.538 0 − 3.307

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V
+
3 �

1.106 0 0.239 0

0.723 0 1.452 0.260

0 0.239 1.106 1.106

0 0.649 0.915 3.065

0.457 0 0.239 1.106

0.746 0.649 1.469 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V
−
3 �

0 − 2.497 0 0

0 − 1.002 0 − 0.488

− 1.663 0 0 0

0 − 0.605 − 0.369 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(49)
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+en, the group prospect matrix is

V �

[0.676, 0.844] [− 1.568, − 1.393] [0.436, 0.550] [0.110, 0.121]

[− 0.292, − 0.189] [− 0.453, − 0.392] [− 1.899, − 1.590] [− 2.202, − 1.956]

[0.051, 0.185] [0.079, 0.118] [− 3.267, − 2.847] [1.030, 1.156]

[− 0.134, − 0.101] [− 0.865, − 0.731] [0.673, 0.779] 2.308, 2.590

[0.579, 0.649] [− 0.262, − 0.238] [0.067, 0.076] [0.351, 0.455]

[0.544, 0.665] [− 1.406, − 1.189] [1.773, 1.982] [− 3.061, − 2.749]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

Also, the standardized prospect matrix is

V′ �

[0.207, 0.259] [− 0.480, − 0.426] [0.134, 0.168] [0.034, 0.037]

[− 0.090, − 0.058] [− 0.142, − 0.120] [− 0.581, − 0.487] [− 0.674, − 0.599]

[0.016, 0.057] [0.024, 0.036] [− 1.000, − 0.872] [0.315, 0.354]

[− 0.041, − 0.031] [− 0.265, − 0.224] [0.206, 0.239] [0.706, 0.793]

[0.177, 0.199] [− 0.080, − 0.073] [0.020, 0.023] [0.108, 0.139]

[0.166, 0.204] [− 0.430, − 0.364] [0.543, 0.607] [− 0.937, − 0.841]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (51)

Calculating the overall prospect values of each alterna-
tive according to rough criteria weights obtained in Section
4.1, we obtain

U �

[− 0.045, 0.062]

[− 0.238, − 0.163]

[− 0.108, − 0.029]

[− 0.027, 0.035]

[0.067, 0.103]

[− 0.083, 0.039]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (52)

+e evaluating values of alternatives are depicted in
Figure 5. According to the ranking rules of rough numbers
shown in Figure 1, it is obvious to find that the ranking order
of the alternatives is A5 >A1 >A4 >A6 >A3 >A2, so the best
investment program of this company is A5. +e results of
ranking order may change when we choose different values
of parameters, while there are no regular changes of the final
evaluating values in U with the changes of parameters be-
cause the evaluating values are comprehensive aggregation

of gain and loss matrixes, and the variation tendencies of
gain matrix and loss matrixes are offset, which results in an
irregular change of the evaluating values. +erefore, it is
crucial to determine appropriate values of parameters.

4.3. Discussion. In order to discuss the validity of the
proposed method, we choose other decision-making tech-
niques with reliable results to calculate the illustrative ex-
ample and compare the ranks of alternatives. +ree
MCGDM methods chosen in this section are rough VIKOR
[7], prospect theory [36], and fuzzy-number prospect theory
[38], respectively. Rough VIKOR takes no account of the
expectations of decision-makers, and the synthetic rough
evaluating values of alternatives are obtained by the
weighted mean model. +e crisp values in classical prospect
theory can be acquired with the aid of the average values of
the decision group, and the fuzzy information in fuzzy-
number prospect theory can be obtained by the trans-
forming method from linguistic variables to trapezoidal
fuzzy numbers [38]. +e ranking results of alternatives
derived from different models are shown in Table 9.

Table 8: Rough decision weights.

States S1 S2 S3

Probability vectors (0.3, 0.4, 0.3, 0.3, 0.4) (0.4, 0.4, 0.5, 0.4, 0.3) (0.3, 0.2, 0.2, 0.3, 0.3)
Rough probability [0.316, 0.364] [0.365, 0.435] [0.236, 0.284]
Rough weight vectors [0.341, 0.375] [0.376, 0.425] [0.280, 0.317]
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It is easy to find that the results derived from methods
based on prospect theory are all
A5 >A1 >A4 >A6 >A3 >A2, while the rank by rough
VIKOR is A1 >A6 >A5 >A4 > A3 >A2. +e reason giving
rise to this difference is that methods based on prospect
theory pay attention to the expectations of decision-
makers. With no expectations, A1 performs well in each
criterion and obtains a high score in comprehensive
evaluation, while A5 only holds the third place in the
ranking. However, when considering the expectations of
decision-makers, A5 becomes the best alternative and A1
falls to the second place. So it is crucial to pay more at-
tention to the expectation, which could change the final
result and influence the benefits of decision-makers.

+e rough-number method based on prospect theory in
this paper can acquire the same result as classical prospect
theory and fuzzy prospect theory, which declares the validity
of the novel model, and there are particular advantages of
this new method:

(1) Compared with the traditional MCGDM decision-
making methods which acquire group information
by the ordinary weighted sum method or interval
numbers, the proposed method constructs group
preferences with the aid of rough numbers, a new
tool to deal with uncertain and subjective infor-
mation. +e aggregated approach by rough
numbers considers the relationships between
original data from every decision-maker, which
brings more accurate group judgements and de-
cision results.

(2) +e improvement of the BWM based on the rough
number can be effectively applied to group decision-
making problems with a high consistency, which
reduces the risk for errors derived from tedious
calculation and low consistency of traditional pair-
wise comparison methods such as the AHP. +e
process of weight calculation is much more acces-
sible and reliable, and the results derived from group
preferences are more objective. Besides, as a linear
programming model, the proposed rough-number-
based BWM in this paper is much easier to calculate
and can obtain a unique solution for the weight
vector, which reduces the probability of decision
failure.

(3) +e existing decision-making methods based on
prospect theory in dealing with imprecision take
advantage of interval numbers, fuzzy numbers, and
linguistic variables, and there is no research in de-
veloping prospect theory with the aid of rough
numbers. +e transformations of criteria values,
expectations of decision-makers, and even the risk
probabilities by rough numbers contain all the group
information and bring more objective and reliable
decision results than other models. +e improve-
ment expands the range of the application of
prospect theory.

5. Conclusion

With the rapid development and changes of the social and
the economic environment, decision-makers always face
multicriteria group decision-making problems with im-
precision, risk, and subjectivity. To handle the realistic
decision-making problems in a reasonable and effective
way, this paper constructs a risky MCGDM method by
combining rough numbers, BWM, and prospect theory,
which is able to tackle subjectivity and imprecision.
According to the process of decision-making, the proposed
method can be divided into two stages. +e first stage is to
integrate the rough number and BWM to calculate the
rough weights of criteria, and the second one is combining
the rough number and prospect theory to arrange the al-
ternatives. +en, a case study involving investment is in-
troduced to illustrate the application of this new method,
and the results verify the feasibility and validity. +e
proposed method constructs a linear programming model
to obtain the weights of criteria and a psychological de-
cision-making model to handle the subjectivity and risk of
problems. It puts forward a new research direction in the
MCGDM and can be applied to many practical group
decision-making problems with various conditions. In
terms of future research, we intend to consider the com-
pensatory and interactive relationship between criteria, and
the impact of changes of decision-makers and criteria on
the final evaluation results in a dynamic procedure. +e
expansion of rough numbers to other MCDMmethods and
realistic problems is also an interesting and significant
direction for further research.

A1 A2 A3 A4 A5 A6
–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

Figure 5: Evaluating results of alternatives.

Table 9: Comparison of the ranks of alternatives by different
models.

Alter. RVIKOR [6] PT [36] FPT [38] RPT
A1 1 2 2 2
A2 6 6 6 6
A3 5 5 5 5
A4 4 3 3 3
A5 3 1 1 1
A6 2 4 4 4
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