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Aiming at the problem that the indoor target location algorithm based on received signal strength (RSSI) in the IoTenvironment is
susceptible to interference and large fluctuations, an indoor localization algorithm combining RSSI and nonmetric multidi-
mensional scaling (NMDS) is proposed (RSSI- NMDS). First, Gaussian filtering is performed on the received plurality of sets of
RSSI signals to eliminate abnormal fluctuations of the RSSI. -en, based on the RSSI data, the dissimilarity matrix is constructed,
and the relative coordinates of the nodes in the low-dimensional space are obtained by NMDS solution. Finally, according to the
actual coordinates of the reference node, the coordinate transformation is performed by the planar four-parameter model, and the
position of the node in the actual coordinate system is obtained.-e simulation results show that the proposed method has strong
anti-RSSI perturbation and high positioning accuracy.

1. Introduction

With the development of Internet of things and mobile
Internet technology, smart home is gradually entering
people’s daily life. As an important information-processing
technology in the field of smart home, indoor positioning
technology is the key to improve the comfort, safety, and
intelligence of home environment and build an efficient
smart home system [1–3].

At present, the positioning algorithm can be divided into
two categories: based on ranging positioning algorithm and
no ranging positioning algorithm [4, 5]. -e ranging al-
gorithm is commonly used based on received signal strength
indicator (RSSI), based on time of arrival (TOA), time
difference of arrival (TDA), and AOA based on the signal
arrival angle (angle of arrival) positioning method [6–8]. No
distance and angle information is needed without the
ranging positioning algorithm, and the algorithm imple-
ments node positioning based on information such as
network connectivity [9].

Due to the popularity and improvement of indoor
wireless local area network (WLAN), ranging-based

positioning usually uses an RSSI-based approach. Compared
with the other wireless positioning technologies, the RSSI-
based positioning technology performs position estimation
according to the law that the received signal strength
changes with the signal propagation distance, so no addi-
tional equipment for precise time synchronization and angle
measurement is needed [10]. At the same time, the RSSI-
based positioning technology has the characteristics of
wireless low power consumption and strong adaptability to
complex nonvisual indoor environments. It is also possible
to make full use of the networking functions of existing
wireless network facilities and expand the application range
of the positioning system. -erefore, the RSSI-based posi-
tioning technology is currently a research hotspot for indoor
positioning [11, 12]. In reference [13], based on the existing
research, an improved location fingerprint location method
based on RSSI was proposed from the aspects of offline
fingerprint database construction, subregion division, and
online position estimation. Reference [14] proposed a dy-
namic interval particle filter algorithm based on pedestrian
dead reckoning (PDR) information and RSSI localization
information. With PDR azimuth information, the algorithm
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can adaptively control the interval derivative particle
number to enhance the filtering real time ability; meanwhile,
the building map information, RSSI positioning informa-
tion, and certainty factor are integrated into the particle
weight calculation to improve the positioning accuracy.
Aiming at the problem of the information jump in WIFI
indoor location based on the RSSI, which influences the
positioning accuracy, the authors in [15] proposed an im-
proved adaptive weighted K-nearest neighbor (AWKNN)
localization method based on the Kalman filter. Experiments
show that these methods have achieved good results.

However, RSSI-based positioning methods are suscep-
tible to insufficient indoor wireless signals, time differences
in indoor signals, andmultipath effects [16]. In order to solve
the problem that RSSI ranging technology introduces large
errors in complex and variable indoor environments,
multidimensional scaling (MDS) is introduced [17]. -e
MDS technology in statistics has strong fault tolerance to the
data sample, so the technology can be introduced into the
indoor RSSI positioning, which will improve the antijam-
ming ability of the positioning and obtain better positioning
effect. In order to improve the positioning performance, this
paper applies Gaussian filtering to RSSI signal and adopts
nonmetric multidimensional scaling (NMDS) to enhance
the resistance to RSSI perturbation and improve the posi-
tioning accuracy.

2. The Principle of RSSI Ranging

2.1. RSSI Ranging. In indoor environments, the strength of
wireless signals is unpredictable due to multipath propa-
gation and shadowing effects, and log-distance models are
often used to represent signal propagation losses [18]. Let the
distance between the receiving node and the transmitting
node be d, then the loss caused by the signal during
propagation can be expressed as

PL(d) � PL d0( 􏼁 + 10n log
d

d0
􏼠 􏼡 + Xσ , (1)

where d is the distance between the transmitting node and
the receiving node; n is the path loss index, indicating how
fast the path loss increases with distance, and is related to the
surrounding environment; Xσ is the mean in decibels, and
the standard deviation is σ the Gaussian distribution random
variable; d0 is the reference distance, usually 1m; and PL(d0)

represents the path loss when the reference distance is d0.
-e signal strength received at the receiving end is

RSSI � Pt − PL(d), (2)

where P represents the transmit power of the signal and
PL(d) is the path loss after the distance d.

According to the above theoretical model, for a single
wireless access node (AP), the size of the RSSI value read by
the receiving end is closely related to the distance from the
AP. However, as shown in Figure 1, for a single AP, the
difference in signal strength between pairs of different lo-
cations does not effectively characterize the distance between
them. For example, the distance between A and C in Figure 1

is much larger than the distance between A and B. However,
according to the foregoing signal propagation theory, the
difference in signal strength received at two points A and C is
smaller than the difference in signal strength received at two
points A and B.-is problem still exists when the number of
APs is small.

When the number of APs in the system increases, the
consistency between the RSSI difference obtained between
pairs of nodes at different locations and the actual physical
distance is improved.

In other words, the farther the two locations are apart,
the greater the RSSI difference obtained at these two loca-
tions, and vice versa. Next, we analyze the relationship
between the signal strength distance between different pairs
of locations and the actual physical distance in the case of
multiple APs. Assume that each point in the area can receive
signals from N APs, and the RSSI obtained at the A position
can be expressed as

RSSIA � RSSIA1,RSSIA2, . . . ,RSSIAN􏼂 􏼃, (3)

where RSSIAi � [Pti − PLi(d0) − 10n log(dAi/d0) − Xσi],
1≤ i≤N, dAi is the distance from the A position to the i AP,
and Pti and PLi(d0) are the transmit power of the i AP and
the near-ground reference point power, respectively.

Since the transmit power of each AP and the power of the
near-ground reference point are unchanged, equation (3)
can be expressed as

RSSIA �

AP1 − 10n log dA1( 􏼁 + Xσ1,

AP2 − 10n log dA2( 􏼁 + Xσ2,

· · ·

APN − 10n log dAN( 􏼁 + XσN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where APi � Pti − PLi(d0). Similarly, we can write the RSSI
read at the B and C positions.

From equation (4), the Euclidean distance between the
RSSIs read by A and B is

RSSIAB �

���������������������

􏽘

N

i�1
10n log

dBi

dAi

􏼠 􏼡 + δi􏼠 􏼡

2
􏽶
􏽴

, (5)

where dAi and dBi are the distances from A and B to the i AP,
respectively.
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Figure 1: RSSI ranging diagram.
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2.2.RSSIFilterProcessing. -eRSSI value between nodes has
a certain relationship with the distance. -e overall trend is
that the farther the distance between the two nodes is, the
smaller the RSSI value is, and the closer the distance is, the
larger the RSSI value is. However, since the RSSI value
extracted during transmission is not stable, its volatility is
large, and the RSSI value of the node near the distance is
often smaller than the RSSI value of the node farther [19, 20].
Since the RSSI value is easily affected by air or occlusion in
the environment, the RSSI value received by the same un-
known node will fluctuate to varying degrees when the
distance is constant. -erefore, in practical applications, the
RSSI value is received multiple times for the same node for a
period of time, and the RSSI values are processed to avoid
the accuracy of the data in the case of individual abnor-
malities. Substituting the processed RSSI value into equation
(5) yields a more accurate internode distance.

Commonly used filtering models include maximum
likelihood filtering, mean filtering, least squares estimation
filtering, and Gaussian filtering. It has been studied that most
of the variables in the natural environment are subject to
positive or similar distributions, so Gaussian functions are
often used in the processing of some data variables. To this
end, Gaussian filtering is used to process the extracted sets of
data.

In this paper, Gaussian models are used to filter multiple
RSSI values. Selecting the data information that occurs in the
high probability region among a large amount of sampled
data, eliminating the small probability event, thus avoiding
the influence of the small probability zone data on the ac-
curacy of the whole experiment, is essential for improving the
accuracy of the entire laboratory data. In this paper, the RSSI
value of the selected high probability data area is geometri-
cally averaged, which reduces the influence of data volatility
on experimental performance, makes the experimental data
more representative and stable, and the positioning experi-
ment results are more convincing. Usually, the probability
density function of a Gaussian function can be expressed as

f(x) �
1
���
2π

√
σ

e
− (x− u)2/2σ2( ), (6)

where

u �
1
n

􏽘

n

i�1
xi,

σ2 �
1

n − 1
􏽘

n

i�1
xi − u( 􏼁

2
.

(7)

In practical system applications, according to engineering
experience, the numerical range of event occurrence prob-
ability greater than 0.6 is defined as the high probability event
data generation area. -erefore, the Gaussian distribution
function occurs in the interval 0.6≤F(x)≤ 1, which leads to

0.15σ + u≤ x≤ 3.09σ + u. (8)

-erefore, it can be obtained from the Gaussian filter
distribution function in the range of the above equation.-e

size of the sampled RSSI data value shall be
[0.15σ + u, 3.09σ + u]; here, the relationship between the
RSSI value and u, σ is

u �
1
n

􏽘

n

i�1
RSSIi,

σ �

��������������������������

1
n − 1

􏽘

n

i�1
RSSIi −

1
n

􏽘

n

i�1
RSSIi⎛⎝ ⎞⎠

2
􏽶
􏽴

.

(9)

-e values of u and σ are substituted into the range of the
RSSI value to obtain an accurate range of RSSI values. All the
RSSI data sampled are filtered by the value range. Filter data
are not in this range and save all sampled data within this
range. Finally, the RSSI values occurring in the high
probability occurrence area are geometrically averaged to
obtain the RSSI values between the nodes in the commu-
nication process.

3. Multidimensional Scaling Technology

Robustness is one of the important indicators to evaluate the
quality of a positioning algorithm. In the indoor environ-
ment, the RSSI is disturbed by many unfavorable factors
such as multipath, diffraction, and obstacles, which may
cause the signal strength value to deviate. -erefore, the
accuracy of the positioning algorithm is difficult to
guarantee.

-e fluctuation of RSSI will cause a large error in the
distance of the conversion, which leads to the fact that most
RSSI-based positioning algorithms cannot obtain the posi-
tioning accuracy comparable to the simulation in the actual
environment. However, it is worth mentioning that RSSI can
indeed reflect the relationship between nodes. -e closer the
receiving point is to the transmitting point, the stronger the
measured signal strength; the farther the receiving point is
from the transmitting point, the weaker the measured signal
strength. -is monotonic relationship between the wireless
signal strength RSSI and the distance satisfies the require-
ments for the dissimilarity data between objects in the
multidimensional scaling. Considering this feature, it can be
directly located by RSSI. -e RSSI is used to construct the
dissimilarity matrix in the multidimensional scaling method
to calculate the relative coordinates of each node in low-
dimensional space.

MDS is a data analysis technique commonly used for
exploratory data analysis or information visualization, which
was originally used for data analysis in psychometrics. At
present, multidimensional scaling analysis has been used as a
general data analysis technique, not only in the scope of
psychology, but also widely used in various fields. Multi-
dimensional scaling techniques use the dissimilarity between
entities to construct a relative coordinate map of points on a
multidimensional space, and make the construction points
correspond to the individual entities in the multidimen-
sional space. -e distance between two points in a multi-
dimensional space is closely related to the similarity of the
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entities it corresponds to. -e more similar entities, the
closer they are in the multidimensional space.

3.1. Classic Multidimensional Scaling. Classical multidi-
mensional scaling (Classic MDS) is the simplest multidi-
mensional scaling method, the data are quantitative, and the
similarity between objects can be characterized by Euclidean
distance.-e goal of the multidimensional scaling method is
to determine the relative position coordinates of the analysis
object in the multidimensional space. -e Euclidean dis-
tance between the objects through some transformations
(such as linear transformation) will be related to the simi-
larity provided. Without considering the error, if the sim-
ilarity data are measured in Euclidean space, the classical
multidimensional scaling algorithm will accurately repro-
duce the positional distribution of the analysis object.

Assume that pij represents the similarity measured
between the analysis objects i and j (i, j � 1, . . . , N), and the
Euclidean distances of the points Xi � (xi1, xi2, . . . , xim) and
Xj � (xj1, xj2, . . . , xjm) in the multidimensional space are
expressed as

dij �

������������

􏽘

m

k�1
xik − xjk􏼐 􏼑

2

􏽶
􏽴

. (10)

-e goal of the classic multidimensional scaling tech-
nique is to minimize the stress strength coefficient, where the
threat strength factor is

stress � 􏽘
i≠ j

pij − dij􏼐 􏼑
2
. (11)

-e classical multidimensional scaling solution process
is divided into the following three steps:

(1) Square the individual elements of the dissimilarity
matrix [pij], denoted as P2.

(2) Double-centering P2, that is, both sides of P2 are
multiplied by the central matrix J at the same time, as
defined below:

J � E −
1
n

, (12)

where E is an n order identity matrix, and after
double-centering, matrix B is obtained:

B � −
1
2

J · P
2

· J. (13)

(3) Perform singular value decomposition on B, and
obtain the largest r eigenvalues λ1∼λr and the
corresponding eigenvectors e1∼er to form the ma-
trix A of the diagonal matrix V and n × r, respec-
tively, to obtain the relative coordinates of the
analysis object in the multidimensional space:

X � V · A
1/2

. (14)

-efirst r maximum eigenvalues and eigenvectors (r<m)
are reserved, resulting in a solution in the low-dimensional

space.-ismeans that the k sums in equation (10) are run from
1 to r, not 1 to m. In the least squares sense, this is the optimal
low rank approximation. For example, for a two-dimensional
network, the first two largest eigenvalues and their eigenvectors
are taken to construct an optimal two-dimensional approxi-
mation. For a three-dimensional network, the first three largest
eigenvalues and their eigenvectors are taken to construct an
optimal three-dimensional approximation.

3.2. Nonmetric Multidimensional Scaling. -e nonmetric
multidimensional scaling is a kind of multidimensional
scaling technique, and the requirement for constructing the
object dissimilarity matrix is not as strict as the classical
multidimensional scaling, as long as the monotonic rela-
tionship of the distance is satisfied.

-e nonmetric multidimensional scale reconstructs the
coordinates and distances of things in a multidimensional
space according to the dissimilarity between given things.
-is is a process of iterative judgment. Assuming that the
dissimilarity matrix between things is pij, the specific
process can be described as follows:

(1) Arbitrarily generate the initialization coordinates X0

of each thing and calculate the distance d0
ij between

them, and initialize the coordinate X0 only to satisfy
the different coordinates of each thing.

(2) Generate an intermediate value 􏽢d
0
ij, which is gen-

erated by constructing a monotonic regression re-
lationship between pij and d0

ij. 􏽢d
0
ij and pij need to

satisfy the weak monotonic relationship, that is, for
any i, j, k, l, if pij ≥pkl, that is 􏽢d

0
ij ≥ 􏽢d

0
kl. -e following

approximation can be used to obtain 􏽢d
0
ij. Starting

from the minimum value of pij, the adjacent 􏽢d
0
ij is

compared with each pij to determine whether the
monotonic relationship is satisfied. When there is a
continuous 􏽢d

0
ij that violates the monotonic rela-

tionship with pij, the average of these values is taken
for the next iteration.

(3) Calculate the new coordinates X1 according to X0

and 􏽢d
0
ij, and calculate the distance between them d1

ij,
and determine whether the stress coefficient stress 1
meets the requirements. If stress 1 does not meet the
requirements, repeat the second and third steps until
stress 1 meets the requirements. Here, the stress
strength coefficient stress1 is defined as

stress1 �

�������������

􏽐i≠j
􏽢dij − dij􏼐 􏼑

2

􏽐i≠jd
2
ij

􏽶
􏽴

. (15)

3.3. Construct DissimilarityMatrix Based on RSSI. -e RSSI-
NMDS algorithm proposed in this paper directly uses the
RSSI value for positioning. Based on RSSI, the dissimilarity
matrix P in the multidimensional scaling method is con-
structed, and the relative coordinates of each node in low-
dimensional space are calculated.
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-e multidimensional scaling method dissimilarity matrix
P is a symmetric matrix. However, due to the nonuniformity of
antenna transmission, in the actual environment, there is often
RSSIij ≠RSSIji. -erefore, in order to obtain a symmetric
matrix, the average value (RSSIij + RSSIji)/2 of the twomay be
taken, or one of them may be selected to construct the dis-
similarity matrix. In practical applications, the difference be-
tween the two is small. To reduce communication overhead,
usually choose one of these values. For example, the reference
node is set to a number, and the N reference node is sent to all
reference nodes whose number is less than N, and the mobile
node sends a message to the reference node, and uses the one-
way communication to obtain the RSSI value to construct a
symmetric dissimilarity matrix P:

pij � pji �
RSSIij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α
, i≠ j,

0, i � j,

⎧⎨

⎩ (16)

where a denotes the dissimilarity correction index for correcting
the rank order of the RSSI values. Taking 4 nodes as an example,
directly construct the dissimilarity matrix P using RSSI:

P �

0 RSSI21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α RSSI31

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α RSSI41

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α

RSSI21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α 0 RSSI32

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α RSSI42

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α

RSSI31
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α RSSI32

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α 0 RSSI43

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α

RSSI41
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α RSSI42

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α RSSI43

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

-e dissimilarity matrix is constructed based on the RSSI
value, and the relative coordinates of the nodes in the low-
dimensional space are obtained by the multidimensional
scaling method. In order to obtain the actual position of the
mobile node, the coordinate transformation can be per-
formed by using the planar four-parameter model according
to the actual coordinates of the reference node, thereby
obtaining the position of the mobile node in the actual
coordinate system. -e four-parameter coordinate trans-
formation model is

x2y2􏼂 􏼃 � x1y1􏼂 􏼃 ·
(1+ m)cosβ (1+ m)sinβ

− (1+ m)sinβ (1+ m)cosβ
􏼢 􏼣 +[ΔxΔy],

(18)

where [x1y1] is the relative coordinate of the nodes in the
two-dimensional space, [x2y2] is the actual coordinate after
the transformation, m, β, Δx, Δy are the four to be deter-
mined parameters.

In order to reduce the error in the coordinate conversion
process and ensure the accuracy of the actual coordinates of
the moving node, the parameter should be selected to
minimize the sum of the deviations of the coordinates of the
k reference nodes after conversion and their true coordinates
([xr

i y
r
i ], i � 1, . . . , k). -e deviation performance function

measures the appropriateness of the parameters of the co-
ordinate transformation model:

difference� 􏽘
k

i�1

(1+ m)cosβxli − (1+ m)sinβyli +Δx − x
r
i􏼂 􏼃

2

+ (1+ m)sinβxli +(1+ m)cosβyli +Δy − y
r
i􏼂 􏼃

1/2
⎛⎝ ⎞⎠.

(19)

-e smaller the deviation difference, the smaller the
positioning error caused by the coordinate transformation.
With the goal of minimizing equation (19), appropriate
optimization algorithms must be used to select the appro-
priate parameters.

4. Simulation and Analysis

4.1. Simulation Settings. Set up 45 unknown nodes and
perform simulation experiments in the Microsoft Visual
Studio 2010 programming environment. -e distance be-
tween nodes is obtained according to the node coordinates,
and then substituted into the wireless signal propagation
model to obtain the RSSI value of each node in the com-
munication process. When constructing the dissimilarity
matrix based on the RSSI values between nodes, the value of
a affects the final precision of the algorithm. Usually a takes
values from 0.2 to 0.4, making the average positioning error
small, so a is taken as 0.3 in this simulation experiment. -e
random variable when simulating the RSSI value between
nodes is selected as a Gaussian random variable with a
variance of 4 mean values of zero.

4.2. Analysis of Positioning Results. Figure 2 shows the co-
ordinates of each node and the actual coordinates of the
nodes estimated by the RSSI-NMDS algorithm. Among
them, the red circle represents the true coordinate position
of each unknown node, the blue triangle represents the
coordinates estimated by RSSI-NMDS, and the coordinate
line represents the distance error between the estimated
position of the algorithm and the real position. Table 1
shows the actual coordinates of 15 nodes and the estimated
coordinates calculated by the algorithm and the distance
error.

It can be seen from Figure 2 that the error lines of each
node are different in length. -is is because the fluctuation
of the RSSI value is different, which results in different error
sizes when performing position estimation. If the RSSI
value fluctuates greatly, the estimated node coordinate
error increases. It can be seen from Table 1 that the error of
the indoor positioning of the unknown node by the RSSI-
NMDS algorithm is relatively stable, and is basically
maintained at about 1m, and the minimum error can reach
0.7m or less.

4.3. Comparison of Positioning Performance. -e RSSI-
NMDS algorithm proposed in this paper is compared with
the traditional RSSI-based positioning algorithm. Figure 3
shows the positioning results of 15 points. -e circular and
triangular identifiers are the same as in Figure 2. -e black
square indicates the node coordinates obtained by the RSSI
ranging method, the solid line indicates the estimation error
of the RSSI-NMDS algorithm, and the broken line indicates
the estimation error of the RSSI ranging algorithm.

It can be seen from Figure 3 that the average error of the
positioning result based on RSSI is significantly larger than
that of the RSSI-NMDS algorithm. -is is because the
minimum error based on the RSSI ranging algorithm can
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only reach 2m under relatively good conditions, and the
error will increase significantly in a more complicated en-
vironment. In addition, after the actual distance between
each communication node obtained in the RSSI ranging
algorithm, an appropriate algorithm needs to be selected,
and the position coordinates are estimated according to the
distance. However, the positioning result is also different
because the number of beacon nodes is different, and the
position estimation algorithm is selected differently, thereby
generating different positioning precisions. However, the
positioning result of RSSI-NMDS algorithm is stable, and
the positioning accuracy of the algorithm is not affected by
the number of beacon nodes.-e algorithm does not need to
convert the RSSI value into distance and then coordinate
estimation. It can directly obtain the node with the RSSI
value. -e relative position coordinates also avoid the effect
of converting the RSSI value into a distance on the posi-
tioning accuracy.

-en, the RSSI-NMDS algorithm proposed in this paper
is compared with the algorithm in reference [13], the al-
gorithm in reference [14], and the algorithm in reference
[15]. Figure 4 shows the location error distribution of several
algorithms. According to Figure 4, the positioning error of
RSSI-NMDS algorithm proposed in this paper is smaller
than that of other three algorithms. According to the actual
coordinates of the reference node, the proposed RSSI-
NMDS algorithm uses the plane four-parameter model to
transform the coordinates and get the position of the node in
the actual coordinate system. -e simulation results show
that the method has strong anti-RSSI interference ability and
high positioning accuracy.

x/m
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Figure 2: Estimated position and actual position.

Table 1: Position data of some nodes.
Nodes Actual coordinates Estimated coordinates Error (m)
N1 (0.9, 9.0) (1.7, 8.9) 0.81
N2 (1.1, 7.4) (1.7, 6.8) 0.85
N3 (1.4, 4.2) (0.9, 3.6) 0.78
N4 (1.1, 8.0) (4.9, 8.1) 0.91
N6 (5.5, 6.6) (4.9, 5.9) 0.92
N7 (3.0, 4.8) (3.7, 4.5) 0.76
N8 (4.5, 3.1) (5.2, 2.9) 0.94
N9 (3.8, 1.9) (4.2, 1.3) 0.72
N10 (5.7, 8.5) (6.7, 9.1) 1.17
N11 (7.2, 6.5) (6.8, 5.6) 0.98
N12 (9.1, 6.8) (8.6, 6.0) 0.94
N13 (7.2, 2.5) (8.1, 3.4) 1.27
N14 (9.5, 2.5) (8.8, 3.1) 0.92
N15 (7.2, 1.5) (6.2, 0.7) 1.28
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Figure 3: Estimated position of the RSSI and RSSI-NMDS
algorithms.
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Figure 4: Location error distribution of four algorithms.
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5. Conclusions

In order to solve the problem that the RSSI-based posi-
tioning algorithm is easily affected by the complex envi-
ronment of the interior and the actual positioning accuracy
is low, this paper proposes the RSSI-NMDS algorithm. -e
nonmetric multidimensional scaling method is applied, and
the RSSI value is directly used for positioning, thereby
avoiding the calculation amount and error of the ranging.
-e simulation shows that the proposed algorithm can resist
the disturbance of RSSI value and has high positioning
accuracy. In the future research, we can study from the
following perspectives: in addition to the classical multidi-
mensional scaling method, there are many other derived
algorithms in the multidimensional scaling method. In the
process of indoor positioning, we can compare it with other
multidimensional scaling methods as much as possible, and
select the best method for indoor positioning. In the process
of wireless sensor network node localization, the use of more
regular node area, so in the irregular node area positioning is
worth further discussion. Although complex algorithms can
improve the positioning accuracy of sensor network nodes,
the energy consumption in wireless sensor networks is also a
problem, so the balance between energy consumption and
positioning accuracy in the network is worth further dis-
cussion and research.
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