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Precise fault recognition of motor rolling bearing fault is playing a significant role in any machinery and equipment. However,
conventional decomposition methods fail to completely reveal the fault signal information of motor rolling bearing due to mixed
modes problem. To solve the problem, the median-point mode decomposition (MMD) method is presented. )e MMD method
uses sort-based inversion to sort out each variation of the same time interval for better and specific mode decomposition, with the
assistance of the advanced envelope curve formed by the median points between adjacent extreme points. It certainly alleviates the
mixed mode during the iteration of intrinsic mode functions (IMFs).)erefore, comparison results are simulated in the proposed
MMDmethod with conventional methods. Experiment of motor rolling bearing fault is operated for fault recognition in order to
demonstrate the MMD algorithm.

1. Introduction

Rolling bearings are common components in rotating
machines, which have been significant in the industry. )e
motor signal is a nonlinear, nonstationary weak signal with
strong randomness. In the acquisition process, it will be
affected by external environmental actions or noise inter-
ference such as power frequency, leading to mixed modes in
the IMF components. )erefore, the preprocessing of this
type of signal is an important research problem. Meanwhile,
fault signal of the motor cannot be intuitively observed due
to its characteristic complexity, so it needs to be decomposed
or extracted in time domain and frequency domain and fault
characteristic values from multiple angles should be ob-
tained. Feature extraction is the core content of fault rec-
ognition. )e accuracy of the signal process and that of
feature extraction will directly affect the reliability of fault
recognition. )us, HHT is an adaptive time-frequency
analysis method to be used in the feature extraction of fault
recognition.

Conventional signal processing techniques can only
detect stationary and linear signals [1]. Wavelet transform
was studied for nonstationary signals and time-sfrequency

analysis [2], but the wavelet base function limits the result
of it, which may lead to a priori assumption on the
characteristics of the investigated vibration signal [3]. As a
self-adaptive signal processing method, empirical mode
decomposition (EMD) is analyzed to decompose the
complicated signal into a set of complete and intrinsic
mode functions (IMFs) [4, 5].

However, mixed mode problem is one of the major
drawbacks of EMD, caused by the screening process in the
EMD algorithm and the discontinuity of the eigenmode
function of a certain time scale and several time scales [6].
Mixed mode problem leads to the decomposed IMFs be-
coming distorted because the signals are mixed with dis-
continuous high-frequency weak noise interference and it
confuses the time-frequency distribution, making each IMF
lack physical meaning.

A simple mixed mode example would be like two
identical signals, one having low-order random noise and
the other not; the results of EMD decomposition can be
quite different [7–10]. Mixed modes in bearing faults cause
the fatal breakdown of machines and inestimable economic
losses [11–14]. In order to overcome the above problems,
ensemble empirical mode decomposition (EEMD) is studied
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as a new solution for mixed mode problem, which is through
adding finite white noise to the investigated signal. However,
the Gaussian white noise may make it difficult to determine
an ensemble mean as the different iterations can generate
different number of IMFs [15–18]. Furthermore, the EEMD
method is hard to be self-adaptive as it requires an amplitude
of noise and ensemble number as parameters.)erefore, it is
significant to detect the existence and severity of a bearing
fault with an efficiently fast, accurate method.

In this paper, a novel median-point algorithm with time
interval sort-based inversion is developed. EMD and EEMD
algorithms with some of their drawbacks are reviewed. )e
rest of the paper is organized as follows: In Section 2, the
principle of the proposed median-point mode decomposi-
tion is presented. )en, detail process simulations of MMD
are shown in Section 3, followed by the flowchart of the
MMD method. Finally, simulations of EMD and EEMD
based on the same original mode as MMD and simulated
fault recognition are all given to demonstrate that the
proposed method based on MMD obtains a more precise
mode decomposition result. )e proposed MMD method
can be applied in practice, particularly in fault recognition of
rolling element bearings since its occurrence.

2. Principle of the Proposed Median-Point
Mode Decomposition (MMD)

Median-point mode decomposition (MMD) can be treated
as a screening process, which is a self-adaptive method and
can decompose any complex signal into a list of intrinsic
mode functions (IMFs), which must meet two conditions as
follows in Table 1.

All the local extrema are identified as x(t). In EMD, the
first step is to construct the upper envelope and lower en-
velope in the signal by interpolating the local maxima and
minima, respectively, using cubic spline [11]. However, in
MMD, we apply sort-based inversion to detect out all pe-
riods in the same frequency and then, respectively, employ
only the median point between adjacent extreme points of
one specific part, to gain the median-point-fit-curvem(t) for
further managements.

Huge difference among EMD, EEMD, and MMD is that
the sort-based inversion algorithm is adopted in MMD to
sort the obtained time intervals from small to large. Set a
default maximum value rate of time intervals earlier. )en,
when the rate of change exceeds the set value, the system
defaults to take the time interval value before the change as
the maximum time interval value Tmax of this required
mode.

)e median-point-fit-curve is formed by cubic spline
function, under two different conditions, listed in Table 2.

)us, the difference between the local extrema of x(t) and
median-point-fit-curve m(t) is marked as equation (1),
which should meet the condition in Table 1:

h(t) � x(t) − m(t). (1)

Repeat the above steps until h(t) is an IMF, and then, set
ci(t)� h(t). )en, compute the residue ri(t)� x(t)− ci(t) and

set x(t)� ri(t) and repeat the above steps to extract the next
IMF until ri(t) is monotonic or constant.

)e result of MMD algorithm can be expressed as

x(t) � 
n

j�1
cj(t) + rn(t), (2)

where x(t) is decomposed into a series of IMFs cj(t) and a
residue r(t). For better presentation of the principle of
MMD, we have listed the steps ofMMD, as shown in Table 3.

3. Detail Process of MMD

)e original signal composed of signals with different am-
plitude and frequency ratios is crucial to the EMD\EEMD
mode mixing problems. As the principle of MMD is pre-
sented completely in Section 2, an example is presented as
follows, where x(t) is composed of x1, x2, x3, x4, and x5:

x1(t) � 0.01t, (3)

x2(t) � 0.1 sin(2πt), (4)

x3(t) � 0.12 sin(6πt), (5)

x4(t) � 0.15 sin 16πt2( , (6)

x5(t) � 0.35 sin 76πt1( , (7)

where 0≤ t≤ 2, 0.3≤ t2 ≤ 0.6, and 1.3≤ t1 ≤ 1.6, shown in
Figure 1.

)e original signal x(t) consists of constituent signals
with different degrees of frequency separation, which is
shown in Figure 1. Mixed mode exists in nonlinear and
nonstationary signals. In order to verify the sensitivity of
MMD to signal changes, the proposed method adds new
interference processing in the time t1 � 0.3 s and t2 �1.3 s and
ends at the time of 0.6 s and 1.6 s, respectively. Each com-
ponent in x(t) contains only a simple vibration mode (single
instantaneous frequency), and the signals of these compo-
nents can completely represent the real physical information
in the original signal.

For comparison, the simulation signal x(t) is analyzed
using the EMD and EEMD method and the decomposition
results are displayed in Figures 2 and 3.

Notice that when EMD is operated on the original signal
x(t), the result is as shown in Figure 2. Mixed mode problem
makes the scale of the first-order IMF1 (c1) different, and the
scale of IMF2 (c2) is also affected by c2, while c3 and c4
contain the same scale signal. It can be judged that there are
obvious mixed modes existing, leading to the mode com-
ponent becoming seriously distorted, as compared with the
original signal. It is indistinct that the problem of mixed
modes appears at IMF1-4 below, showing that the EMD
method fails to provide the reasonable decomposition.

)e components y1, y2, y3, y4, and y5 in original signal
x(t) are defined in (equations (3)–(7)). From top to the
bottom of Figure 2, each subfigure represents IMFs with
ascending order and is produced by the EMD method.
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Despite the previous example [1] showing the EMD’s
accurate decomposition of a synthetic signal, the result
above indicates that the mixed modes problem containing
mixed components of the input signal cannot be decom-
posed successfully.)erefore, the same original signal x(t) is
taken as the input signal for the EEMD method for better
comparison, shown as follows.

In Figure 3, it can be observed that when mixed modes
occur, the signal components of different scales coexist in the
same order of IMF. In other words, signal components with
different frequencies coexist in the same order of IMF. From
top to the bottom of Figure 3, each subfigure represents
IMFs with ascending order produced by the EEMDmethod.
As EEMD performing the signal x(t), mixed modes can be
reduced to a certain extent, but it cannot be eliminated
fundamentally, and the decomposition result cannot reveal
the signal characteristics and provide accurate information.

Note that MMD has multiresolution analysis and the
advantages of signal analysis such as local adaptability,
shown in Figure 4, where IMF1 is decomposed without the
influence of mixed mode problem.

)e process of the method for decomposing signals into
each IMF is shown in Figure 4, demonstrating the advantage
of self-adaptiveness and high efficiency in MMD.

)e red curve in Figure 4 is the median-point-fit-curve
m(t), and the blue curve is the original signal x(t); the
difference between x(t) andm(t) can be obtained as an IMF if
conditions meet equally (Table 1), denoted as h(t). Even with
a complex original signal in Figure 1, it can be noticed that
imf1 h(t)� x(t) –m(t) without obvious mixed mode.

Hence, the IMFs h(t) equals the difference between the
original signal x(t) and the median-point-fit-curvem(t). )e
MMD algorithm is operated in all five different composition
processes in five different time intervals sorted by the

Table 1: Conditions of IMF.

Condition 1 )e number of signal extreme points is equal to zero point or the difference in them is within 1.

Condition 2 At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is
zero.

Table 2: Conditions of the maximum time interval value Tmax.

Condition 1 When the interval of adjacent extreme points is larger than Tmax, the value of median point would be the magnitude and
amount of time of x(t) between the current extreme points.

Condition 2 When the interval is less than Tmax, theMMD assigns the value of median point from the current adjacent extreme points and
the value of median point corresponding to the original signal, together to the value of median point.

Table 3: )e MMD algorithm.
Step 1 Identify all the local extrema of x(t).
Step 2 Obtain the local maxima and minima of x(t).
Step 3 Gain all the time intervals between adjacent extreme points.
Step 4 Apply sort-based inversion algorithm for time intervals from high frequency to low.
Step 5 Determine the rate of change of the time interval and set a maximum of time interval Tmax.
Step 6 Gain different values of median point in different periods of time intervals based on two conditions of Tmax.

Step 7 In each sorted period of time intervals, through cubic spline function, form the median-point-fit-curve with all the gained median
points m(t).

Step 8 Set h(t)� x(t)−m(t).
Step 9 Repeat the above steps until h(t) is an IMF, check in Table 1, and then set ci(t)� h(t).
Step 10 Compute the residue ri(t)� x(t)− ci(t).
Step 11 Set x(t)� ri(t) and repeat the above steps to extract the next IMF until ri(t) is monotonic or constant.

4
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

x(t)

Figure 1: Synthetic signal waveform x(t).
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ranking algorithm, in order to obtain IMF1-5, shown in
Figure 5.

)e result in Figure 5 demonstrates that the MMD
method can effectively decompose the added interferences
and normal signal into the correct constituent signals in
various cases, alleviating mixed modes problem and being
self-adaptive at the same time.

It can be seen from the results of IMFs in Figure 5 that
MMD algorithm can decompose a series of IMFs from high
to low frequencies, without the influence of mixed mode
problem.

As the problem of mixedmode occurs, an IMF can cease to
have physical meaning by itself, suggesting falsely that there
may be different physical processes represented in a mode. In
MMD, when acquiring IMF components, because too many
iterations would damage the integrity of the signal and its
physical meaning, the number of iterations needs to be limited.
)erefore, the criterion to end iterations used in this method is
already written in Tables 1 and 2 and Step 11 of Table 3.

Additionally, observing the differences of EMD and
EEMD shown in Figures 2 and 3, the decomposition result of
the EEMD method is better than that of the EMD method.
However, EEMD takes three more steps to iterate out the
final IMF component. )us, the result of MMD using the

same original signal x(t) given in Figure 5 represents better
mode decomposition.

Applying MMD to decompose x(t) resulted in a series of
IMFs, where the imf1-5 denote all the IMFs, showing a
successful decomposition of four smoothly sinusoidal sig-
nals and single residual, accordingly. As can be seen, MMD
can solve the problem of mixed modes well with the mode
component very similar to the original signal. Comparing
Figures 3–5, the IMFs decomposed by MMD is obviously
more accurate than the decomposition results of EMD and
EEMD. )e frequency of each IMF is sequentially reduced,
and the waveform transformation is more regular. It shows
that MMD can avoid mixed mode because it could separate
high-frequency and low-frequency components clearly and
obtain the meaningful signal sufficiently. It can also prove
that MMD maintains the adaptability in signal
decomposition.

In the interim, the implementation flowchart of this
proposed MMD method is shown in Figure 6. )e x(t)
represents original signal in Figure 1. c(t) stands for each of
IMFs h(t), and r(t) denotes residue, which equals to x(t) –
c(t). )e median-point-fit-curve m(t) is formed by cubic
spline function. At first, identify all the local extrema of
original signal x(t) to obtain the local maxima andminima of
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Figure 2: EMD result of signal x(t).
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x(t). )en, the time interval in all the adjacent extreme
points is arranged in ascending order with sort-based in-
version, selecting out the different frequency periods for
MMD to operate, respectively. Check two conditions about
the pre-set maximum of time interval Tmax of Table 2, then
the cubic spline function is used to form the median-point-
fit curve in each sorted time interval, and the median-point-
fit curve obtained is processed in the next step according to
the EEMD and EMD methods. Finally, the MMD algorithm
achieves self-adaptive mode decomposition with the alle-
viation in mixed modes.

4. Motor Fault Recognition Experiments

)e characteristic complexity in motor fault signal makes it
hard to be detected. Generally, engineers and researchers
adopt different diagnostic methods for different bearing
faults of motors, but each one needs the separation from the
decomposition and extraction of modes.

When a bearing fault occurs in an asynchronous motor,
its vibration frequency will change significantly, and for
different types of bearing faults, the characteristic frequency
of the fault produced is also different.
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Figure 3: EEMD result of signal x(t).
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)erefore, the type of bearing failure can be identified by
the vibration characteristic frequency. )e following is the
vibration characteristic frequency formula of various

bearing faults. )e expression of outer ring fault fOD, inner
ring fault fID, rolling element fault fBD, and cage fault fCD,
are shown as follows [12]:
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Figure 4: Synthetic signal waveform x(t) for obtaining IMF1.

0 0.2 0.4 0.6 0.8 1
Time

1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1
Time

1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1
Time

1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1
Time

1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1
Time

1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1
Time

1.2 1.4 1.6 1.8 2

IMF1

IMF2

IMF3

IMF4

IMF5

IMF6

0.2
0

–0.2

A
m

pl
itu

de

0.2
0

–0.2A
m

pl
itu

de

2

0

–2A
m

pl
itu

de

2

0

–2A
m

pl
itu

de

1

0.5

0A
m

pl
itu

de

1

0

–1A
m

pl
itu

de

Figure 5: MMD result of signal x(t).
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fOD �
n

2
frm 1 −

db

dp

cosΦ , (8)

fID �
n

2
frm 1 +

db

dp

cosΦ , (9)

fBD �
dp

2db

frm 1 −
db

dp

cosΦ 

2
⎡⎣ ⎤⎦, (10)

fCD �
1
2
frm 1 −

db

dp

cosΦ , (11)

where frm is the rotation frequency of motor, db and dp are
the diameter of the bearing rolling elements and the di-
ameter of the bearing cage, respectively, n is the number of

the bearing rolling elements, and V is the contact angle of
rolling element.

As we can see above, the rolling element of motor rolling
bearing fault is simulated and the time-domain waveform of
the fault vibration signal is shown in Figure 7, where the
vertical axis represents the vibration signal of the motor. For
better observation, an enlarged view of Figure 7 during the
time of zero to two seconds is presented in Figure 8. At the
same time, the four IMF components (IMF1∼IMF4) and one
residual term (Res) obtained by adaptive MMD decompo-
sition of the fault vibration signal are shown in Figure 9.
Note that from the corresponding kurtosis value of each IMF
component, we can conclude that since the kurtosis value of
the IMF component of the 4th layer is the largest, the IMF4
component contains a lot of obvious fault characteristic
information.

)erefore, the characteristics of the vibration signal as
the rolling bearing outer ring in motor fault are verified,
which demonstrates the effectiveness of the MMD method
for the fault recognition.

Note that the MMD algorithm is able to alleviate the
mixed modes problem in fault signal, where each IMF shows
a certain periodicity. In this proposed method, the algorithm
based on MMD and sort-based inversion is used to separate
and alleviate themixedmodes. MMD decomposition of each
quasi-margin term is re-decomposed to realize the self-
adaptive function, making sure every IMF meets the con-
ditions in Table 1. )e result of EMD and MM obtained are
both shown in Figure 9, illustrating through comparison
with the conventional method that the algorithm success-
fully separated mixed modes problems in motor fault.

In Figure 9, the signal of IMF1 is completely extracted in
the MMD method, while the EMD method still has mixed
mode problem. Note that the resonance occurs with specific
resonance frequency, and we manage to analyze with Hil-
bert–Huang spectrum for further needs of fault recognition.

In order to respond to the relationship between time-
frequency-amplitude more intuitively, the three-dimen-
sional Hilbert spectrum based on the information from the
above IMFs is drawn in Figure 10. In Figure 10, there are
fluctuations in the low-frequency part, but basically no
energy distribution on the high-frequency part, which can be
seen as linearly distributed and stable.

For better observation in the low-frequency part,
comparative IMFs marginal spectrums of EMD and MMD
in motor rolling bearing fault are given in Figure 11. )e
decomposition result ofMMDhas 5 IMFs.)e IMFs contain
enough physical meaning which are called effective intrinsic
functions (EIMF). False intrinsic mode function (FIMF)
components denote no physical meaning in IMFS. As can be
seen in Figure 11, the result from EMD of Figure 11(a)
conducts more numbers of FIMFs than MMD, which means
the MMD method has better performance, particularly in
fault recognition of rolling element bearings.

It can be seen from Figure 11(b) that the largest am-
plitude is around 0.35 with the frequency of near 38Hz.
According to theoretical calculation in equation (9), the
inner ring is faulty with the calculated frequency of 37.6Hz.
)us, the frequency near 38Hz occupies the main
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Figure 6: Implementation flowchart of MMD.
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Figure 9: Result of signal of motor rolling bearing simulated fault. (a) EMD method; (b) MMD method.
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components, representing ability gathering, which proves
obvious fault information and can be treated as a motor
rolling bearing fault. )at is, the MMD method can effec-
tively extract the signal feature effectively and avoid the
mixed modes problem.

Figure 12 shows the whole process of MMD applied in
practice for extracting the motor fault; thus, the detected

feature vector verifies the effectiveness of the proposed
algorithm.

5. Conclusions

A fault recognition method for motor rolling bearing fault is
put forward in this paper, which is based on a novel median-
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Figure 11: Each IMF marginal spectrum of MMD in motor rolling bearing simulated fault. (a) EMD method; (b) MMD method.
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Figure 12: Process of MM when applied to fault recognition.
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point mode decomposition (MMD) with sort-based inver-
sion algorithm. )e MMD method is not only suitable for
analyzing complex multicomponent signals but also chosen
to precondition the vibration signal of the roller bearing to
produce a set of IMF components. For the fact that the
vibration signal is nonlinear and unstable, theMMDmethod
keeps the algorithm self-adaptive for sorting out each var-
iation of the extreme points interval with better and specific
mode decomposition. Comparison simulations and exper-
iments are operated to highlight the advantages of MMD in
dealing with mixed mode problem in nonlinear signals.

In summary, MMD is a better choice when the signal
needs time-frequency analysis, especially when the signal is
nonlinear and nonstationary. )e proposed method MMD
keeps the advantages of EMD and EEMD and avoid mixed
mode, whichmakes it capable of capturing the features of the
signal in motor rolling bearing fault accurately. [13–18]
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L. Boquete, “Analysis of gamma-band activity from human
EEG using empirical mode decomposition,” Sensors, vol. 17,
no. 5, p. 989, 2017.

[5] Y. Li, J. Liu, and Y. Wang, “Railway wheel flat recognition
based on improved empirical mode decomposition,” Shock
and Vibration, vol. 2016, Article ID 4879283, 14 pages, 2016.

[6] J. Zheng, J. Cheng, and Y Yang, “Partly ensemble empirical
mode decomposition: An improved noise-assisted method for
eliminating mode mixing,” Signal Processing, vol. 96,
pp. 362–374, 2014.

[7] G. Li, Z. Yang, and H. Yang, “Noise reduction method of
underwater acoustic signals based on uniform phase empirical
mode decomposition, amplitude-aware permutation entropy,
and pearson correlation coefficient,” Entropy, vol. 20, no. 12,
p. 918, 2018.

[8] J.-C. Nunes and E. Delechelle, “Empirical mode decompo-
sition: Applications on signal and image processing,” Ad-
vances in Adaptive Data Analysis, vol. 1, no. No. 1,
pp. 125–175, 2009.

[9] C. Wang, H. Li, and D. Zhao, “A preconditioning framework
for the empirical mode decomposition method,” Circuits
System Signal Process, vol. 37, no. 12, pp. 5417–5440, 2018.

[10] R. T. Rato, M. D. Ortigueira, and A. G. Batista, “On the HHT,
its problems, and some solutions,” Mechanical Systems and
Signal Processing, vol. 22, no. 6, 2008.

[11] R. Ho and K. Hung, “A comparative investigation of mode
mixing in EEG decomposition using EMD, EEMD and
M-EMD,” in IEEE 10th Symposium on Computer Applications
& Industrial Electronics (ISCAIE), pp. 203–210, Penang,
Malaysia, April 2020.

[12] X. Hu, S. Peng, and W.-L. Hwang, “EMD revisited: A new
understanding of the envelope and resolving the mode-
mixing problem in AM-FM signals,” IEEE Transactions on
Signal Processing, vol. 60, no. 3, pp. 1075–1086, 2012.

[13] T.-L. Kung and C.-N. Hung, “Estimating the subsystem re-
liability of bubblesort networks,” 'eoretical Computer Sci-
ence, vol. 670, pp. 45–55, 2017.

[14] G. Xua, Z. Yangb, and S. Wang, “Study on mode mixing
problem of EMD,” in Proceedings of the Joint International
Information Technology, Mechanical and Electronic Engi-
neering Conference, Chongqing China, May 2016.

[15] Y. R. Du, L. H. Chen, and H. Jin, “A new view of mode mixing
phenomenon,” Applied Mechanics and Materials, vol. 532,
pp. 134–137, 2014.

[16] Y. Kopsinis and S. McLaughlin, “Investigation and perfor-
mance enhancement of the empirical mode decomposition
method based on a heuristic search optimization approach,”
IEEE Transactions on Signal Processing, vol. 56, no. 1, 2008.

[17] Y. O. Adu-Gyamfi, N. O. Attoh-Okine, and A. Y. Ayenu-Prah,
“Critical Analysis of different hilbert-huang algorithms for
pavement profile evaluation,” Journal of Computing in Civil
Engineering, vol. 24, no. 6, 2010.

[18] B. Xu, Y. Sheng, P. Li, Q. Cheng, and J. Wu, “Causes and
classification of EMD mode mixing,” Vibroengineering Pro-
cedia, vol. 22, pp. 158–164, 2019.

10 Mathematical Problems in Engineering


