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*e reliable operating region, which is the set of all possible points in the design space that satisfy the reliability requirement, is
capable to improve the reliability of products in the design stage. However, the reliable operating region has an irregular geometry
shape and it is hard to derive an explicit expression; therefore, its practicality is poor. In order to obtain a more convenient
approach, this paper proposes a reliable hyperrectangle operating region, which is expressed by permissible intervals for each
design parameter and has the advantage that design parameters are decoupled. An iterative algorithm that seeks an axis-parallel
reliable hyperrectangle with maximum volume is proposed. Starting from a design point with target performance, the lengths of
the sides of the reliable hyperrectangle are iteratively updated. *eoretical analysis shows that the proposed algorithm is
convergent. Furthermore, we extend the proposed methodology to deal with design space constraints. Some numerical examples
and engineering cases demonstrate that the proposed algorithm can achieve the requirement of reliability efficiently.

1. Introduction

*ere are many product quality indexes, among which
performance and reliability are the most important. Per-
formance is a measurement that designers use to evaluate
products’ operation. Reliability relates to a products’ ability
to perform its specified performance under the stated
conditions [1].

Design, manufacture, use, maintenance, and various
other factors determine the reliability of products [2, 3]. In
the manufacturing industry, however, the focus is upon the
design and manufacture of products. It is relatively easy to
evaluate reliability in the later stages of product develop-
ment, but it is expensive to change and improve products at
that time. *is makes it important to ensure product reli-
ability in the earlier design stage [4].

*e relationship between the design and the perfor-
mance is shown in Figure 1. In this paper, the vector x � (x1,
. . . , xm) represents the design points or design parameters
[5] and the function h(x) describes the performance, and y

denotes the output performance, and the performance
specification [5] describes the performance requirement of
products, represented by [yl, yu].*e design space is defined
by the lower and upper bounds, represented by xl � (xl

1, . . . ,
xl

m) and xu � (xu
1 , . . . , xu

m), respectively. *e feasible oper-
ating region [5] or feasible space [6] is the set of all possible
points in the design space that satisfy the performance
specification in the deterministic case. *e set of all possible
points in the design space that meet the reliability re-
quirement in the probabilistic case is called the reliable
operating region [7, 8] or reliable design space [6]. *e
reliable operating region defined by the probabilistic case
ought to be a subset of the feasible operating region, for
which no uncertainty is considered [8, 9]. An exact de-
scription of the reliable operating region is in general not
simple, since it may be a very complex set [6].

Some efforts have been devoted to the reliability design
[8–13], and the existing literature is mainly focused on how to
find an optimum design point in the reliable operating region
[6, 14–16]. Aiming to find the optimum design point while
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considering the impacts of uncertainties, a method based on
the first-order reliability was proposed in [6], which converted
the probabilistic constraints to approximate deterministic
constraints without unduly sacrificing accuracy. A determin-
istic optimization method was presented to identify the opti-
mum design points whose performances are equal to the target
values within the reliable operating region in [14].

Apart from the optimum design point, engineers are also
interested in the reliable operating region because it provides
the permissible ranges for design parameters. However, the
reliable operating region is irregularly shaped and incon-
venient to use. It is desirable in engineering to build a space
which is not only reliable but also easy to use.

We aim to seek a maximum reliable hyperrectangle
operating region in which every design point satisfies the
reliability requirement. *ere are two main benefits from
this hyperrectangle. First, it determines a relatively large
permissible interval for each design parameter, so engineers
can use low-precision equipment which helps to reduce the
manufacturing cost. Second, it is such that design param-
eters are decoupled. For a design to be reliable, the choice of
a design parameter value within its assigned interval does
not depend on the values of the other design parameters as
long as they are within their respective intervals.

In some approaches, hyperrectangles are identified with
the aid of Monte Carlo sampling technique [17–19]. Cluster
analysis in [19] was to compute hyperrectangles on the basis
of one stochastic sample of design points. *is approach is
limited to problems with large design spaces or extremely
large sample sizes.*e stochastic algorithm proposed in [20]
combined query and online learning, which probed a
candidate hyperrectangle by stochastic sampling, and then
readjusted its boundaries in order to, first, remove designs
outside the feasible operating region and, second, explore
more design space that had not been probed before. *e
quality of the results and the efficiency of this stochastic
algorithm were studied in detail in [21]. *is stochastic
approach, however, produced a hyperrectangle that might
contain some design points outside the feasible operating
region andmight not have the best size because Monte Carlo
sampling was used to estimate the boundaries of the feasible
operating region. *e algorithm presented in [5], applied
interval arithmetic within an iterative optimization scheme
to decide whether the candidate hyperrectangle was con-
tained in the feasible operating region. Interval arithmetic,
however, limits the applicability of the algorithm because the
accuracy of the results depends on the problem and cannot
be assessed for general cases [22].

*ere are several challenges associated with seeking the
maximum hyperrectangle. First, because the reliable

operating region is often irregularly shaped, we cannot solve
this optimization problem directly. How to find a reliable
hyperrectangle with the maximum volume, which is con-
tained in the reliable operating region, is challenging. Sec-
ond, the initial point of the reliable hyperrectangle is critical,
but how to determine a reasonable initial point is difficult.

To address these challenges, firstly, we propose an it-
erative algorithm called the reliable hyperrectangle algo-
rithm. *is algorithm iteratively updates the lengths of the
sides of the reliable hyperrectangle. Moreover, we prove the
convergence of this algorithm under some conditions.
Furthermore, the design point whose performance is ap-
proximately equal to its target value is suitable as the initial
point.

2. The Reliable Hyperrectangle

As we point out in the introduction, the reliable operating
region is determined by the performance function, the
performance specification, and the reliability requirement. It
is hard to describe the geometry shape of the reliable op-
erating region and difficult to derive an explicit expression
[23]. *e lack of the explicit expression brings difficulty to
the directly application of the reliable operating region in the
practical engineering. *is motivates us to find a reliable
hyperrectangle operating region. Actually, because the
rectangle-shaped operating region is characterized by simple
structure, convenient operation, easy control, and powerful
usability, it has been widely applied in other engineering
problems [24]. For example, the hyperrectangle is used for
concurrent design of vehicle tires and axles in [25] and is
applied to some medical problems in [26].

*e axis-parallel reliable hyperrectangle operating re-
gion is expressed as intervals for each design parameter. It
has the advantage that design intervals for one design pa-
rameter are independent of the other design parameter
values, that is, design parameters can be decoupled. *e
reliability requirement is satisfied as long as design pa-
rameters lie within their respective design intervals.
Moreover, the intervals might be combined with intervals of
other disciplines, thus their cross-sections are global reliable
hyperrectangle. Additionally, maximum flexibility for the
design is provided if the intervals are as large as possible.

*e problem for solving the global minimum of a
function in a hyperrectangle operating region has been
studied [27–30]. Instead, this paper focuses on the inverse
problem, that is, finding a maximum hyperrectangle oper-
ating region which enables the function to satisfy
constraints.

In this section, we consider hyperrectangle design in two
different cases. One is the deterministic case in which we
assume there are no random errors among the manufacture
or the effect of the errors is usually very small and can be
neglected. *e other is the probabilistic case in which we
assume there exist random errors between the nominal
performances and the output performances.

*e axis-parallel hyperrectangle is a product of intervals,
that is,

Performance
specification

Output per-
formance

Design point

Reliable oper-
ating region

Performance
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Figure 1: *e relationship between design and performance.
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Ω � I1 × I2 × · · · × Im, (1)

where Ii � [xll
i , xuu

i ] and xll
i and xuu

i are the lower and upper
boundaries of the hyperrectangle. As convenient, we group
the lower boundaries, xll

i ’s into a vector xll and group the
upper boundaries xuu

i ’s into a vector xuu, that is, xll �

(xll
1 , . . . , xll

m) and xuu � (xuu
1 , . . . , xuu

m ).

2.1. Feasible Operating Region (Deterministic Case). In the
deterministic case, the relationship between the design point
and the output performance is stated as

y � h(x), (2)

that is, the uncertainty is not considered.
We are looking for a maximum hyperrectangle, which

has the advantage that whatever design point is selected in
this hyperrectangle, it will comply with the performance
specification. *at is, we seek a maximum hyperrectangle
contained in the feasible operating region.

*e problem of searching for a maximum hyper-
rectangle in the feasible operating region can be formu-
lated as follows:

max
xll ,xuu

􏽑
m

i�1
xuu

i − xll
i( 􏼁,

subject to mdl xll, xuu( 􏼁≥ 0,

mdu xll, xuu( 􏼁≥ 0,

xl ≤ xll ≤ xuu ≤ xu,

(3)

where

mdl xll
, xuu

􏼐 􏼑 � min
xll≤x≤xuu

h(x) − y
l
, (4)

mdu xll
, xuu

􏼐 􏼑 � min
xll≤x≤xuu

y
u

− h(x). (5)

If the conditions mdl(xll, xuu)≥ 0 and mdu(xll, xuu)≥ 0
are satisfied, then for any x ∈ [xll, xuu], we haveyl ≤ h(x) ≤yu.
*is implies that each design point in the hyperrectangle
maintains the output performance within specified bounds.

2.2. Reliable Operating Region (Probabilistic Case). Due to
noise factors andmanufacture errors, there exist some errors
between the output performances and the nominal per-
formances. Let ε represent the random error, then

y � h(x) + ε, (6)

that is, uncertainty is considered. Notice that ε is a random
error which is described by a statistical distribution type
predetermined by engineers.

In this probabilistic case, the reliability can be calculated
point by point as follows:

r(x) � P y
l ≤y≤y

u
􏼐 􏼑, (7)

where

P y
l ≤y≤y

u
􏼐 􏼑 � P y

l
− h(x)≤ ε≤y

u
− h(x)􏼐 􏼑

� F y
u

− h(x)( 􏼁 − F y
l
− h(x)􏼐 􏼑,

(8)

and F(·) is the cumulative distribution function of ε. *e
design point is considered reliable if its reliability is above a
given threshold α. *e reliable operating region is the set of
all possible points in the design space whose reliabilities are
above this given threshold.

Maximizing an axis-parallel hyperrectangle in which
each design point can satisfy the reliability requirement, that
is, seeking an axis-parallel maximum hyperrectangle in the
reliable operating region, can be stated as the following
optimization problem:

max
xll ,xuu

􏽑
m

i�1
xuu

i − xll
i( 􏼁,

subject to mp xll, xuu( 􏼁≥ 0,

xl ≤ xll ≤ xuu ≤ xu,

(9)

where

mp xll
, xuu

􏼐 􏼑 � min
xll≤x≤xuu

r(x) − α. (10)

If the condition mp(xll, xuu)≥ 0 is satisfied, then for any
x ∈ [xll, xuu], we have r(x)≥ α. *is implies there is at least
a 100α% probability that the obtained products are reliable
as long as the design point is within the reliable
hyperrectangle.

In order to verify whether the design point satisfies the
reliability requirement, the Monte Carlo sampling technique
is used. We sample some random errors from the pre-
determined distribution and calculate the coverage proba-
bility which is the proportion that the output performances
lie within specified bounds. Notice that the output perfor-
mance is given by equation (6), that is, the sum of the
nominal performance and the random error. If the coverage
probability is above the given reliability threshold, the re-
liability of the design point is considered to be validated.

3. The Reliable Hyperrectangle Algorithm

*e optimization problems (3) and (9) cannot be directly
solved, so an iterative method is used. In this section, we
propose an iterative reliable hyperrectangle algorithm,
which starts from an initial point x0 � (x01, x02, . . . , x0m) to
search out a maximum hyperrectangle in the reliable op-
erating region. For some ϵ > 0, the condition mp(x0, x0)≥ ϵ
is satisfied.We will present the selection strategy of the initial
point x0 in the remainder of this paper.

*is section mainly presents how to use the proposed
algorithm to solve problem (9). *is algorithm can also be
used to solve problem (3).

3.1. Algorithm Design. *e proposed iterative algorithm is
called the reliable hyperrectangle algorithm.*e basic idea is
to adjust the boundaries of the hyperrectangle one-by-one
until they cannot be extended any further. If an index i is
selected, the hyperrectangle is updated by increasing an
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appropriate size in the ith design parameter while other
design parameters are fixed. Assuming the index i is chosen
in a cyclic manner from the set o � (o1, o2, . . . , om), which is
a permutation of 1, 2, . . . , m.

More specifically, if an index i ∈ o is selected, an ex-
tension part of the hyperrectangle is expressed by the lower
boundary lui and the upper boundary uu

i , where lui �

(xll
1 , . . . , xll

i− 1, xuu
i , xll

i+1, . . . , xll
m) and uu

i � (xuu
1 , . . . ,

xuu
i− 1, xuu

i + d, xuu
i+1, . . . , xuu

m ). We first seek an appropriate size
d which ensures the extension part of hyperrectangle is
reliable, that is, the condition mp(lui , uu

i )≥ ϵ is satisfied.
*en, we setxuu

i � xuu
i + d. *e upper boundary of the ith

design parameter is updated.
*e step size d is determined by the following method.

Given an initial step size d0, if the condition mp(lui , uu
i )≥ ϵ is

satisfied, we accept this step. Otherwise, based on the di-
chotomy method, we find some d between 0 and d0 such
that mp(lui , uu

i ) � ϵ. Notice that the value of mp(lui , uu
i ) is

calculated by the interior-point algorithm.
*e lower boundary xll is also updated in the same

manner. For the selected index i, we use the method similar
to that of updating the upper boundary to determine an
appropriate step size d which subjects to mp(lli, ul

i)≥ ϵ,
where lli � (xll

1 , . . . , xll
i− 1, xll

i − d, xll
i+1, . . . , xll

m) and ul
i �

(xuu
1 , . . . , xuu

i− 1, xll
i , xuu

i+1, . . . , xuu
m ). *en, we set xll

i � xll
i − d.

*e lower boundary of the ith design parameter is updated.
*us, we begin with an initial point x0 and iteratively

update the boundaries of each design parameter. *e iter-
ation is terminated, when each design parameter reaches the
boundary of the reliable operating region.

Note that we extend the boundaries of the hyper-
rectangle by a relatively small step size, especially when the
performance function h(x) is multimodal. *is setting has
the advantage that the values of mp(lui , uu

i ) and mp(lli, ul
i)

calculated by the interior-point algorithm have a high
possibility to be the global minimum of r(x) − α on the
extended hyperrectangles [lui , uu

i ] and [lli, ul
i], respectively,

and thus ensures the obtained hyperrectangle is indeed
contained in the reliable operating region.

*e order in which the updates of the design parameters
are performed, however, may have an effect on the result.
*erefore, we use all possible permutations of 1, 2, . . . , m to
give m! different orders, where m! is the factorial of the
number m. In the outer loop, we loop over m! different
orders (index t). In the inner loop, the boundaries of the
hyperrectangle are adjusted one-by-one in order ot until
they cannot be extended any further. *us, we obtain m!

hyperrectangles, and the one with the maximum volume is
chosen as the resulting hyperrectangle.

A formal description of the reliable hyperrectangle al-
gorithm, including some more details that are important to
the following analysis of its convergence, is given in Figure 2.

3.2. Convergence Analysis. In this section, we give the
convergence analysis of the proposed algorithm under the
assumption that the performance function h(x) is contin-
uous. First, we have the following theorem, and the detailed
proof is given in Supplementary Material (available here).

Theorem 1. mp(lui , uu
i ) is a single variable function of d and

it is continuous for all d≥ 0 under the assumption h(x) is
continuous.

In the reliable hyper-rectangle algorithm, the outer loop
loops over allm! different orders, therefore the convergence of
algorithm is proved as long as the inner loop is terminated
after finite iterations. In the inner loop, we conclude that the
ith design parameter is removed from the index set Iu if either
of the following two conditions is satisfied.*e first one is that
it reaches the bounds of the design space. And the second one
is that it reaches the boundary of reliability constraints.

We show that either of the two termination conditions is
satisfied within finite iterations. From*eorem 1,mp(lui , uu

i ) is
a single variable function of d. Moreover, by the definitions of
lui and uu

i , the value of mp(lui , uu
i ) at d � 0 is always greater

than or equal to ϵ. If the value of mp(lui , uu
i ) at d � d0 is below

ϵ, then, due to the continuity of mp(lui , uu
i ), according to

Intermediate Value *eorem [31], there exist some points d

between 0 and d0 such that mp(lui , uu
i ) � ϵ. *us, the second

termination condition is met after finite iterations. Otherwise,
the first termination condition is met after (xu

i − x0i)/d0
iterations.

Similarly, the ith design parameter is removed from the
index set Il after finite iterations. *erefore, the convergence
of the reliable hyperrectangle algorithm is guaranteed.

3.3. Optimality Analysis. *e order in which the updates of
boundaries of design parameters are performed one-by-one,
however, may have an effect on the result. To solve this
problem to a certain degree, we use nested loops in the
reliable hyperrectangle algorithm. *e outer loop loops over
all m! different orders. *e inner loop updates the bound-
aries of the hyperrectangle one-by-one in order ot until they
cannot be extended any further. *us, the boundaries of the
hyperrectangle obtained and the one with the maximum
volume is chosen as the resulting hyper-rectangle. In this
sense, the result of this algorithm is locally suboptimal.

3.4. Extensions. In this section, we consider the extension of
the proposed algorithm. First, we consider the extension of
this algorithm to deal with multiple performances. We as-
sume p performances are defined by

y � h(x) + ε, (11)

where y � (y1, . . . , yp), h(x) � (h1(x), . . . , hp(x)), and
ε � (ε1, . . . , εp). Given performance specifications [yl, yu],
the equation r(x) in problem (9) can be rewritten as

r(x) � P yl ≤ y ≤ yu
􏼐 􏼑 � P yl

− h(x) ≤ ε≤ yu
− h(x)􏼐 􏼑

� 􏽚
yl − h(x)≤ε≤yu− h(x)

f(ε)dε,

(12)

where f(·) is the joint probability density function of
random errors.

Next, we consider the extension of the proposed algo-
rithm to deal with the design space constraints. We assume
the design space is constrained by q inequalities, that is,
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Figure 2: Pseudocode of the reliable hyperrectangle algorithm is adjusted for all dimensions one-by-one in m! different orders and then m!

hyperrectangles are adjusted.
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gj(x)≥ 0, j � 1, . . . , q. Under this situation, problem (9) can
be formulated as follows:

max
xll ,xuu

􏽑
m

i�1
xuu

i − xll
i( 􏼁,

subject to mpg xll, xuu( 􏼁≥ 0,

xl ≤ xll ≤ xuu ≤ xu,

(13)

where

mpg xll
, xuu

􏼐 􏼑 � min mp xll
, xuu

􏼐 􏼑,mg xll
, xuu

􏼐 􏼑􏽮 􏽯, (14)

mg xll
, xuu

􏼐 􏼑 � min
xll≤x≤xuu

min
j�1,...,q

gj(x), (15)

and mp(xll, xuu) is the same as that in equation (10). We can
employ the reliable hyperrectangle algorithm to tackle this
problem similarly.

3.5. Initial Point. In the practical engineering application,
engineering personnel’s aim is to gain a maximum reliable
hyperrectangle around the design points where the per-
formances are equal to their target values, so it is appropriate
to consider this design point as the initial point.

However, there are usually multiple design points
where the performances are equal to their target values.
Some of those are near the boundary of the reliable op-
erating region, while others are away from the boundary of
the reliable operating region. *e design point which sits
near the boundary is unsuitable as initial point. Here, we
use the tolerance design to reduce the size of the reliable
operating region and obtain a design point which not only
minimizes deviation between the performance and their
target values but also sits away from the boundary of the
original reliable operating region.

Tolerance design pays attention to how variations in
design parameters are transmitted to the constraint func-
tions [32]. In general, the maximum variation of design
parameter i is denoted by Δxi. *e effect of variations on a
constraint function can be estimated from a first-order
Taylor’s series as follows:

Δgj � 􏽘
m

i�1

zgj

zxi

Δxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (16)

where Δgj represents the constraint variation transmitted to
constraint function gj. If the value of Δxi is not given by
engineers, then we set Δxi � (1/6)(xuu

i − xll
i ).

Tolerance design addresses both the feasibility ro-
bustness [32] and the reliability robustness [33]. Feasi-
bility robustness can be developed by increasing the value
of the constraint function during optimization by the
amount of the constraint variation. Reliability robustness
can be achieved by improving the threshold of reliability.
*erefore, the tolerance design model can be expressed as
follows:

min
x

max
i�1,...,p

hi(x) − y0i( 􏼁
2

subject to r(x)≥ (1 + η)α,

gj(x) − Δgj ≥ 0, j � 1, . . . , q,

mp(x, x)≥ ϵ,

xl ≤ x ≤ xu,

(17)

where η is a given positive number. *is constrained op-
timization problem can be solved by the common algo-
rithms, such as interior-point method. *e solution is used
as the initial point of the reliable hyperrectangle, denoted
by x0.

However, in the case where the target value of the
performance is not given, it is reasonable to take the center
point of the design space as the initial point if the center
point is feasible and reliable.

3.6. Process of the Reliable Hyperrectangle Algorithm.
According to the abovementioned analysis, the steps of using
the reliable hyperrectangle algorithm to design a reliable
hyperrectangle can be described briefly as follows:

Step 1: to set the parameters, the lower and upper
bounds of the design space, xl and xu, and the initial
step size d0 are set for each problem individually.
Additionally, here we set default parameters ϵ � 10− 4

and dϵ � 10− 3.
Step 2: to obtain the initial point, by means of the
interior-point method to solve model (17), we obtain
the initial point x0.
Step 3: to obtain the maximum hyperrectangle, by
means of the reliable hyperrectangle algorithm shown
in Figure 2, we obtain the desired hyperrectangle.

4. Numerical Examples and Comparisons

*ere is recent literature on the same topic considering
uncertainties [5, 20, 21]. *erefore, for comparison purpose,
certainties is not considered in this section, that is, we aim to
find the maximum hyperrectangle in the feasible operating
region. More specifically, two numerical examples in [21] are
considered to compare the solution of the proposed algo-
rithm with the solution of the method in [21] (we denote this
method by “GHZ method” hereafter).

(1) In Example 1, the feasible operating region is con-
strained by a convex polytope in two dimensions

(2) In Example 2, the feasible operating region is con-
strained by a tilted hyperplane which divides the
l-dimensional unit cube into two equal volumes

4.1. Numerical Example 1: A Convex Polytope as Boundary.
Let xl = (0, 0) and xu = (0, 0) be the lower and upper bounds
of the design space, respectively, and
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h(x) �

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

h6(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1
8
x1 +

1
4
x2

4
17

x1 +
2
17

x2

−
1
2
x1 +

1
2
x2

−
1
2
x1 −

1
3
x2
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*e particularity of this problem is that hi(x) is mo-
notonous, thus, the set

xll
, xuu

􏼐 􏼑: min
xl≤xll≤x≤xuu≤xu

min
i�1,...,6

y
u
i − hi(x)( 􏼁≥ 0􏼨 􏼩, (19)

is the same as the set

xll
, xuu

􏼐 􏼑: yu
− A xll

, xuu
􏼐 􏼑

T
≥ 0, xl ≤ xll ≤ xuu ≤ xu

􏼚 􏼛,

(20)
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and T denotes the transpose of a matrix.
*erefore, the optimization problem (3) can be trans-

formed into the following constrained optimization
problem:

max
xll ,xuu

􏽑
2

i�1
xuu

i − xll
i( 􏼁,

subject to yu − A xll, xuu( 􏼁
T ≥ 0,

xl ≤ xll ≤ xuu ≤ xu.

(22)

*is is a quadratic optimization problem under in-
equality constraints. *e exact solution is found by means of
Lagrange multipliers and is shown in the second row of
Table 1.

*e solution of the GHZ method and the result of this
paper are also shown in the third and fourth rows of Table 1,
respectively. *e column entitled “Volume” contains the
volume of hyperrectangle, and the column entitled ‘‘Volume
Error’’ contains the relative error between the volume and
the exact volume.

According to Table 1, the obtained hyperrectangle by our
method is in close proximity to the exact result. It is easy to
verify that all points in the obtained hyperrectangle are
contained in the feasible operating region. Moreover, the
operation time of our method is 14.68 seconds (using
MATLAB R2016b software in a windows platform with Intel
Core i7-4790 CPU 3.60GHz, 8 cores, 8 GB RAM). For a
small number of design parameters, the operation time of
our method is less than that of the GHZ method, which uses
theMonte Carlo sample simulating 100 times.*e volume of
hyperrectangle by our method is larger than that by the GHZ
method, and volume error by our method is smaller than
that by the GHZ method.

4.2. Numerical Example 2: A Tilted Hyperplane as Boundary.
We consider now an l-dimensional problem with a tilted
hyperplane as boundary.*e exact solution is computed and
the algorithm’s behavior for different l is studied.

Let us consider the l-dimensional unit cube [0, 1]l as the
design space. *e tilted hyperplane is described by the
following equation:

h(x) � 􏽘
l

i�1
xi −

l

2
. (23)

*e associated optimization problem for the hyper-
rectangle with the lower boundaries xll

i � 0 and the upper
boundaries xuu

i , i � 1, 2, . . . , l, reads as

max
xuu

􏽑
l

i�1
xuu

i ,

subject to min
0≤xuu≤1

− h(x)≥ 0.

(24)

Its exact solution is given by xuu � [1/2, . . . , 1/2], and the
exact hyperrectangle volume is 2− l. For l � 2 and l � 3, the
solutions of the GHZ method and the results of our method
are shown in Tables 2 and 3, respectively.
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According to Tables 2 and 3, the result by our method is in
close proximity to the exact result, so it indicates that the
proposed method is reasonable. Compared to the result by the
GHZ method, our method has smaller volume errors.
Moreover, all points in the hyperrectangle obtained by our
method are contained in the feasible operating region; how-
ever, some points in the hyperrectangle obtained by the GHZ
method are not included in the feasible operating region.

Overall, the proposed method has a low time complexity
and performs well with small volume errors. Numerical
examples show that our method has a better performance
than the GHZ method and thus is a good approach for
seeking out the maximum hyperrectangle.

5. Case Studies

In this section, with two engineering examples, the capability
of our method to seek maximum hyperrectangle in the
reliable operating region is illustrated. *e first example
indicates how our approach deals with multiple perfor-
mances. *e second example shows how our approach
handles with a multimodal function.

Because the design parameters may have different units,
we normalize each design parameter before applying our
proposed approach. Moreover, engineers set normally the
reliability threshold α � 0.95.

5.1. Case Example 1::e PlanetaryGear. *ere are two main
performances for the planetary gear: bending fatigue and
contact fatigue [34]. *e bending fatigue strength R1 and
bending stress S1 have the following expressions [35]:

R1 � 1.956x1x2,

S1 � 0.0174x3x4,
(25)

respectively, where x1 is bending fatigue limit stress of gear
tooth (in N/mm2), x2 is life factor of the gear, x3 is the
tangential force on the inner part of the gear face (in
N/mm2), and x4 is the tooth form factor.

Similarly, the contact fatigue strength R2 and contact
stress S2 can be expressed as follows [35]:

R2 � 0.8526x5x6,

S2 � 9
����
x3x7

√
,

(26)

respectively, where x5 is the contact fatigue strength limit (in
N/mm2), x6 is the lubricating factor, x7 is the dynamic
factor, and x3 is the same as above.

*e bend fatigue y1 and contact fatigue y2 are two
performances we consider. Performance functions for bend
fatigue and contact fatigue are

h1(x) �
1.956x1x2

0.0174x3x4
,

h2(x) �
0.8526x5x6

9 ����
x3x7

√ ,

(27)

respectively. It is considered reliable, provided the following
conditions hold: y1 ≥ 1 and y2 ≥ 1. *at is, yl � (1, 1).
Moreover, based on the safety margin, engineers set the
target values of these two performances as
y0 � (y01, y02) � (3, 3). *e second row of Table 4 shows the
design space in terms of the bounds of each design
parameter.

Besides, there are two constraints: the bending strength
must be greater than 1200N/mm2 and the contact strength
must be greater than 1600N/mm2 .*erefore, constraint
functions are expressed as

g1(x) � 1.956x1x2 − 1200,

g2(x) � 0.8526x5x6 − 1600.
(28)

*e reliable hyperrectangle design is studied under the
assumption that random errors exist and follow normal
distribution. First, the tolerance model (17) is developed to
get the initial point x0. Next, the problem of searching for a
reliable hyperrectangle is transformed into problem (13),
where

mg xll
, xuu

􏼐 􏼑 � min
xll≤x≤xuu

min
j�1,2

gj(x),

mp xll
, xuu

􏼐 􏼑 � min
xll≤x≤xuu

r(x) − α,

r(x) � P(h(x) + ε ≥ 1),

(29)

g1(x) and g2(x) are defined by equation (28),
h(x) � (h1(x), h2(x)), 1� (1, 1), ε � (ε1, ε2) ∼ N(0,Σ), and

Table 1: Comparison of exact solution of Example 1, GHZ method result, and this paper result.

xll
1 xuu

1 xll
2 xuu

2 Volume Volume error (%)

Exact method 1.180 2.850 1.230 2.580 2.2545 —
GHZ method 1.174 2.735 1.235 2.633 2.1823 3.200
Our method 1.232 2.750 1.168 2.614 2.1950 2.640

Table 2: Comparison of exact solution of Example 2 when l � 2,
GHZ method result, and our method result.

l � 2 xuu
1 xuu

2 Volume Volume error(%)

Exact method 0.500 0.500 0.2500 —
GHZ method 0.479 0.523 0.2505 0.200
Our method 0.500 0.500 0.2500 0.000

Table 3: Comparison of exact solution of Example 2 when l � 3,
GHZ method result, and our method result.

xuu
1 xuu

2 xuu
3 Volume Volume error(%)

Exact method 0.500 0.500 0.500 0.1250 —
GHZ method 0.515 0.508 0.519 0.1358 8.600
Our method 0.500 0.500 0.500 0.1250 0.000
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Σ � diag(0.52, 0.52). *e results of the proposed algorithm
are shown in the third row of Table 4 in terms of the bounds
of each design parameter.

Monte Carlo sampling [36] is used to verify whether the
obtained reliable hyperrectangle satisfies the reliability re-
quirement in the presence of random errors. We firstly sample
some design points which are randomly and uniformly dis-
tributed over the obtained reliable hyperrectangle, then sample
1000 random errors from the normal distribution N(0,Σ)
finally compute the coverage probability of each sampled
design point. *e coverage probability is the proportion that
output performances lie within the performance specifications,
where the output performances are the sum of the nominal
performances and random errors. Due to space restrictions,
part of simulation results is shown in Table 5. For each sampled
design point, its coverage probability is higher than the reli-
ability threshold (0.95); therefore, its reliability is validated.

5.2. Case Example 2: Diamond Turning Process. *e surface
roughness in the diamond turning process is shown in
Figure 3. *e waveform left on the finished surface is mainly
due to the tool nose geometry and feed [37]. A performance
function for the surface roughness with three design pa-
rameters is given by

h(x) �
x2
1

8x2
+

x3

2
1 +

x2x3

2
􏼒 􏼓, (30)

where x1, x2, and x3 denote the feed in microns/revolution
(μm/rev), the tool nose radius in microns (μm), and the
minimum undeformed chip thickness in microns (μm),
respectively.

*e output performance is expressed as

y � h(x) + ε, (31)

where ε is the random error and follows the normal dis-
tribution with mean zero and unknown variance σ2. *e
random error comes from one measurement to the next.*e
random error tends to be normally distributed when it is the
sum of many small and independent random errors because
of the central limit theorem [38]. *e target value of the
output performance is 3.5 μm. *e performance specifica-
tion requires that y is between 2 and 5 μm.*e second row of
Table 6 shows the design space in terms of the bounds of
each design parameter.

*e performance function (30) is developed based on some
simplified assumptions and may be not accurate; thus, we use
experiment data to improve the performance function. Figure 4
shows the experiment data from the microturning of an alu-
minium alloy using a diamond tool with nose radius of 800
microns and the minimum undeformed chip thickness of 0.02

microns [39]. We have 20 measured values of surface
roughness at each of the experiment points and therefore can
obtain an estimate of σ2. We obtain σ2 � 0.2191. *e estimate
derived from the performance function and the experiment
data can be computed as

􏽥σ2 �
1
n

􏽘

n

i�1
yi − h xi( 􏼁( 􏼁

2
� 9.0563, (32)

which is much larger than 0.2191. *is shows that the
performance function is not good.

We use the experiment data to adjust the performance
function. Based on the plot of residuals from the performance
function against x1, and after some experimentation, we
choose μ1(x1) � 1, μ2(x1) � x1, and μ3(x1) � log(1 + x1).

Table 4: *e bounds of design parameters.

x1 (N/mm2) x2 x3 (N/mm2) x4 x5 (N/mm2) x6 x7
Design space [606, 1039] [0.784, 1.107] [7700, 14300] [1.253, 3.043] [1531, 2452] [0.985, 1.212] [1.264, 1.764]
Reliable hyperrectangle1 [753, 1039] [0.847, 1.107] [7700, 10096] [1.253, 2.811] [2214, 2452] [1.088, 1.212] [1.264, 1.464]
1*e initial point of the reliable hyperrectangle is (903, 0.896, 9436, 2.543, 2352, 1.122, 1.364), and the volume is 1.641e+ 06.

Table 5: Reliability and coverage probability of the sampled
design point.

Design point Reliability Coverage
(818, 1.107, 7700, 2.811, 2214, 1.212, 1.264) 0.9992 1.0000
(842, 1.075, 8003, 2.638, 2240, 1.198, 1.281) 0.9988 0.9990
(867, 1.042, 8306, 2.465, 2267, 1.184, 1.297) 0.9981 0.9970
(891, 1.010, 8609, 2.292, 2293, 1.171, 1.314) 0.9973 0.9970
(916, 0.977, 8912, 2.119, 2320, 1.157, 1.331) 0.9962 0.9970
(940, 0.945, 9214, 1.946, 2346, 1.143, 1.347) 0.9948 0.9960
(965, 0.912, 9517, 1.773, 2372, 1.129, 1.364) 0.9930 0.9950
(989, 0.880, 9820, 1.599, 2399, 1.116, 1.381) 0.9907 0.9940
(1015, 0.847, 9950, 1.426, 2426, 1.102,
1.397) 0.9870 0.9880

(1039, 0.815, 10096, 1.253, 2452, 1.088,
1.414) 0.9856 0.9870

�e surface
roughness

Secondary
cutting edge

Primary
cutting edge

Nose radius

Workpiece

Tool

Feed

Figure 3: Illustration of turning operation showing surface
roughness left on the finished surface.
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*us, the adjusted performance function for the surface
roughness is given by

y(x, θ) �
x2
1

8x2
+

x3

2
1 +

x2x3

2
􏼒 􏼓 + θ1 + θ2x1 + θ3log 1 + x1( 􏼁.

(33)

In [40], an optimum design point was discussed and θ
was estimated by the Bayesian approach. Our aim is to find a
reliable operating region; thus, it is more appropriate to use
frequentist procedures which are computationally efficient
and simple to implement. Here, the maximum likelihood
method is used to estimate the unknown parameters. *e
likelihood function is expressed as

Ln(θ, σ) �
1

(2π)60σ120
exp −

􏽐
120
i�1 y xi, θ( 􏼁 − yi( 􏼁

2

2σ2
􏼠 􏼡. (34)

*e maximum likelihood estimate of σ2 is 􏽢σ2 � 0.2740,
which is much smaller than that of the performance function
(9.0563) and only slightly larger than σ2 � 0.2191. *is
implies the adjusted performance function gives a good fit
(see Figure 4).

Now we can carry out the proposed algorithm based on
the adjusted performance function, where σ is estimated by
􏽢σ. *e reliable hyperrectangle is listed in the third row of
Table 6 in terms of the bounds of each design parameter.

We use the samemethod as that in Example 1 to simulate
random errors and show part of results in Table 7. We see

that coverage probabilities are higher than the reliability
threshold (0.95). It is obvious that the adjusted performance
function (33) is a multimodal function; therefore, the ability
of the proposed algorithm in dealing with multimodal
functions is confirmed.

Moreover, minimizing the deviation between the perfor-
mance and its target, that is, minxll≤x≤xuu (y(x, 􏽢θ) − y0)

2, is
considered as the objective function to find the optimum point
inside the proposed reliable design operating region. *e
obtained optimum point is (69.6664, 800.0171, 0.0173).We can
see that the optimum point is close to the initial point.

Besides, we seek the permissible reliable range of x1 under
the condition that the values of x2 and x3, as in the physical
experiment shown in Figure 4, are fixed at 800 and 0.0200.*e
obtained reliable range is [5.0000, 91.6428]. We see that all but
the last of those experiment points are included in this range.
*is result agrees with the experiment because 5 of 20 mea-
sured surface roughness of the last experiment point are larger
than the upper bound of surface roughness and therefore the
last experiment point is unreliable.

6. Conclusions

*is paper focuses on the design of the reliable hyper-
rectangle. An iterative algorithm which updates the sides of
hyperrectangle one-by-one is proposed to search the reliable
hyperrectangle. We have proven the convergence of the
proposed algorithm. Moreover, we extend the proposed
algorithm to deal with design space constraints. Besides, we
have discussed how to determine the initial point. Numerical
examples show that our method has a better performance
than the GHZ method in [21]. Some engineering cases show
that the proposed method can guarantee product reliability.
*is has validated the effectiveness of our approach.

Data Availability

*e digital data supporting this article are from previously
reported studies and datasets, which have been cited.

Table 6: *e bounds of design parameters.

x1(μm/rev) x2(μm) x3(μm)

Design space [5.0000, 100.0000] [300.0000, 1000.0000] [0.0067, 0.0224]
Reliable hyperrectangle1 [5.0000, 85.3528] [681.0000, 1000.0000] [0.0118, 0.0224]
1*e initial point of the reliable hyperrectangle is (70.1528, 800.0000, 0.0200), and the volume is 272.9558.
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Figure 4: Comparison of the performance function and the ad-
justed performance function.

Table 7: Reliability and coverage probability of the sampled design
point.

Design point Reliability Coverage
(5.0000, 681.8360, 0.0118) 0.9947 0.9950
(13.9281, 716.2986, 0.0129) 0.9721 0.9735
(22.8562, 751.7613, 0.0141) 0.9586 0.9603
(31.7843, 787.2240, 0.0153) 0.9607 0.9626
(40.7124, 822.6866, 0.0165) 0.9715 0.9727
(49.6405, 858.1493, 0.0176) 0.9834 0.9850
(58.5686, 893.6120, 0.0188) 0.9921 0.9937
(67.4966, 929.0747, 0.0200) 0.9965 0.9969
(76.4247, 964.5373, 0.0212) 0.9970 0.9967
(85.3528, 1000.0000, 0.0224) 0.9922 0.9914
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