
Research Article
An Approach Using Adaptive Weighted Least Squares Support
Vector Machines Coupled with Modified Ant Lion Optimizer for
Dam Deformation Prediction

Yijun Chen ,1,2,3 Chongshi Gu ,1,2,3 Chenfei Shao ,1,2,3 Hao Gu,4 Dongjian Zheng,1,2,3

Zhongru Wu ,1,2,3 and Xiao Fu 1,2,3

1College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
3National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University,
Nanjing 210098, China
4Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China

Correspondence should be addressed to Chongshi Gu; csgu@hhu.edu.cn

Received 20 January 2020; Accepted 13 March 2020; Published 13 April 2020

Academic Editor: Alessandro Della Corte

Copyright © 2020 Yijun Chen et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A dam deformation prediction model based on adaptive weighted least squares support vector machines (AWLSSVM) coupled
with modified Ant Lion Optimization (ALO) is proposed, which can be utilized to evaluate the operational states of concrete
dams. First, the Ant LionOptimizer, a novel metaheuristic algorithm, is used to determine the punishment factor and kernel width
in the least squares support vector machine (LSSVM) model, which simulates the hunting process of antlions in nature. Second,
aiming to solve the premature convergence phenomenon, Levy flight is introduced into the ALO to improve the global opti-
mization ability. 'ird, according to the statistical characteristics of the datum error, an improved normal distribution weighting
rule is applied to update the weighted value of data samples based on the learning result of the LSSVMmodel. Moreover, taking a
concrete arch dam in China as an example, the horizontal displacement recorded by a pendulum is used as a study object. 'e
accuracy and validity of the proposed model are verified and evaluated based on the four evaluating criteria, and the results of the
proposed model are compared with those of well-establishedmodels.'e simulation results demonstrate that the proposed model
outperforms other models and effectively overcomes the influence of outliers on the performance of the model. It also has high
prediction accuracy, produces excellent generalization performance, and can be a promising alternative technique for the analysis
and prediction of dam deformation and other fields, including flood interval prediction, the stock price market, and wind
speed forecasting.

1. Introduction

A dam is a significant infrastructure project that integrates
flood control, hydroelectric power, irrigation, navigation,
and water supply, which can facilitate the development of
the social economy for a nation. China has built 97246
reservoir dams, and 756 dams are under construction, which
is the largest number of reservoir dams worldwide [1, 2].
Some dams are built in high mountain valley areas with
complex topography and geological conditions and may

suffer from strong earthquakes, extreme weather, and other
adverse factors during the operational process. Due to the
influence of large total water thrust and high dam stress, dam
failure could cause large losses to the economy and to the
lives of people and property. 'is implies that structural
health monitoring is an important basis for judging the
operational situation of a dam. Usually, dam deformation is
the most direct reflection of the working status of a dam, and
its deformation system is a typically complex dynamic
system with multiple variables, strong coupling, and
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uncertainty. 'e analysis of the measured data and the
construction of the dam deformation prediction model are
determinants in structural health monitoring [3–5].

On the one hand, many random factors comprehen-
sively affect the structural behavior of a dam, such as hy-
drostatic pressure, seasonal environmental temperature
changes, and the aging effect [6]. 'us, dam prototype
monitoring data show volatility and nonlinearity features,
which increase the computational complexity of the mod-
eling process. On the other hand, due to the interference of
many uncertain factors, such as the monitoring instruments,
external environment, and human factors, the noise pol-
lution is inevitable in prototype monitoring data, which
leads to a reduction in the validity of the dam deformation
series, introduces difficultly in reflecting the real deforma-
tion status of the dam, and reduces the accuracy of the data
analysis results [3]. 'erefore, due to the nonlinearity and
irregularity of the monitoring time series, an effective and
reasonable prediction technique urgently needs to be in-
troduced to ensure the safe operation of a dam based on
prototype monitoring data.

To date, various powerful prediction models have been
applied in complex nonlinearity and optimization problems
in pump turbine characteristics identified [7], flood interval
prediction [8], stock price prediction [9], and wind speed
forecasting [10]. In the field of dam deformation prediction
based on prototypical observations, many prediction models
have also been established, such as multiple linear regression
[11], neural network [5], support vector machines [12],
extreme learning machine [13], boosted regression trees
[14], and Gaussian process regression [15]. Nevertheless, the
above-mentioned models are single prediction models, and
the information mining scale is limited [16]. Meanwhile, the
time series of dam deformation has high nonlinearity and
outliers, which further limits the predictive power of the
models. To the best of our knowledge, few prediction models
take noise pollution into account in a dam deformation time
series. Exploring the influence of outliers in a dam defor-
mation time series on the prediction performance is high-
lighted in our work.

Support vector machines (SVM) is an important new
methodology based on statistical learning theory, as intro-
duced by Vapnik in 1995 [17], and has been used in the
framework of nonlinear black-box system identification
[12, 18]. However, the SVM involves solving a quadratic
programming problem and suffers from the existence of
many local minima. Suykens J.A.K presented least squares
support vector machines (LSSVM) by considering equality
type constraints instead of inequalities from the classical
SVM approach [19]. 'e SVM quadratic programming
problem was transformed into the solution problem of the
linear equation set, which had shown a better robust per-
formance and low computational cost. However, LSSVM
solutions have some potential drawbacks, including the
sparseness being lost and the use of a sum squared error cost
function that might obtain less robustness. Suykens applied a
weighted version of the LSSVM to obtain robust estimates
for regression [20], inspired by the application of a sparse
robust least squares support vector machine model in the

model identification of a pumped turbine governing system
[21]. Meanwhile, because the dam prototype monitoring
data are easily affected by outliers, the accuracy and reli-
ability of the dam deformation prediction model are directly
affected. Here, we present a novel model based on adaptive
weighted least squares support vector machines
(AWLSSVM) for dam deformation predictions. 'e pro-
posed model inherits the advantage of the LSSVM fast
learning and adaptively assigns different weight values to
each training sample by using the improved normal dis-
tribution weighting rules to eliminate the influence with
respect to outliers on the monitoring data and improve the
anti-interference ability of the model [22].

In general, the parameters of the punishment factor and
kernel width have a great influence on the prediction ac-
curacy and generalization ability of the LSSVM model,
which is generally regarded as a combinatorial optimization
problem. Recently, machine learning algorithms have been
widely utilized for optimizing problems and have shown
superior performance. Examples of swarm intelligence al-
gorithms include but are not limited to particle swarm
optimization (PSO) [23], gravitational search algorithm
(GSA) [24], ant colony optimization (ACO) [25], grey wolf
optimization (GWO) [26], cuckoo search (CS) [27], grass-
hopper optimization approaches (GOA) [28], and the salp
swarm algorithm (SSA) [29].'e Ant Lion Optimizer (ALO)
algorithm is a recent swarm intelligence optimizer proposed
by Mirjalili [30]. ALO simulates the preying behavior of an
antlion and has a simple principle and less parameter setting.
Currently, ALO is well known in identification, control
theory, and signal processing [31]. However, the standard
ALO has the disadvantage of early prematurity and slow
convergence in the later stage. For solving this problem,
different strategies have been introduced into the ALO to
improve the performance [32–34]. Furthermore, Levy flight
is a special random walks strategy and a reliable technique
for improving group diversity [35, 36]. 'is motivated our
attempts to construct a modified ALO algorithm by com-
bining Levy flights to help the ALO enhance the global
search. We applied the proposed MALO algorithm to op-
timize the combinatorial parameters of the AWLSSVM
model, which can be superior to other metaheuristic algo-
rithms in terms of robustness, convergence speed, and
avoiding local minima.

Hence, a hybrid dam deformation prediction technique
based on the AWLSSVM model coupled with the MALO
algorithm is constructed. 'e main purpose of this study is
to investigate the applicability and capability of the proposed
MALO-AWLSSVM model by comparing it with other
models for predicting dam deformation. 'e remainder of
this paper is structured as follows. Section 2 illustrates the
choice of the influencing factors of dam deformation.
Section 3 describes the construction principle of the
AWLSSVM model. 'e parameter optimization of the
AWLSSVM model using the MALO algorithm is detailed in
Section 4. Section 5 displays the construction process of the
dam deformation prediction model by integrating the
MALO algorithm and the AWLSSVM model. In Section 6,
an actual dam is taken as an example, and the experimental
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results and prediction accuracy are validated through real
dam deformation time series. Finally, the conclusions are
presented in Section 7.

2. The Choice of the Influencing Factors of
Dam Deformation

According to the analysis of the structure and mechanics
theory of concrete dams, the displacement of a concrete dam
at any point can be divided into three components under
loads of water pressure (H), temperature (T), and aging
effect by equation (1) [6]:

δ � δH + δT + δθ, (1)

where δH is the water pressure component, δT represents the
temperature components, and δθ denotes the aging effect.

2.1. Water Pressure Component. Under the action of water
pressure, the horizontal displacement of a concrete dam is
mainly composed of three parts in equation (2): δ1H denotes
the dam displacement generated by the dam itself under the
reservoir water; δ2H is the dam displacement due to the dam
foundation deformation; and δ3H denotes the dam dis-
placement because of the dam foundation rotation derived
from the reservoir water gravity. Schematic diagrams are
shown in Figure 1.

δH � δ1H + δ2H + δ3H. (2)

To simplify the calculation, the dam section is simplified
as a triangular wedge that is vertical upstream, and the
calculation diagram is shown in Figure 2. Under the action
of reservoir water pressure, the deformation of the dam body
and the foundation are generated. 'us, the theoretical
formulas of δ1H and δ2H at the observation point A can be
derived as follows:

δ1H �
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δ2H �
3 1 − μ2r( 􏼁c0

πErm
2h2 H

3
+

1 + μr( 􏼁 1 − 2μr( 􏼁c0

2Ermhd

H
2

􏼢 􏼣(h − d), (4)

where H denotes the upstream water depth, h is the height of
the dam, m denotes the slope of the dam downstream, d is
the distance between the observation point and dam crest, Ec

and Gc are the elastic modulus and shear modulus of the
dam concrete, respectively, Er and μr are the elastic modulus
and Poisson’s ratio of the dam foundation, respectively, and
c0 denotes water density.

In general, the theoretical derivation for formula δ3H at
the observation point A usually assumes that the reservoir
bottom is level with an equal width, and the calculation
diagram is shown in Figure 3. According to the solution for
the uniform load applied on the surface of an infinite elastic
body, the formula δ3H at observation point A can be derived
as follows:

δ3H � α(h − d), (5)
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where α denotes the rotation angle at the dam heel, C de-
notes half the width of the ideal reservoir bottom, and x0 is
the distance from the centroid of the dam to the upstream
dam face.

From equations (3)–(5), we can conclude that δ1H is
linearly related to H, H2, and H3. δ2H is linearly related to

H2 and H3. δ3H is linearly related to H. 'erefore, the water
pressure component δH of the concrete gravity dam has a
linear relationship with the water depth H, H2, and H3. For
arch dams and multiarch dams, the water pressure com-
ponent δH is more complicated. 'e arch cantilever method
is usually applied to accurately analyze the stress charac-
teristics of the arch dam. 'e water pressure assigned to the
beam part of the arch dam is nonlinear. Similarly, the water
pressure in the arch part of the multiarch dam is nonlinear
due to the two-direction action of the arch part.'us, we add
H4 as an explanatory variable for arch dams and multiarch
dams. Normally, the water pressure component δH can be
expressed as follows:

δH � 􏽘
n

i�1
aiH

i
, (7)

where ai denotes the fitting coefficient; for the concrete
gravity dam, n � 3, whereas n � 4 is taken for the arch dam
and multiarch dam.

2.2. Temperature Component. 'e temperature component
δT is mainly composed of the dam displacement caused by
the temperature variation in the dam body concrete and the
dam foundation rock. 'e temperature is measured by
embedded thermometers in the dam body and its founda-
tion. 'e thermometers are usually laid out in two cases.

Mathematical Problems in Engineering 3



A A

H

δ1H

(a)

A A

M

H

δ2H

τ

(b)

δ3H

A

q = γ0H

A

α

(c)

Figure 1: Schematic diagram: (a) δ1H, (b) δ2H, and (c) δ3H.
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Figure 2: Calculation diagram of δ1H and δ2H.
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In the first case, there are adequatemonitoring data from the
thermometers reflecting the temperature field, and the tem-
perature component δT can be given by equations (8) and (9):

δT � 􏽘

m1

i�1
biTi, (8)

δT � 􏽘

m2

i�1
b1iTi + 􏽘

m2

i�1
b2iβi, (9)

where bi, b1i, and b2i are the fitting coefficients, Ti represents
the thermometer temperature value, m1 denotes the number
of thermometers, Ti and βi represent the mean value and
gradient of variation of the equivalent temperature in the i-
th layer, respectively, and m2 denotes the number of layers
with thermometers installed.

In the second case, the temperature of the dam body
concrete and dam foundation rock are not monitored by
thermometers. It is assumed that the hydration heat of the
concrete has been distributed and the temperature in the
dam body reaches a quasi-steady temperature field; then the
multiperiod harmonic can be selected to represent the
temperature component as

δT � 􏽘
m

i�1
b1i sin

2πit

365
+ b2i cos

2πit

365
􏼒 􏼓, (10)

where i denotes the period, for the annual cycle m � 1, for a
half cycle m � 2, b1i and b2i represent the fitting coefficients,
and t is the cumulative number of days from the initial value
to the monitoring value.

2.3. Aging Component. 'e causes of the aging component
of the dam are complex. 'e aging component reflects the
creep and plastic deformation of the dam concrete and the
foundation rock, as well as the compression deformation of
the foundation rock geological structure. It also includes the
autogenous volume deformation and the irreversible dis-
placement caused by dam cracks. 'e mathematical model
of the aging component can be written by equation (11),
where θ � (t/100):

δθ � c1θ + c2 ln θ, (11)

where c1 and c2 are the fitting coefficients for the aging
factors.

2.4. Statistical Model Expression. In summary, according to
the concrete dam characteristics, three kinds of statistical
models for concrete dam horizontal displacement are
depicted in equations (12)–(14). In the application, the most
appropriate statistical model is selected according to the
concrete project example.
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where a0 denotes the constant term considering the influ-
ence of the initial state and the other symbols have the same
meaning as above.

3. The Construction Principle of the AWLSSVM
Model for Predicting Dam Deformation

3.1. Least Squares Support Vector Machine Regression.
'e LSSVM is a modification of the standard SVM model.
'e formulation consists of equality constraints instead of
inequality constraints and a sum squared error cost function
as it is frequently used in the process of training. Hence, the
complexity and difficulty associated with modeling are
greatly reduced, and the solving speed is effectively im-
proved. 'e LSSVM is used for the optimal control of
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Figure 3: Calculation diagram of δ3H : (a) side view; (b) vertical view.
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nonlinear Karush-Kuhn-Tucker systems for classification
and regression [19].

Suppose a training data set is G � (x1, y1),􏼈

(x2, y2), . . . , (xN, yN)} (N is the number of training sample
pairs), where xk ∈ Rn (k � 1, 2, . . . , N) denotes the space of
the input patterns and yk ∈ R represents the space of the
output patterns. 'e LSSVM model can be expressed as

y(x) � ωTφ(x) + b. (15)

'e optimization problem of the LSSVM model can be
described as

min J ω, ξi( 􏼁 �
1
2
ωTω +

1
2

c 􏽘
N

i�1
ξ2i

s.t. yi � ωTφ xi( 􏼁 + b + ξi, i � 1, 2, . . . , N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where ω ∈ Rnh denotes the weight coefficient vector, c

represents the punishment factor, which determines the
tradeoff between the complexity of the LSSVMmodel and its
accuracy in capturing the training data, b denotes the bias
term, ξi ∈ R is the fitting error, and φ(·): Rn⟶ Rnh is a
function that maps the input space into a so-called higher-
dimensional (possibly infinite-dimensional) feature space.
For the optimization problem, the Lagrange function is
constructed as

L(ω, b, ξ, α) �
1
2
ωTω +

1
2

c 􏽘
N

i�1
ξ2i − 􏽘

N

i�1
αi ωTφ xi( 􏼁 + b + ξi − yi􏼐 􏼑,

(17)

where αi ∈ R(i � 1, 2, . . . , N) denotes the introduced
Lagrange multiplier. According to the Karush-Kuhn-Tucker
optimization conditions, equation (18) must be satisfied:

zL
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After eliminating the variables ξ and ω, the optimization
problem of equation (16) can be changed into the solution
problem of the following matrix:
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c
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0

y
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (19)

where l1×N � [1, 1, . . . , 1], lN×1 � [1, 1, . . . , 1]T,
y � [y1, y2, . . . , yN]T, α � [α1, α2, . . . , αN]T, and K(xi, xj) �

φT(xi)φ(xj) is a kernel function that represents the high-
dimensional feature spaces. 'ere are four commonly used
kernel functions in Table 1 [37]. R can be expressed as

R �

K x1, x1( 􏼁 K x1, x2( 􏼁

K x2, x1( 􏼁 K x2, x2( 􏼁
· · ·
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. (20)

'e parameters α and b can be solved with equation (19),
and the resulting LSSVM model for function estimation is
given by

y � 􏽘
N

i�1
αiK xi, x( 􏼁 + b. (21)

3.2. Weighted Least Squares Support Vector Machine
Regression. Suykens et al. proposed a weighted LSSVM
model based on the standard LSSVM model, which can
eliminate the influence of outliers in the training sample on
the predictive performance and guarantee good general-
ization performance [20–22]. 'e optimization problem can
be rewritten as

min J∗ ω, ξi( 􏼁 �
1
2
ωTω +

1
2

c 􏽘
N

i�1
viξ

2
i

s.t. yi � ωTφ xi( 􏼁 + b + ξi, i � 1, 2, . . . , N,

⎧⎪⎪⎪⎪⎪⎨
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(22)

where vi denotes the weight value and the other symbols
have the same meaning as above.

'e Lagrange function becomes

L ω, b, ξ, α∗( 􏼁 �
1
2
ωTω +

1
2

c 􏽘

N

i�1
viξ

2
i − 􏽘

N

i�1
α∗i ωTφ xi( 􏼁 + b + ξi − yi􏼐 􏼑,

(23)

where α∗i (i � 1, 2, . . . , N) denotes the introduced Lagrange
multiplier. According to the Karush-Kuhn-Tucker systems,
after optimizing equation (22) and eliminating ξ and ω, the
solution can be given by

0 l1×N

lN×1 R +
V
c
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b

α∗
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0

y
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (24)

where the diagonal matrix is V � diag(v− 1
1 , v− 1

2 , . . . , v− 1
N ),

vi(i � 1, 2, . . . , N) denotes the weight variable, and the other
parameters are the same as before. Finally, the nonlinear
system function can be described as

y � 􏽘
N

i�1
α∗i K xi, x( 􏼁 + b. (25)
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3.3. Construction of the Adaptive Weighted Technique. To
eliminate the influence of the inevitable outliers in the
training set on the dam deformation prediction performance
and improve the robustness of the model, the adaptive
weighted technique is proposed and introduced into the
standard LSSVM model [20]. 'e weight value vi can be
defined as follows:

vi � exp
− ξi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − μ􏼐 􏼑

2

us
⎛⎝ ⎞⎠, (26)

where ξi represents the i-th sample residual and u denotes
the adjustment coefficient, which is optimized by the MALO
algorithm in this work. μ and s are the mean value and
standard deviation of the error absolute value |ξi|, respec-
tively, and the values can be computed by

μ �
1
N

􏽘

N

i�1
ξi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

s �

�������������

1
N

􏽘

N

i�1
ξi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − μ􏼐 􏼑

2

􏽶
􏽴

.

(27)

4. Parameter Optimization of the AWLSSVM
Model Using the MALO Algorithm

4.1. >e Mathematical Model of the ALO Algorithm. In this
work, the RBF in equation (28) is employed as a kernel
function in the LSSVM model. 'e RBF can construct the
optimal classification hyperplane and map the input into the
high-dimensional feature space to eliminate dimensional
disasters. In this way, the complex nonlinear relationship

between the sample input and output can be handled well
[37].

K xi, xj􏼐 􏼑 � exp −
xi − xj

�����

�����
2

2
2σ2

⎛⎜⎜⎝ ⎞⎟⎟⎠, (28)

where σ denotes the kernel width.
'e main parameters of the LSSVMmodel with the RBF

are the punishment factor c and kernel width σ, which
determine the prediction accuracy and robust performance
of the LSSVM model. 'e punishment factor c determines
the degree of punishment for the sample data. If the value is
too large or too small, the generalization performance of the
training model will become worse. 'e kernel width σ
controls the complexity of the final solution, and a value that
is too large or too small can result in underlearning or
overlearning. In the existing literature, the parameter op-
timization is mostly determined by trial calculation and
empirical methods, which is not only time-consuming but
also inaccurate [38, 39]. In this work, theMALO algorithm is
applied to select the optimal parameter combination
(cbest, σbest) to reduce the blindness of parameter selection
and improve the prediction performance of the LSSVM
model.

In 2015, the Ant Lion Optimizer was proposed by
Mirjalili [30] as a novel nature-inspired metaheuristic al-
gorithm that mimics the hunting mechanism of antlions in
nature. It has the advantages of high optimization efficiency
and high solution precision due to the use of random walks
and roulette wheels. 'e ALO consists of exploration by
random walks of ants and random selection of antlions, and
exploitation of the search space is guaranteed by the adaptive
shrinking boundaries of antlion traps. 'e ALO with an
excellent search function motivates us to employ the pa-
rameter optimization algorithm in the AWLSSVM model,
which has not been used earlier to the knowledge of the
authors. 'e mathematical model of the ALO is described in
the following steps.

4.1.1. Random Walks of Ants. Ants move stochastically in
nature when they search for food, and the random walks of
ants can be described as

X
t

� 0, cumsum 2r t1( 􏼁 − 1( 􏼁, cumsum 2r t2( 􏼁 − 1( 􏼁, . . . , cumsum 2r titermax
􏼐 􏼑 − 1􏼐 􏼑􏽨 􏽩, (29)

where Xt denotes the random walks of ants, itermax
represents the maximum number of iterations, t is the step
of the random walks, cumsum denotes the calculating
cumulative sum, and r(t) is a stochastic function defined
as

r tk( 􏼁 �
1, if rand> 0.5,

1, if rand≤ 0.5,
􏼨 (30)

where rand denotes a random number generated with a
uniform distribution in the interval of (0, 1).

To keep the randomwalks of ants inside the search space,
the positions need to be normalized using the followingmin-
max normalization equation:

X
t
i �

Xt
i − ai( 􏼁 × Ut

i − Lt
i( 􏼁

bi − ai( 􏼁
+ L

t
i , (31)

where ai and bi are the minimum and maximum of the
randomwalks of the i-th variable, respectively, and Lt

i andUt
i

denote the minimum and maximum of the i-th variable at
the t-th iteration, respectively.

Table 1: Different types of kernel functions.

Name of kernel Expression
Linear kernel K(xi, xj) � xi · xj + θ
Polynomial kernel K(xi, xj) � (xixj + 1)p

Gaussian radial basis
function (RBF) K(xi, xj) � exp − ‖xi − xj‖

2
2/(2σ

2)􏽮 􏽯

Sigmoid kernel K(xi, xj) � tanh (xi · xj) + b􏽮 􏽯
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MAnt �

x1,1 x1,2

x2,1 x2,2
· · ·

x1,d

x2,d

⋮ ⋱ ⋮
xN,1 xN,2 · · · xN,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

MAntlion �

x1,1 x1,2

x2,1 x2,2
· · ·

x1,d

x2,d

⋮ ⋱ ⋮
xM,1 xM,2 · · · xM,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(32)

where MAnt and MAntlion denote the position matrix of ants
and antlions, respectively, and N and M represent the
number of ants and antlions, respectively.

To balance the model generalization and computational
complexity, the following objective function is used to
evaluate all ants and antlions. In general, the well-fitting of
the training set can increase the complexity of the prediction
model, and the complex model tends to suffer from over-
fitting [40].

f xi,1, xi,2, . . . , xi,d􏼐 􏼑 �

������������������

1
Ntrain

􏽘

Ntrain

i�1
yi − y

∗
i( 􏼁

2

􏽶
􏽴

+

�����������������

1
Ntest

􏽘

Ntest

i�1
yi − y

∗
i( 􏼁

2

􏽶
􏽴

,

(33)

where f is the objective function, Ntrain and Ntest are the
numbers of samples in the training set and test set, re-
spectively, and yi and y∗i are the i-th measured value and
predicted value, respectively. 'e matrices MOA and
MOAL are used to store the fitness values of the ants and
antlions in equations (34) and (35). In this work, the
antlion with a minimum fitness value will be defined as
the elite antlion.

MOA �

f x1,1, x1,2, . . . , x1,d􏼐 􏼑

f x2,1, x2,2, . . . , x2,d􏼐 􏼑

⋮

f xN,1, xN,2, . . . , xN,d􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

MOAL �

f x1,1, x1,2, . . . , x1,d􏼐 􏼑

f x2,1, x2,2, . . . , x2,d􏼐 􏼑

⋮
f xM,1, xM,2, . . . , xM,d􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

4.1.2. Building Traps. To mimic the antlion’s hunting ca-
pability, a roulette wheel operator is employed to select
antlions based on their fitness value during the process of
optimization. 'is mechanism produces a high probability
that the fitter antlions will catch ants.

4.1.3. Trapping in Antlion Pits. As discussed above, random
walks of ants are affected by antlions traps.'emathematical
models for trapping are given as follows:

U
t
i � Antliont

j + U
t
,

L
t
i � Antliont

j + L
t
,

(36)

where Antliont
j denotes the position of the selected j-th

antlion at the t-th iteration and Lt and Ut are the minimum
and maximum of all the variables at the t-th iteration,
respectively.

4.1.4. Sliding Ants towards Antlions. Antlions can build
traps that are proportional to their fitness values during the
iteration process. Antlions shoot sand outwards the center of
the pits once they realize that an ant is trapped. To math-
ematically simulate the movement behavior of ants sliding
towards antlions, the random walks range is set to decrease
adaptively, which can be described as

U
t

�
Ut

I
,

L
t

�
Lt

I
,

(37)

where I � 10w(t /T) is a decreased ratio, t denotes the
current iteration, T represents the maximum number of
iterations, and w denotes a constant that is defined based on
the current iteration (w � 2, when t> 0.1T; w � 3, when
t> 0.5T; w � 4, when t> 0.75T; w � 5, when t> 0.9T; and
w � 6, when t> 0.95T).

4.1.5. Elitism. According to the elite strategy, the ant po-
sition is affected by both the antlion and the selected elite.
'e mathematical model of the i-th ant position at the t-th
iteration can be performed by

Antti �
Rt

A + Rt
E

2
, (38)

where Rt
A and Rt

E denote the random walks around the
antlion selected by the roulette wheel and the selected elite,
respectively.

4.1.6. Catching Prey and Rebuilding the Pit. 'e antlion will
catch an ant when the ant reaches the pit bottom, and then it
will pull the ant into the sand and consume it. To improve
the probability of catching the next ant, the antlion will
update its position based on the position of the latest caught
ant and then build a new pit. In this work, when the fitness
value of an ant is less than the antlion, the ant will be caught,
and the position of the antlion is updated by

Antliont
j � Antti if f Antti􏼐 􏼑<f Antliont

j􏼐 􏼑. (39)

4.2. Levy Flight MutationMechanism for Ants. 'e ALO has
problems related to premature convergence and not ideal
random walks. In this work, Levy flight is utilized to perturb
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the ants to improve the mutation mechanism. Levy flight is a
special random walk strategy that performs global searches
more effectively and can effectively describe the foraging
patterns of many biological groups [36]. As shown in Fig-
ure 4, Levy flight has a larger exploration scope and stronger
development ability, while the random walks exploration
scope is small and evenly dispersed. 'erefore, the diversity
of the whole population can be significantly improved, and
the ability of local development and global exploration of the
complex optimization algorithm can be effectively balanced
[41].

'erefore, the Levy flight is utilized to replace the
randomwalks for modeling themotion of ants, and equation
(29) can be redefined as

X
t

� 0, cumsum L t1( 􏼁 − 1( 􏼁, cumsum L t2( 􏼁 − 1( 􏼁, . . . ,􏼂

cumsum L titermax
􏼐 􏼑 − 1􏼐 􏼑􏽩,

(40)

where L(t) is the step size of the random search at the t-th
iteration and can be defined as

L(t; s, λ) �
λΓ(λ)sin(πλ/2)

πs1+λ , (41)

where Γ denotes the standard gamma function. s is a
pseudorandom step size generated by using the Levy flight,
which is a nontrivial scheme. Equation (42) is the most
effective and direct method for adopting the Mantegna
algorithm:

s �
U

|V|1/λ
, 1< λ≤ 3, (42)

where U and V are drawn from Gaussian distributions and
expressed as

U ∼ N 0, σ2􏼐 􏼑,

V ∼ N(0, 1),
(43)

where

σ2 �
Γ(1 + λ)sin(πλ/2)

λΓ((1 + λ)/2)2(λ− 1)/2􏼢 􏼣

1/λ

. (44)

4.3. >e Construction Process of the MALO Algorithm. To
summarize, a novel modified ALO is constructed in this
paper by combining the Levy flights mutation mechanism
for optimizing the punishment factor λ and kernel width σ in
the LSSVMmodel. 'e pseudocode of the MALO is given in
Algorithm 1.

5. The Construction Process of the Dam
Deformation Prediction Model by
Integrating the MALO and AWLSSVM

According to Sections 2–4, the dam deformation prediction
model integrates the AWLSSVM model and the MALO
algorithm to predict future dam deformation. 'e model

structure and operating process are shown in Figure 5 and
have been implemented in the MATLAB 2014a platform.
'e specific operation process for dam deformation pre-
diction is described as follows.

Step 1. Construct the data sets for the input and output
patterns of the prediction model and divide the data set
into a training set and a test set based on a certain
proportion. As described in Section 2, the influencing
factors of dam deformation, such as the water pressure
component H, temperature component T, and aging
component, are taken as the input variables and the
dam deformation as the output pattern of the model.
According to equation (7), for the concrete arch dam, n

is usually taken as 4. 'erefore, the water level factors
are selected as follows:

H, H
2
, H

3
, H

4
􏽮 􏽯. (45)

Considering the lack of thermometer monitoring data
and semiannual harmonics, the temperature factors are
described as follows based on equation (10).

sin
2πt

365
, cos

2πt

365
, sin

4πt

365
, cos

4πt

365
􏼚 􏼛. (46)

According to equation (11), the aging factors are se-
lected as follows:

θ, ln θ{ }. (47)

'erefore, the input and output patterns of model can

Levy flight
Random walk

–10
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–2
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–8 –6 –4 –2 0 2 4 6 8 10–10
X

Figure 4:'e 2D trajectory of Levy flights and randomwalks in the
set region.
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be written as

Input;Output􏼈 􏼉 � x1, x2, x3, x4, x5, x6, x7, x8, x9, x10; y􏼈 􏼉

� H, H
2
, H

3
, H

4
, sin

2πt

365
, cos

2πt

365
, sin

4πt

365
, cos

4πt

365
, θ, ln θ; y􏼚 􏼛.

(48)

(1) Construct the training set and test set, initialize the parameters (tmax, N, M, cmin, cmax, σmin, σmax, t � 0);
(2) Initialize the first population of ants and antlions by the random sampling;
(3) Construct the LSSVM model by equation (21), evaluate the fitness values of the ants and antlions by equation (34);
(4) Determine the antlion with the minimum fitness value as the elite antlion;
(5) While t< tmax do
(6) t � t + 1;
(7) For each ant
(8) Select an antlion based on the fitness value using the Roulette wheel principle;
(9) Update the lower and upper bounds by equation (38);
(10) Calculate the bounds around the selected antlion by equation (37);
(11) Determine Rt

A and Rt
E, the Levy flights around the selected antlion by equations (31) and (41);

(12) Update the new state of the ants using equation (39);
(13) End for
(14) Construct the LSSVM model and evaluate the fitness values of all the ants;
(15) Update all the position of the antlions using equation (40);
(16) Update the elite antlion if an antlion becomes fitter than the elite;
(17) End while
(18) Return elite antlion, namely, the optimal parameter combination (cbest, σbest).

ALGORITHM 1: Parameter optimization for the LSSVM model using the MALO algorithm.

Construct the normalized training set and test set by equation (49) 

MALO algorithm optimizes (γ, σ) for LSSVM model

Construct the data sets of the dam deformation time series, 
and divide the data set into a training set and a test set

MALO algorithm optimizes u for adaptive weight function

Initialize the parameter (Vemin, Tmax, t = 1), construct the LSSVM
model in equation (21) 

Calculate the initial fitting errors ζi
0 and the initial weight values

vi
0 in equation (26) 

Construct the WLSSVM model in equation (25), t = t + 1

Calculate the fitting errors ζi
t and update the weight values vi

t in
equation (26) 

Meet the criteria in equation (50)

Construct the WLSSVM model for dam deformation prediction
based on the final weight values vi

T 

Antinormalization of the output data in equation (51)

Estimate the prediction accuracy in equation ((52)-(55)) 

No

Yes

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Figure 5: 'e construction process of the MALO-AWLSSVM model for predicting dam deformation.
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To eliminate the effect of the index dimension and
quantity of the data and to ensure that all the original
data characteristics can be retained, all input data sets
are normalized in the interval [0, 1] by equation

xi
′ �

xi − xmin

xmax − xmin
, (49)

where xi denotes the original data, xmin and xmax are
the minimum value and maximum value of the original
data, respectively, and xi

′ represents the normalized
data.
Step 2. Set parameters of the prediction model. 'e
search space of punishment factor c, kernel width σ,
and adjustment coefficient u are set as [0.1, 1000], [0.01,
10000], and [0.1, 10], respectively. 'e maximum it-
eration tmax, the number of ants N, and the number of
antlions M are set as 100, 10, and 10, respectively;
generate the first population of ants and antlions by the
random sampling in the search space and the iteration
step t � 0. According to Section 4.3, conduct the
MALO algorithm to optimize the punishment factor c

and kernel width σ for LSSVMmodel, and optimize the
adjustment coefficient u for adaptive weighted func-
tion in equation (26), and obtain the optimal combi-
nation of parameters (cbest, σbest, ubest).
Step 3. Set the adaptive weighted iteration parameter;
namely, Vemin, Tmax andT are set to 0.0001, 100, and 1,
respectively; construct the LSSVM model by equation
(21) based on the optimal combination of parameters
(cbest, σbest). 'e initial fitting errors
ξ0i (i � 1, 2, . . . , Ntrain) of the training set can be ob-
tained and the initial weight values
v0i (i � 1, 2, . . . , Ntrain) can be calculated by equation
(26) based on the optimal adjustment coefficient ubest.
Step 4. Construct theWLSSVMmodel by equation (25)
based on the weighted training set; calculate the fitting
errors ξT

i (i � 1, 2, . . . , Ntrain) of the training set and
update the corresponding weight values
vT

i (i � 1, 2, . . . , Ntrain) by equation (26).
Step 5. Suppose the termination criteria in equation
(50) are satisfied; then output the weight values
vT

i (i � 1, 2, . . . , Ntrain); otherwise, update the iteration
step T � T + 1, and loop to step 4.

Ve �
1

Ntrain
􏽘

Ntrain

i�1
v

T
i − v

T− 1
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<Vemin orT>Tmax. (50)

Step 6. Establish the optimal WLSSVM prediction
model according to the final weighted training set;
implement the prediction with the optimal WLSSVM
prediction model based on the test set, and obtain the
normalized dam deformation value; then, the anti-
normalization of the output needs to be implemented
by equation (51) to revert the dam deformation data.

y
∗
i � y

∗′
i ymax − ymin( 􏼁 + ymin, (51)

where y∗i denotes the i-th predicted value, ymin and
ymax are the minimum and maximum of the measured
value, respectively, and y∗

′
i represents the i-th nor-

malized data of predicted value.
Step 7. Estimate the prediction accuracy of the MALO-
AWLSSVMmodel based on the test set. Four statistical
indicators given in equations (52)–(55), the maximum
error (ME), root mean squared error (RMSE), mean
absolute error (MAE), and mean absolute percentage
error (MAPE), are adopted to obtain an objective
evaluation for the performance of the prediction
models.

ME � max
1≤i≤N

yi − y
∗
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑, (52)

RMSE �

��������������

1
N

􏽘

N

i�1
yi − y

∗
i( 􏼁

2

􏽶
􏽴

, (53)

MAE �
1
N

􏽘

N

i�1
yi − y

∗
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (54)

MAPE �
1
N

􏽘

N

i�1

yi − y∗i
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

× 100%, (55)

where N denotes the number of samples and yi and y∗i are
the i-th measured value and predicted value, respectively.

6. Case Study

6.1. Engineering Overview and Dam Deformation
Observation. 'e Jinping I concrete arch dam was selected
as an example to validate the MALO-AWLSSVM prediction
model, which is located on the Yalong River, Sichuan
Province, China.'e Yangtze River basin and the location of
the Jinping I arch dam are shown in Figure 6. It mainly
consists of a double-curvature thin arch dam, a power
generation complex on the right bank, flood release struc-
tures, and diversion tunnels. 'e maximum height of the
arch dam is 305.00m (1580.00–1885.00m asl), which is the
highest arch dam in the world.'e thickness of the dam crest
is 16.00m, the base thickness is 63.00m, and the total arc
length of the dam crest is 552.00m.'e normal water level is
1880.00m, and the dead water level is 1800.00m. 'e total
reservoir storage, flood regulation storage, and dead storage
are 77.6×108, 49.1× 108, and 28.5×108 m3, respectively.'e
project was equipped with six Francis turbines, each rated at
600MW [42]. Figure 7 shows the “bird’s eye” view and a
central vertical cross section of the Jinping I arch dam.

'e formal construction of this project was started on
November 12, 2004, and, on December 4, 2006, river closure
was completed. 'e dam in dam section 14# started pouring
on October 23, 2009, and, on November 30, 2012, the arch
dam was in a condition for reservoir impoundment in ac-
cordance with the fixed progress schedule.'e arch damwas
completed in December 2013.
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Figure 8 shows the arrangement diagram of the mea-
suring points, which were installed to measure the hori-
zontal displacement of the dam body. Figure 9 shows the
schematic diagram of the plumb meter for monitoring the
dam displacement. In this research, the radial displacement
of measuring point PL13-4 in dam section 13# from July 1,
2013, to December 31, 2018, was used as the study object.'e
progress line of the upstream water level and the measured
radial displacement of PL13-4 are shown in Figure 10,

resulting in a total of 1284 observations. 'e positive values
denote the radial horizontal displacement downstream. 'e
sequence is divided into a training set and a test set to verify
the effectiveness of the proposed algorithm.

6.2. Comparison with Other Swarm Intelligence Algorithms.
To demonstrate the improvements on the parameter opti-
mization of the AWLSSVMmodel conducted by the MALO

Ctiy
Dam

Lake
River

Panzhihua

Jinping I Dam
Yibin Chongqing

�ree Gorges Dam

Yichang
Wuhan

Jiujiang
Yueyang

Dongting
Lake

Poyang
Lake

Shanghai
Taihu
Lake

Chaohu
Lake

N

Yushu

Figure 6: 'e Yangtze River basin and the location of the Jinping I arch dam.

(a)

1885.00m Dam crest

1800.00m Dead water level

1880.00m Normal
water level

Crest spillway

Deep outlet

Dam axis

Grout curtain

Drainage system

1645.00m Downstream water level

1700.00m Bottom diversion outlet

1580.00m Dam base

(b)

Figure 7: 'e Jinping I arch dam. (a) 'e “bird’s eye” view; (b) central vertical cross section of the dam.
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algorithm, it was compared to other swarm intelligence
algorithms such as the PSO [23], GSA [24], ACO [25], GWO
[26], CS [27], Goa [28], SSA [29], and ALO models [30].
Table 2 lists the parameter settings of all algorithms used in
this experiment.'e punishment factor c and kernel width σ

of the LSSVM model and the adjustment coefficient u in the
adaptive weighted function were selected as shown in Ta-
ble 3, which shows that the optimal parameters selected by
different metaheuristic algorithms are close to some extent.
Within that procedure, the four statistical indicators in

10987654321 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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Figure 8: 'e layout of the pendulum measurements observing horizontal displacement.

Figure 9: Schematic diagram of a plumb meter.
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equations (52)–(55) were applied to evaluate the pre-
diction accuracy of each model, and the results are
presented in Table 3. Table 3 shows that the MALO-
AWLSSVM model has a high prediction accuracy, and
the prediction accuracy of the ACO-AWLSSVMmodel is
the worst compared to that of the other models. Figure 11
displays the convergence procedure over the iterations of
the ALO and MALO algorithms. 'e results indicate that
the convergence rate of the MALO is faster than that of
the ALO. Hence, the improved ALO algorithm can ef-
fectively improve the performance of the prediction
model.

6.3. Stability Analysis of the Prediction Model by Introducing
Different Numbers and Amplitudes of Outliers. In this study,
to investigate the robust performance of the proposed
model, different numbers and amplitudes of outliers are
randomly added to the original training set. 'e definitions
of the data sets with different outliers are listed in Table 4.

To compare the prediction performance, the MALO-
AWLSSVM, MALO-LSSVM, and multiple regression
method (MRM) are applied to construct the prediction
model based on the training set. Meanwhile, the test set is
utilized to demonstrate their prediction performances for
the models. Figure 12 displays the weight value distribution

Table 3: Results of different swarm intelligence algorithms.

Algorithms γbest σbest ubest ME (mm) RMSE (mm) MAE (mm) MAPE (%)

PSO 172 4437 3.29 0.311 0.148 0.126 0.387
GSA 210 5407 3.25 0.312 0.148 0.126 0.388
ACO 525 8995 3.61 0.428 0.214 0.174 0.506
GWO 144 3724 3.31 0.311 0.149 0.127 0.387
CS 145 3760 3.34 0.311 0.149 0.127 0.387
GOA 358 9150 2.95 0.311 0.147 0.126 0.389
SSA 168 4345 3.30 0.311 0.148 0.126 0.387
ALO 266 6844 3.24 0.312 0.147 0.126 0.388
MALO 266 6835 3.24 0.311 0.147 0.126 0.387

Table 2: 'e parameter settings for the algorithms.

Algorithms Parameter Explanation Value

PSO

N Number of particles 10
ωmin,ωmax Minimum and maximum inertia weight 0.4, 0.8
vmin, vmax Minimum and maximum velocity − 10, 10

c1, c2 Acceleration coefficients 1.5, 1.5

GSA
N Number of agents 10
G0 Initial value of the gravitational variable 100
α User specified constant 20

ACO
N Number of ants 10
ρ Evaporation rate 0.9

P0 Transition probability constant 0.2

GWO
N Number of grey wolves 10
a Variable [2, 0]

r1, r2 Random vectors [0, 1]

CS

N Number of host nests 10
pa Detecting probability 0.25
α Step size scaling factor 0.01
λ Levy index 1.5

GOA

N Number of grasshoppers 10
cmin, cmax Minimum and maximum value 0.00004, 1

f Intensity of attraction 0.5
l Attractive length scale 1.5

SSA
N Number of salps 10
c1 Variable [2, 0]

c2, c3 Random number [0, 1]

ALO
N Number of ants 10
M Number of antlions 10
rand Random number [0, 1]

MALO

N Number of ants 10
M Number of antlions 10
rand Random number [0, 1]
λ Levy index 1.5
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Figure 11: 'e convergence of the ALO-AWLSSVM and MALO-AWLSSVM algorithms.

Table 4: 'e definitions of the data sets with different outliers.

Training set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9
PER (%) 0 1 1 1 1 2 2 2 2
AMP (mm) 0 1 2 3 4 1 2 3 4
Training set Set 10 Set 11 Set 12 Set 13 Set 14 Set 15 Set 16 Set 17 —
PER (%) 3 3 3 3 4 4 4 4 —
AMP (mm) 1 2 3 4 1 2 3 4 —
Note: PER represents the ratio of the number of outliers to the number of the training sets, AMP denotes the absolute amplitude of the outlier, and the ratio of
the test set to the data set is 25%.
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Figure 12: Continued.
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Figure 12: 'e weight value distribution of the training set and the prediction results of the MALO-AWLSSVM model. (a) Set 1; (b) set 2;
(c) set 3; (d) set 4; (e) set 5.
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of the training set and the prediction results of the proposed
model. Figure 12 shows that the weight values corre-
sponding to the outlier are smaller than those of other
normal measuring points. 'e trend of the residual variables
is consistent in different data sets. In this way, the influence
of the outliers on the model performance can be effectively
reduced, and the stability and prediction accuracy of the
model can be improved.

At the same time, the performance indicators (ME,
RMSE, MAE, and MAPE) defined by equations (52)–(55)
are applied to quantitatively estimate the prediction per-
formance of the three models. 'e prediction accuracy of
different models in different data sets is shown in Figure 13,
and the performance indicator values are listed in Table 5. It
can be clearly concluded that the MALO-AWLSSVMmodel
and MALO-LSSVM model both have good fitting accuracy,
but the MALO-AWLSSVM model is better, and the same
performance indicators are larger for the multiple regression
model. For the MALO-AWLSSVM model, the prediction
performance is almost unaffected by outliers in the training
set. As the number and amplitude of outliers increase, the

prediction performance of the proposed model is better than
those of the other two prediction models. By weighting each
sample in the training set, theMALO-AWLSSVMmodel can
effectively eliminate the influence of outliers and has
stronger robustness. When the number of outliers is the
same and the amplitude is different, the prediction per-
formance of the three models is relatively stable.

6.4. Stability Analysis of the Prediction Model by Introducing
Different Amounts of Outliers andDifferent Lengths of the Test
Set. For the second scheme, different numbers of outliers
are randomly added to the origin training set, and different
lengths of the test sets are investigated.'e definitions of the
data sets with different outliers and different lengths of the
test set are listed in Table 6.

To compare the prediction performance, MALO-
AWLSSVM, MALO-LSSVM, and multiple regression
method (MRM) are applied to establish the prediction
model based on the training set. Meanwhile, the test set is
utilized to demonstrate the predictive performance of the
models. As seen from Figure 14, the distribution of the
outliers in the training set can be clearly identified based on
the weight value. 'e trends of the residual variables are
consistent in the data sets with different numbers of outliers.
In conclusion, the MALO-AWLSSVM model has a very
stable prediction performance and effectively eliminates the
influence of outliers on the prediction accuracy.

Meanwhile, the performance indicators (ME, RMSE,
MAE, and MAPE) by equations (52)–(55) are applied to
evaluate the prediction performance of the three models.'e
prediction accuracy of the different models for different data
sets is shown in Figure 15, and the performance indicator
values are listed in Table 7. For the same data set, theMALO-
AWLSSVMmodel has the best prediction performance, and
the MRM is the worst. As the number of outliers increases,
the prediction performance of the three models is relatively

Table 5: Performance indicators (ME, RMSE, MAE, and MAPE) values using three prediction models for dam deformation prediction in
different data sets.

Data sets
MALO-AWLSSVM MALO-LSSVM MRM

ME RMSE MAE MAPE ME RMSE MAE MAPE ME RMSE MAE MAPE
Set 1 0.311 0.147 0.126 0.387 0.339 0.150 0.130 0.405 0.902 0.623 0.585 1.774
Set 2 0.296 0.145 0.124 0.379 0.326 0.151 0.132 0.407 0.896 0.627 0.588 1.779
Set 3 0.301 0.143 0.122 0.374 0.310 0.153 0.134 0.409 0.911 0.631 0.590 1.784
Set 4 0.294 0.142 0.122 0.375 0.296 0.153 0.135 0.412 0.931 0.635 0.593 1.789
Set 5 0.281 0.140 0.120 0.372 0.281 0.155 0.137 0.415 0.952 0.640 0.595 1.795
Set 6 0.306 0.147 0.124 0.379 0.342 0.155 0.133 0.409 0.917 0.628 0.590 1.786
Set 7 0.308 0.145 0.124 0.379 0.343 0.158 0.136 0.416 0.933 0.634 0.594 1.799
Set 8 0.314 0.144 0.123 0.382 0.350 0.161 0.139 0.432 0.960 0.640 0.598 1.812
Set 9 0.316 0.143 0.123 0.381 0.353 0.166 0.143 0.443 0.994 0.646 0.602 1.825
Set 10 0.307 0.144 0.121 0.369 0.336 0.148 0.126 0.388 0.881 0.630 0.593 1.792
Set 11 0.309 0.140 0.117 0.359 0.332 0.145 0.121 0.372 0.888 0.637 0.602 1.810
Set 12 0.314 0.141 0.116 0.355 0.328 0.143 0.117 0.356 0.899 0.645 0.610 1.828
Set 13 0.314 0.141 0.116 0.355 0.328 0.143 0.117 0.356 0.899 0.645 0.610 1.828
Set 14 0.341 0.139 0.114 0.352 0.369 0.142 0.116 0.359 0.952 0.639 0.601 1.807
Set 15 0.351 0.130 0.103 0.318 0.397 0.138 0.105 0.325 1.004 0.656 0.617 1.840
Set 16 0.339 0.124 0.096 0.297 0.426 0.141 0.100 0.310 1.056 0.674 0.633 1.874
Set 17 0.324 0.121 0.094 0.296 0.457 0.149 0.103 0.328 1.107 0.693 0.649 1.907

Table 6: 'e definitions of the data sets with different outliers and
different lengths of the test set.

Training
set

Set
1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set

8
PRL (%) 10 10 10 10 10 20 20 20
PER (%) 0 1 2 3 4 0 1 2
Training
set Set 9 Set 10 Set 11 Set 12 Set 13 Set 14 Set 15 —

PRL (%) 20 20 30 30 30 30 30 —
PER (%) 3 4 0 1 2 3 4 —
Note: PRL represents the ratio of the test set to the data set, PER represents
the ratio of the number of outliers to the number of the training sets, and the
absolute amplitude of the outlier is 3mm.
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Figure 14: Continued.
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Figure 14:'e weight value distribution of the training set and the prediction results of theMALO-AWLSSVMmodel. (a) Set 11; (b) set 12;
(c) set 13; (d) set 14; (e) set 15.
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Figure 15: Continued.
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stable.When the length of the test set is larger, the prediction
performance of the three models is worse compared to that
when the test set is smaller. As the prediction ratio PRL
increases from 20% to 30%, the performance indicator
values of the MALO-AWLSSVM model and the MALO-
LSSVM model increase more significantly. 'is could be
because the LSSVM model relies on more training data to
obtain a better prediction model. Nevertheless, in terms of
the prediction performance, the MALO-AWLSSVM model
is superior to the other two models.

7. Conclusions

'e problems associated with dam deformation prediction
will become more complicated and challenging with the

development of the social economy and the effects of ex-
treme climates. As a result, dam deformation prediction
requires further attention and efficient prediction tech-
niques. In this study, a novel dam deformation prediction
strategy inspired by a regression model and a novel nature-
inspired metaheuristic algorithm is proposed. 'e conclu-
sions obtained are discussed as follows:

(1) 'e current study combined AWLSSVM model and
the MALO algorithm to predict the dam deforma-
tion. To avoid the blindness of parameter selection
and improve the prediction performance of the
prediction model, the MALO algorithm was used to
intelligently select the punishment factor and kernel
width in the LSSVM model and the adjustment
coefficient in the Gaussian adaptive weighting
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Figure 15: Comparison of the prediction performance using three prediction models in different data sets (for each group, the left column
represents the MALO-AWLSSVMmodel, the middle column denotes the MALO-LSSVMmodel, and the right column is the MRMmodel).
(a) PRL� 10%; (b) PRL� 20%; (c) PRL� 30%.

Table 7: Performance indicators (ME, RMSE, MAE, and MAPE) values using three prediction models for dam deformation prediction in
different data sets.

Data sets
MALO-AWLSSVM MALO-LSSVM MRM

ME RMSE MAE MAPE ME RMSE MAE MAPE ME RMSE MAE MAPE
Set 1 0.159 0.106 0.094 0.228 0.165 0.114 0.102 0.246 0.555 0.426 0.405 0.976
Set 2 0.164 0.111 0.098 0.239 0.161 0.113 0.102 0.248 0.510 0.388 0.369 0.888
Set 3 0.159 0.106 0.094 0.228 0.173 0.111 0.097 0.236 0.567 0.413 0.389 0.936
Set 4 0.164 0.101 0.087 0.212 0.153 0.102 0.090 0.217 0.557 0.441 0.427 1.030
Set 5 0.120 0.077 0.069 0.166 0.171 0.105 0.092 0.223 0.495 0.391 0.380 0.917
Set 6 0.263 0.117 0.099 0.294 0.297 0.124 0.106 0.322 0.850 0.604 0.583 1.731
Set 7 0.268 0.118 0.100 0.296 0.304 0.125 0.106 0.328 0.886 0.611 0.591 1.774
Set 8 0.259 0.107 0.092 0.275 0.264 0.112 0.096 0.287 0.823 0.603 0.580 1.687
Set 9 0.246 0.115 0.096 0.286 0.324 0.144 0.122 0.349 0.988 0.668 0.638 1.896
Set 10 0.247 0.112 0.093 0.281 0.338 0.119 0.093 0.291 0.889 0.584 0.564 1.689
Set 11 0.600 0.297 0.233 0.651 0.641 0.309 0.254 0.707 0.783 0.492 0.456 1.353
Set 12 0.600 0.293 0.229 0.638 0.650 0.307 0.249 0.700 0.807 0.479 0.439 1.296
Set 13 0.599 0.295 0.232 0.651 0.643 0.301 0.242 0.678 0.734 0.523 0.493 1.476
Set 14 0.599 0.304 0.247 0.692 0.691 0.314 0.249 0.705 0.687 0.465 0.434 1.293
Set 15 0.600 0.285 0.216 0.610 0654 0.286 0.226 0.632 0.839 0.541 0.505 1.489
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function. Additionally, the advantages of the MALO
algorithm were compared with other metaheuristic
algorithms such as the PSO, GSA, ACO, GWO, CS,
GOA, SSA, and ALO algorithm models. 'e results
revealed that the MALO algorithm has high pre-
diction accuracy, and the convergence rate is faster
than that of the ALO. Hence, the MALO algorithm is
a more reliable algorithm to effectively conduct
parameter optimization.

(2) An actual dam project was employed to benchmark
the performance of the MALO-AWLSSVM model.
To explore the fitting and prediction effect of the
model, we set two schemes for the data set. For the
first scheme, the training sets were introduced with
different numbers and amplitudes of the outliers.
'e second scheme was based on considering dif-
ferent numbers of outliers and different lengths of
the test sets. An analysis of the dam deformation was
carried out under the framework of each data set.
Meanwhile, the other different prediction models
(i.e., the MALO-LSSVM model and MRM model)
were employed to provide the comparison. Among
these prediction models, the statistical indicators
demonstrated that the MALO-AWLSSVM model
has a better performance in fitting ability and pre-
diction accuracy, which has certain guiding signifi-
cance for dam deformation prediction. 'e results
showed that the Gaussian weighting strategy intro-
duced to adaptively weight the training sample da-
tum is a successful technique that can effectively
eliminate the influence of outliers and achieve high-
precision dam deformation predictions.

(3) 'e MALO-AWLSSVM model has satisfactory
performance for accurately identifying the distri-
bution of outliers and achieves high-precision pre-
dictions for dam deformation. We can conclude that
the proposed model provides a promising prediction
strategy that can be applied in the field of dam
deformation as well as flood interval prediction, the
stock price market, and wind speed forecasting.

Abbreviations

SVM: Support vector machines
LSSVM: Least squares support vector machines
AWLSSVM: Adaptive weighted least squares support

vector machines
MRM: Multiple regression method
RBF: Gaussian radial basis function
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MALO: Modified Ant Lion Optimizer
PSO: Particle swarm optimization
GSA: Gravitational search algorithm
ACO: Ant colony optimization
GWO: Grey wolf optimization
CS: Cuckoo search
GOA: Grasshopper optimization approaches
SSA: Salp swarm algorithm

ME: Maximum error
RMSE: Root mean squared error
MAE: Mean absolute error
MAPE: Mean absolute percentage error
PER: 'e ratio of the number of outliers to the

number of the training sets
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