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*e bat algorithm (BA) is a recent heuristic optimization algorithm based on the echolocation behavior of bats. However, the bat
algorithm tends to fall into local optima and its optimization results are unstable because of its low global exploration ability. To
solve these problems, a novel bat algorithm based on an integration strategy (IBA) is proposed in this paper. *rough the
integration strategy, an appropriate operator is adaptively selected to perform global search, so that the global search ability of the
IBA is improved. Furthermore, the IBA disturbs the local optimum through a linear combination of Gaussian functions with
different variances to avoid becoming trapped in local optima.*e IBA also updates the velocity equation with an adaptive weight
to further balance the exploration and exploitation. Moreover, the global convergence of the IBA is proved based on the
convergence criterion of a stochastic algorithm. *e performance of the IBA is evaluated on CEC2013 benchmark functions and
compared with that of the standard BA as well as several of its variants. *e results show that the IBA is superior to
other algorithms.

1. Introduction

Optimization usually involves highly nonlinear complex
problems with many design variables and complex con-
straints [1]. Generally, the form of nonlinear constrained
optimization problem can be formulated as follows:

Minimizef(x),

s.t. gl(x)≤ 0, l � 1, 2, . . . , k,

hj(x) � 0, j � 1, 2, . . . , p,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where x � (x1, x2, . . . , xn) is n-dimensional decision vari-
ables, f (x) is the objective function,gl(x)≤ 0 denotes the
inequality constraints, and hj(x) � 0 denotes the equality
constraints. Traditional deterministic methods or algorithms
do not cope well when solving a large number of problems in
practice, especially when the objective function is multi-
modal with many local optima. Over the past years, over a
dozen metaheuristic algorithms have been developed based
on inspiration from different natural processes. For instance,

the genetic algorithm [2] is based on the biological evolution
processes and ant colony optimization [3] is based on swarm
behavior. Harmony search is an algorithm inspired by the
music composition process of musicians.*e particle swarm
optimization (PSO) algorithm [4] is inspired from swarming
behaviors such as bird flocking and fish schooling in nature.
An evolutionary algorithm named the oriented cuckoo
search (OCS) algorithm [5] was motivated by the aggressive
breeding habits of a bird called the “cuckoo.” *ese algo-
rithms have been used to solve nonlinear complex problems
because of their simple structures and abilities to obtain a
solution, and they are referred to as nature-inspired algo-
rithms or bioinspired algorithms.

In recent years, many such metaheuristic algorithms
have been proposed. Wu et al. [6] proposed an enhanced
harmony search algorithmwith circular region perturbation,
and Gupta and Deep [7] introduced a new crossover op-
erator called the double distribution crossover. An aggre-
gative learning gravitational search algorithm was proposed
by Lei et al. [8], and Mohamed et al. [9] proposed a novel
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nature-inspired algorithm called the gaining sharing
knowledge algorithm, which mimics the process of gaining
and sharing knowledge during the human life span. At-
tention should also be drawn to novel algorithms [10–14]
based on sine cosine algorithms. Moreover, many meta-
heuristic algorithms were proposed for solving constrained
nonlinear programming problems (CNLPPs). Han et al. [15]
developed a new hybrid moth search-fireworks algorithm to
solve numerical and constrained engineering optimization
problems. Baykasoğlu et al. [16] introduced a new meta-
heuristic, single seekers society algorithm, for solving un-
constrained and constrained continuous optimization
problems. Shadravan et al. [17] presented a novel nature-
inspired metaheuristic optimization algorithm, called sail-
fish optimizer, which is inspired by a group of hunting
sailfish. Kaur et al. [18] proposed a novel hybrid multi-
objective optimization algorithm by synthesizing the
strengths of multiobjective spotted hyena optimizer and salp
swarm algorithm. Montemurro et al. [19] presented a new
penalty-based approach, developed within the framework of
genetic algorithms for constrained optimization problems.
Montemurro et al. [20] presented a nonclassical genetic
algorithm to solve the design of laminates with a minimum
number of layers. Costa et al. [21] provided a general
methodology to approximate sets of data points through
nonuniform rational basis spline (NURBS) curves.

*e bat algorithm (BA) is a nature-inspired meta-
heuristic algorithm. It was proposed by Yang in 2010 to
imitate the echolocation behavior of bats [22]. *e BA has
been widely applied in many applications, such as engi-
neering optimization [23, 24] and pattern recognition [25].
Next, we introduce three aspects of the BA in detail: pa-
rameters, algorithm structure, and application.

1.1. Parameters. Four main parameters are involved in the
standard BA: pulse frequency, pulse rate, velocity, and a
constant. For the standard BA, it is difficult to find a balance
between global search and local search, which leads to a slow
convergence rate. To solve this problem, Gandomi and Yang
[26] introduced chaos into the standard BA (CBA) to in-
crease its global search mobility for robust global optimi-
zation. In CBA, different chaotic systems are used to replace
the parameters in BA. Xie et al. [27] proposed an improved
BA based on the Lévy flight trajectory. *is algorithm can
effectively jump out of local optima using the strategy of an
adaptively adjusted frequency. Gan et al. [28] proposed a
new BA based on iterative local search and stochastic inertia
weight. A stochastic inertial weight is considered in the
velocity updating equation, which can enhance the diversity
and flexibility of the bat population.

1.2. Algorithm Structure. *e optimization performance of
the standard BA mainly depends on the interaction and
influence between individuals, which may lead to a local
optimum. Liu and Chunming [29] introduced the Lévy flight
behaviors of bats and took full advantage of the trait of
uneven random walks to enable the algorithm to avoid
becoming trapped in a locally optimal solution. To enhance

the ability of the algorithm to escape from locally optimal
values, Boudjemaa et al. [30] proposed the fractional Lévy
flight BA (FLFBA), in which the velocity is updated through
fractional calculus. Fister et al. [31] proposed a hybrid BA by
combining it with differential evolution. To improve the
global searching ability, Al-Betar and Awadallah [32] di-
vided the whole bat population into two subgroups and
specified the movement of bat individuals from one group to
another by mobility. Jaddi et al. [33] proposed to modify the
velocity equation of the standard BA to better balance ex-
ploration and exploitation in the population, and Ghanem
and Jantan [34] proposed an enhanced BA to enhance the
diversity of the standard BA using a special mutation
operator.

1.3. Applications. Recently, BA has been widely used in the
fields of optimization, modeling, and control. Dao et al. [35]
used parallel BA to solve a workshop scheduling problem.
Osaba et al. [36] proposed a discrete BA to solve the vehicle
path problem of drug waste collection and distribution.
Aiming at the data loss problem in high-dimensional data,
Leke and Marwala [37] proposed to estimate missing data
based on BA. To improve the accuracy of the generated fuzzy
rules, Cheruku et al. [38] analyzed big data for diabetes
detection by combining rough set feature selection with
optimized BA. Nakamura et al. [39] proposed a binary BA to
solve feature selection problems and proved that the algo-
rithm outperforms other swarm intelligence algorithms.
Goyal and Patterh [40] proposed a modified BA to evaluate
the precision of node localization in wireless sensor
networks.

Although the aforementioned algorithms addressed the
problems of BA, they cannot balance exploration and ex-
ploitation capabilities, and the stability of the results cannot
be guaranteed. Hence, these methods cannot really improve
the performance of the standard BA. To tackle the above
problems, this paper proposes a novel BA that uses an in-
tegration strategy (IBA) to enhance the search ability while
maintaining the stability of the results. In this paper, we
present three main contributions: (i) we adaptively select the
appropriate operator for performing global search through
the integration strategy, which can improve the global search
ability of the algorithm; (ii) we disturb a local optimum
through a linear combination of Gaussian functions with
different variances, so that the IBA has the ability to jump
out of the local optima; and (iii) we update the velocity
equation of the standard BA with an adaptive weight to
balance the exploration and exploitation and keep the al-
gorithm stable.

In addition, different constraint-handling methods were
proposed to solve CNLPPs: (i) hybrid methods; (ii) repair
algorithms; (iii) unique representatives and operators; (iv)
isolation of objectives and constraints; (v) penalty functions.
In this paper, we use penalty function to solve SNLPPs
because penalty function is the simplest one to solve the
constrained problem among the above methods.

*e rest of the paper is organized as follows: Section 2
describes the structure of standard BA. Section 3 describes
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the main idea of IBA and its flowchart. Section 4 proves the
global convergence of IBA. Experimental and comparative
analyses of the results obtained from IBA are presented in
Section 5. Finally, Section 6 concludes the paper. *e ac-
ronyms and their meaning are given in Table 1.

2. BA

*eBA is inspired by the echolocation behavior of bats when
sensing distances. When bats hunt at night, they typically
emit short, loud sound impulses and listen to the echo
bouncing back from an obstacle or prey. A bat can use its
special auditory mechanism to identify the size and position
of the object. Yang [22] proposed the BA based on this
echolocation characteristic of bats. *e steps of BA can be
summarized as follows:

Step 1. Initialize the bat parameters, as shown in Table 2.

Step 2. Update the global best position X∗, pulse frequency,
velocity, and position of the ith bat as follows:

fi � fmin + fmax − fmin( β, β ∈ [0, 1], (2)

V
t+1
i � V

t
i + X

t
i + X
∗

 fi, (3)

X
t+1
t � X

t
i + V

t
i , (4)

where Vt
i and Xt

i are the velocity and position at time t,
Vt+1

i and Xt+1
i are the velocity and position at time t + 1,

and β is a random number between 0 and 1.

Step 3. If the random number is greater than ri, a new
solution for the bat is generated by the following equation:

Xnew � Xold + εAt
, (5)

where ε is a random number, ε ∈ [− 1, 1], and At

represents the average loudness of all bats at time t.

Step 4. If the random number is lower than Ai and
f(Xi)<f(X∗), the new solution is accepted. Next, update
Ai and ri, respectively, as follows:

A
t+1
i � αA

t
i , (6)

r
t
i � r

0
i 1 − e

− ct
 , (7)

where At+1
i and At

i denote the loudness at times t and
t+ 1, respectively; r0i and rt

i are the initial pulse rate and
pulse rate at time t, respectively, α is a constant pa-
rameter in range [0, 1], c is a constant parameter, and
c> 0. As t⟶∞, At

i⟶ 0 and rt
i⟶ r0i .

Step 5. Sort the bats based on their fitness and find the
current optimal solution X∗.

Step 6. Return to Step 2 until the maximum number of
iterations is reached; output the globally optimal solution.

3. BA Based on an Integrated Strategy and
Gaussian Distribution

*is section explains the basic principle of IBA in detail,
which is based on integrated strategy and local search with
adaptive parameters. *e goal is to address the problems of
standard BA: local-optima traps, slow convergence speed,
and unstable optimization results. *is paper presents the
following improvements: (i) an adaptive weight; (ii) a
representation of the random disturbance using a linear
combination of two Gaussian distributions with different
variances; (iii) determination of optimal solution with an
integrated strategy; and (iv) local search.

3.1. Constraint-Handling Technique-Based Method. For the
constrained nonlinear programming problem (CNLPP), the
penalty method is a common method, whose core idea is to
transform the constrained problem into unconstrained
problem with penalty function. In general, for the meta-
heuristic algorithm, the equality constraint in equation (1)
can be modified as follows:

hq(x)


 − δ ≤ 0(q � k + 1, k + 2, . . . , k + p), (8)

where δ is a plus tolerance number to equality constraints.
*erefore, we define the following penalty function:

Gl(x) �
max 0, gl(x)( , l � 1, 2, . . . k,

max 0, hl(x) − δ


 , l � k + 1, k + 2, . . . , k + p.

⎧⎨

⎩

(9)

We define the new objective function according to
equation (1):

Π(x, λ) � f(x) + 

k+p

l�1
λGl(x)( , (10)

where λ is a penalty parameter. *en, the new objective
function can be further expressed as

Π x, μe, ]j  � f(x) + 

k+p

e�1
μeϕ

2
e(x) + 

k+p

j�1
]jψ

2
j(x), (11)

where φe and ψj denote inequality constraints and equality
constraints, respectively, and μe and vj denote the penalty
parameters of inequality constraints and equality con-
straints. *e value of the penalty parameter should be taken
as large as possible depending on the solution quality
needed. From the above analysis, we can see that when the
equality constraints are satisfied, the effect of μe to objective
function is zero. However, when the equality constraints are
not satisfied, μe is heavily penalized as it significantly in-
creases. Similarly, it is the same with the penalty parameter
vj for the case of inequality constraints.

Mathematical Problems in Engineering 3



When BA is used to solve the CNLPPs, its searching
mechanism can be expressed as the following optimization
problem:

min f(X)

s.t. X ∈ R
D

,
(12)

where f(x) is fitness function and RD denotes the searching
space of BA. Suppose position Xi � (xi,1, xi,2, . . . , xi,D) is a
feasible solution. In initialization, the bat individuals are
generated randomly in a searching space. *e bat pa-
rameters, including pulse frequency, velocity, and position,
are updated according to equations (2)–(4). It can be seen
from equations (2)–(4) that the velocity Vi and position Xi

are updated according to the randomly generated pulse
frequency fi. After the update, BA searches the local-op-
timal solution according to the average loudness of all bats
in a random manner, as shown in equation (5). It needs to
be noted that the local search is carried out with the pulse
rate ri. *e local search will be conducted if the random
number is greater than ri. From equation (5), we can see
that the range of local search is dependent on the average
loudness. *en, if the random number is lower than Ai and
the value of current solution is lower than the value the
optimal solution, the new solution will be accepted
according to the rules of the feasible solution. *e loudness
and pulse rate are updated according to equations (6)
and (7).

Table 1: List of acronyms.

Acronym Meaning
ACO Ant colony optimization
APSO Adaptive particle swarm optimizer
BA Bat algorithm
CBA Chaotic bat algorithm
CLPSO A comprehensive learning particle swarm optimizer
CMA Constant modulus algorithm
CNLPPs Constrained nonlinear programming problems
CPSOH A cooperative approach to particle swarm optimization
FIPS *e fully informed particle swarm
FLFBA Fractional Lévy flight bat algorithm for global optimizations
FLFBA Fractional Lévy flight bat algorithm
FPSO Frankenstein’s PSO
G-CMA-ES A restart CMA evolution strategy with increasing population size
HRCGA Global and local real-coded genetic algorithm
IBA A novel bat algorithm by using integration strategy
IBA-1 IBA without integration strategy
IBA-2 IBA without Gaussian function
IBA-3 IBA without adaptive weight
ILSA An improved local searching algorithm
JADE Adaptive differential evolution with optional external archive
LBA Bat algorithm with Lévy distribution
LSA Local search algorithm
OCS Oriented cuckoo search
PDF Probability density function
PSO Particle swarm optimization algorithm
SLPSO Social learning particle swarm optimization
SPSO A novel supervised particle swarm optimization

Table 2: BA parameters.

M *e size of bat population
N Max number of iterations
I *e number of bat, in range [1, M]
X∗ *e current global best location (solution)
Xi *e position of ith bat
Vi *e velocity of ith bat
fi *e pulse frequency of the ith bat and its range is between fmin and fmax
f(X) Fitness function
ri *e pulse rate of ith bat
Ai *e loudness of ith bat
α *e constant parameter in range [0, 1] used to update the loudness Ai

c *e constant parameter in range [0, 1] used to update the pulse rate ri
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Similar to [41], the feasibility-based rules for BA can be
defined as follows: (1) any feasible solution is superior to
any infeasible solution. (2) Between two feasible solutions,
the one having a better objective function value is pre-
ferred. (3) Between two infeasible solutions, the one having
a smaller constraint value is preferred. To summarize, these
rules are to choose a solution that lies closer to the feasible
region.

According to the above description, we present the
pseudocode of BA in Algorithm 1.

3.2. Parameter Improvement. It is generally known that a
suitable value for the inertia weight provides a balance
between the global and local exploration ability of the al-
gorithm. Shi and Eberhart [42] pointed out that a better
performance would be obtained if the inertia weight was
chosen a time varying, linearly decreasing quantity. It was
inferred that the system should start with a high inertia
weight for global exploration and this weight should de-
crease to facilitate finer local explorations in later iterations.
*e concavemodel [43], as a nonlinear model canmeet these
requirements for inertia weight. However, the inertia weight
generated by a concave function will greatly accelerate the
convergence rate, which tends to make the algorithm fall
into local optima. Inspired by Kentzoglanakis and Poole
[44], we define an adaptive weight w as follows, with the help
of the sine function:

w �

1 − sin π −
π ∗ t

2∗Tmax
 , t<Tmax,

1 − sin π −
π ∗ (t − ε)
2∗Tmax

 , t � Tmax,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where ε⟶ 0+. We then modify the velocity update
equation as follows to solve this issue:

V
t+1
i � wV

t
i + X

t
i + X
∗

 fi. (14)

Figure 1 shows how the values of w vary with time t. It
can be seen from Figure 1 that the values of w tend to
decrease as the number of iterations increases. In equation
(13), t is subtracted by ε to avoid outputting 0 for w when t is
equal to Tmax. We introduce an adaptive weight into
equation (13), which will make the velocity update more
flexible. At the beginning of the iterations, the individual has
a higher speed when the value of the weight is large, which
can speed up the search process and improve its global
search ability. In contrast, the individual has a lower speed
when the value of the weight is smaller in the last stages of
the iterations, which can improve its local search capability
and ensure the stability of the algorithm.

*e optimal position of the bat population is adjusted
using random number Xnew � Xold + 0.5(N(0, 1) +

N(0, 2))At, which follows a uniform distribution in the
interval [− 1, 1]. To enhance the search performance of the
algorithm, He et al. [45] introduced Gaussian perturbations
into the standard BA, instead of a uniform distribution.

Inspired by Chellapilla et al. [46], we modify the random
disturbance in the standard BA into a linear combination of
two standard Gaussian distributions as follows:

Xnew � Xold + 0.5(N(0, 1) + N(0, 2))A
t
, (15)

where N(0, 1) is a random number drawn from a distri-
bution with zero mean and a standard deviation of one;
N(0, 2) is a random number drawn from a Gaussian dis-
tribution with zero mean and a standard deviation of two.
Figure 2 shows the probability density function (PDF) of the
linear combination. Two standard Gaussian PDFs are also
plotted for comparison. For analysis, based on Figure 2, the
range of x-axis is split into two categories, around the mean
(− 1.8–1.8) and far from the mean (<− 1.8, or >1.8). In
comparison with N (0, 1), this linear combination generates
fewer random numbers around the mean. In comparison
with N (0, 2), the linear combination generates fewer ran-
dom numbers far from the mean. *us, the linear combi-
nation can achieve better disturbance performance and
avoid allowing an individual falling into local optima.

3.3. Improved Local Search Algorithm. *e standard BA will
fall into the local optima during the iterations. To solve this
issue, we propose an improved local search algorithm
(ILSA). *e basic principle of ILSA is to find the exact
optimal solution according to multiple fitness values. ILSA
operates as follows:

Step 1. Generate the neighborhood set of the best position
X∗ using the following equation:

N: X
∗ ⟶ rand∗X∗, (16)

where rand is a random number in the range of [0, 1].
We obtain a neighborhood set N(X∗) � X∗1 , X∗2 

from equation (16). We also assume that X∗1 <X∗2 .

Step 2. Calculate the fitness value f(X∗1 ) of X∗ � X∗1
according to the objective function f(X∗1 )<f(X∗).

Step 3. If f(X ∗1 )<f(X∗), the current optimal solution is
X∗ � X∗1 , f(X∗) � f(X∗1 ); otherwise, select mixk(t) from
N(X∗) and calculate its fitness value f(X∗2 ). If
f(X∗2 )<f(X∗), the current optimal solution is X∗ � X∗2 ,
f(X∗) � f(X∗2 ).

Step 4. Output the best solution X∗ and stop the search.
In terms of the optimal algorithm, there exists a certain

specific operator in the iterations whose performance is
superior than other operators [47]. *erefore, the global
search capability of the algorithm can be further improved
by selecting the appropriate operators at different times. In
this paper, we propose an optimal operator selection strategy
for the velocity update. *e main idea is to update the
velocity by selecting the appropriate operator and further
improve the exploration ability of the algorithm. *e se-
lection strategy determines whether the IBA can jump out of
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the local optima. If the IBA can jump out the local optima,
we randomly select other operators. Otherwise, we select the
current operator.

Based on the above idea, equation (14) can be modified
as follows:

V
t+1
i � wV

t
i + mixk(t), (17)

where mixk(t) represents the kth velocity update operator.
In this paper, we select the following three velocity

update operators:

(1) An operator based on the standard BA [48]:

X
t
i − X
∗

 fi. (18)

(2) An operator based on chaotic BA [27]:

X
t
i − X
∗

 CMifi, (19)

fi � fmin + fmax − fmin( CMi, (20)

(1) Initialize position Xi and velocity Vi, i � 1, 2, . . . , M;
(2) Initialize pulse rates ri and loudness Ai;
(3) Define pulse frequency fi of the ith bat and in the range between fmin and fmax;
(4) Evaluate all the elements in the population by objective function f (X) and the constraint value of each bat by the constrained

functions.
(5) Initialize the number of iteration t� 1;
(6) while (t<max number of iterations N)
(7) For each bat
(8) Update the locations/solutions (equation (4));
(9) If rand> ri

(10) Select a solution from the best solutions;
(11) Generate a local solution around the best solution (equation (5));
(12) End if
(13) Evaluate the fitness values and constraint values of the offspring
(14) If rand<Ai&f(Xi)<f(X∗)

(15) Accept the new solutions as the feasibility-based rules;
(16) Update the fitness;
(17) Update the pulse rate ri and loudness Ai (equations (6) and (7));
(18) End if
(19) End for
(20) Rank the bats and find the current best X∗;
(21) t� t+1
(22) End while
(23) Postprocess results and visualization;

ALGORITHM 1: BA.
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where CMi is the generic name of chaotic maps
consisting of some map functions.

(3) An operator based on an improved BA [49]:

X
t
i − Wt fi, (21)

where Wt is the worst position.
We present the pseudocode of the IBA in Algorithm 2.

4. Convergence Analysis of IBA

IBA is a stochastic optimization algorithm just like other
heuristic optimization algorithms [50]. In this section, we
give the global convergence proof of the IBA based on the
convergence criteria of stochastic algorithms [51]. We first
introduce the definition and theorem and then prove the
global convergence of IBA.

4.1. Definition of IBA

Definition 1. State and state space of IBA: X is the state of
bat and L represents the feasible solution space, denoted as
X ∈ L.ψ indicates the state of IBA consists of all bats,
denoted as ψ � (X1, X2, . . . , XN). Furthermore, S is the state
space of IBA, denoted as S � (ψ1,ψ2, . . . ,ψN).

Definition 2. State of IBA transition probability: in IBA, the
process of changing from one state Xi to another state Xj is
defined as the state transition of a bat, denoted as
Eψ(Xi) � Xj. *e probability equation is defined as

P ES ψi(  � ψj  � P Eψ Xi(   � Xj. (22)

Lemma 1. (see [52]). In probability space, z denotes the
existing solution of the random algorithm, D represents the
operator of generating solution by the algorithm, and ζ in-
dicates the generating solution of the random algorithm. For
the objective function f, if f(D(z, ζ))≤f(z), then the in-
equality can be expressed as follows:

f(D(z, ζ))≤f(ζ). (23)

Lemma 2. (see [52]). For any Borel set in the domain S of an
objective function, if L(A)> 0, the formula is shown as
follows:


+∞

k�0
1 − μk(A)(  � 0, (24)

where L(A) is the Lebesgue measure of set A and μk(A) is the
probability of generating set A.

Lemma 3. (see [52]). Fe necessary and sufficient conditions
for global convergence of the IBA are that p(k) 

+∞
k�1 is the

optimal sequence of locations, and Lemmas 1 and 2 are both
simultaneously satisfied.

4.2. Convergence Analysis of IBA

Theorem 1. IBA satisfies Lemma 1.

Proof. In every iteration of ILSA, the current optimal so-
lution Xold is perturbed, the best solution X∗ is disturbed,
and the acceptance criterion is used. For this reason, IBA
obtains the best solution in every iteration and *eorem 1 is
proved. □

Definition 4. *e optimal state set is
B � ψ∗ � (X1, X2, . . . , XN) | f(XN) � f(b∗),ψ∗ ∈ S ,
where b∗ is the optimal solution B ⊂ L.

Theorem 2. B is a closed set in IBA.

Proof. ∀ψi ∈ B, ∀ψj ∉ B, and the transition probability from
state ψi to ψj after the Mth(M≥ 1) step is as follows:

P
M

TS ψi � ψj   � 
M

k�1
P TS ψi(  � ψj− k+1 . (25)

*e state transition probability of IBA is shown as
follows:

P TS ψi(  � ψj− i+1  � 
N

m�1
P Tψ Xim(  � Xj− l+1,m . (26)

∀ψi ∈ B, ∀ψj ∉ B, and ∃ψj− k+1
∉ B(1≤ k≤M) in the Mth

iteration, and then f(Xj− k+1)≤f(Xj− k) � f(b∗). From the
acceptance criterion of ILSA, we have
P(TS(ψj− k) � ψj− k+1) � 0, PM(TS(ψi) � ψj) � 0, and hence,
*eorem 2 is proved. □

Theorem 3. Fe nonempty closed set G does not exist in state
space S.

Proof. We make the following assumption: a nonempty
closed set E exists in the state space S. Let
ψ ∗i � (b∗i1 , b∗i2 , . . . , b∗ic ) ∈ B, ψj � (Xj1, Xj2, . . . , Xjn) ∈ E,
then f(ζ jn)≤f(b∗ic ), then it has PM(TS(ψj) � ψ ∗j )> 0. As
we can see from *eorem 2, E is not a closed set, which is a
contradiction with Lemma 3. *eorem 3 is proved, which
gives us G∩B � Φ. □

Theorem 4. Fe state of IBA becomes optimal state set B as
the iteration times tend to infinity.

Proof. As can be seen from*eorems 2 and 3, state space S is
not composed of closed sets, which is beyond the optimal
state set B. If ζj ∉ B, we have lim

n⟶∞
P(TS(Xn) � Xj) � 0.

*erefore, optimal state set B includes the state of IBA, and
*eorem 4 is proved. □

Theorem 5. IBA satisfies Lemma 2.

Proof. As we can see from *eorem 4, when the number of
iterations approaches infinity, the probability that the
globally optimum solution is searched becomes 1 and
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0< μk[G]< 1; then, ∞k�0(1 − μk[G]) � 0, where G is the best
state set B. *erefore, *eorem 2 is proved.

Based on the above theoretical analyses, it can be con-
cluded that Lemmas 1 and 2 can be satisfied at the same time
and IBA is globally convergent. □

5. Simulation Results

In this section, we will prove the superiority of the algorithm
on CECE2013 benchmark function compared with other
algorithms. It should be noted that the proposed algorithm is
applied to solve the unconstrained optimization problem and
cannot handle constrained optimization problem. Firstly,
CEC2013 benchmark functions and parameter settings are
introduced. After that, simulations were carried out.

5.1. CEC2013 Function and Algorithm Parameter Setting.
Simulation on the CEC2013 benchmark set was done to
evaluate the performance of the proposed IBA. *e test set
consists of three groups:

(i) F1–F5 are unimodal functions
(ii) F6–F20 are multipeak functions
(iii) F21–F28 are compound functions

*e simulations were undertaken in MATLAB 2016a/
Simulink (2016a, MathWorks, Natick, MA, USA).We
compare IBA with the following eight algorithms:

(i) Bat algorithm (BA) [22]
(ii) Chaotic bat algorithm (CBA) [26]
(iii) Bat algorithm with Lévy distribution (LBA) [29]
(iv) Fractional Lévy flight bat algorithm (FLFBA) for

global optimizations [30]
(v) Oriented cuckoo search (OCS) [5]
(vi) IBA without the integration strategy (IBA-1)
(vii) IBA without the Gaussian function (IBA-2)
(viii) IBA without the adaptive weight (IBA-3)

Table 3 shows the parameter settings for the nine al-
gorithms according to the CEC2013 benchmark [53]. Note

(1) Define the objective function f(X), X � (x1, x2, . . . , xD)T;
(2) Initialize position Xi and velocity Vi, i � 1, 2, . . . , M;
(3) Initialize pulse rates ri and loudness Ai;
(4) Define pulse frequency fi of the ith bat and in the range between fmin and fmax;
(5) Evaluate all the elements in the population by objective function f (X);
(6) Initialize the number of iteration t� 1;
(7) while (t<max number of iterations N)
(8) For each bat
(9) If ILSA jump out of the local optima
(10) Select other velocity update operators randomly and update velocities (equations (17)–(21));
(11) Else
(12) Select the current velocity update operator, update velocities (equations (17)–(21));
(13) End if
(14) Update the locations/solutions (equation (4));
(15) If rand> ri

(16) Select a solution from the best solutions;
(17) Generate a local solution around the best solution (equation (5));
(18) End if
(19) If rand<Ai&f(Xi)<f(X∗)

(20) Accept the new solutions;
(21) Update the fitness;
(22) Update the pulse rate ri and loudness Ai (equations (6) and (7));
(23) End if
(24) End for
(25) Obtain the disturbed solutions X∗1 , X∗2 (equation (16));
(26) If f(X∗1 )<f(X∗)

(27) X∗ � X∗1 ;
(28) Else
(29) If f(X∗2 )<f(X∗)

(30) X∗ � X∗2 ;
(31) End if
(32) End if
(33) Rank the bats and find the current best X∗;
(34) t� t+1
(35) End while
(36) Postprocess results and visualization;

ALGORITHM 2: IBA.
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that the parameters of the algorithms are not optimized. As
can be seen from Table 3, each algorithm is terminated when
the number of iterations reaches 3,000.

In our algorithm, we used the following indicators to
evaluate the experimental results:

error �


51
i�1Fi

51
− Fvalue




, (27)

where Fi is the ith solution and Fvalue is the actual solution set
of the benchmark function. In the following experiments, we
take the average solution of each algorithm over the 51 trial
runs, where the value of 51 is set according to the CEC2013
benchmark.

5.2. Comparison of the IBA with Other Algorithms. *e av-
erage error in equation (27) obtained by the evaluated al-
gorithms on different test functions is shown in Table 4. On
the last line of Table 4, w denotes the number of times IBA
performs better than other algorithms, t refers to the number
of times IBA performs similar to the other algorithms, and l
indicates the number of times IBA performs worse than the
other algorithms. In addition, the best results in Table 4 are
presented in bold.

As shown in Table 4, IBA outperformed other algorithms
on 26, 22, 24, 23, 21, 25, 27, and 26 functions when compared
with BA, CBA, LBA, FLFBA, OCS, IBA-1, IBA-2, and IBA-3,
respectively. BA performers the worst. Compared with the
IBA, CBA, and LBA, FLFBA has better performance on

Table 3: Parameter settings.

*e size of bat population M 100
Frequency range [0, 5]
Initial loudness 0.95
Initial pulse 0.9
Parameter α 0.99
Parameter c 0.9
Location range [− 100, 100]D

Number of runs 51
Problem dimension D 30
Max number of iterations N 3000

Table 4: Comparison of the average error obtained by the IBA and other algorithms.

Function BA CBA LBA FLFBA OCS IBA-1 IBA-2 IBA-3 IBA
F1 1.96E+ 02 2.30E+ 00 8.25E − 01 3.59E − 01 4.51E − 05 1.26E+ 01 2.29E − 04 8.82E+ 01 3.26E− 05
F2 3.69E+ 06 4.47E+ 06 3.54E+ 06 2.21E+ 06 3.17E+ 05 3.66E+ 05 5.56E+ 03 2.21E+ 06 2.26E+ 03
F3 3.44E+ 08 6.71E+ 08 4.78E+ 08 3.46E+ 08 9.96E+ 06 3.12E+ 07 6.89E+ 06 3.22E+ 08 5.53E+ 06
F4 3.20E+ 04 3.10E+ 04 1.45E+ 04 6.13E+ 03 7.53E+ 03 3.11E+ 04 9.11E − 01 1.90E+ 04 8.60E− 02
F5 5.86E − 01 1.73E+ 00 4.74E − 01 1.36E − 01 4.26E − 01 2.71E − 01 1.43E − 02 4.32E − 01 1.31E− 02
F6 5.63E+ 01 6.28E+ 01 5.07E+ 01 4.52E+ 01 5.79E+ 01 4.11E+ 01 1.22E+ 01 5.01E+ 01 1.12E+ 01
F7 2.16E+ 02 2.31E+ 02 1.77E+ 02 1.62E+ 02 2.07E+ 02 2.11E+ 02 2.01E+ 02 2.02E+ 02 1.01E+ 02
F8 2.09E+ 01 2.10E+ 01 2.09E+ 01 2.10E+ 01 2.10E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01 2.09E+ 01
F9 3.57E+ 01 3.51E+ 01 3.40E+ 01 3.59E+ 01 2.79E+ 01 3.47E+ 01 3.03E+ 01 3.11E+ 01 2.65E+ 01
F10 1.32E+ 00 1.48E+ 00 1.23E+ 00 1.05E+ 00 1.40E − 01 1.03E+ 01 6.95E − 01 9.89E − 1 7.50E− 02
F11 4.07E+ 02 4.27E+ 02 1.49E+ 02 3.18E+ 01 6.83E+ 02 3.78E+ 02 6.91E+ 01 5.99E+ 02 6.23E+ 01
F12 4.06E+ 02 4.30E+ 02 7.42E+ 02 7.17E+ 02 3.07E+ 02 3.77E+ 02 3.45E+ 02 3.96E+ 02 2.23E+ 02
F13 4.37E+ 02 4.36E+ 02 5.59E+ 02 5.10E+ 02 3.84E+ 02 3.23E+ 02 2.89E+ 02 3.66E+ 02 2.26E+ 02
F14 4.78E+ 03 2.62E+ 03 3.17E+ 03 1.14E+ 03 2.39E+ 03 4.01E+ 03 4.24E+ 03 4.51E+ 03 4.23E+ 03
F15 4.89E+ 03 3.87E+ 03 4.76E+ 03 4.79E+ 03 3.55E+ 03 4.87E+ 03 4.46E+ 03 4.71E+ 03 4.43E+ 03
F16 2.16E+ 00 6.06E − 01 1.33E+ 00 1.53E+ 00 1.65E+ 00 2.11E+ 00 8.99E − 01 2.12E+ 00 3.40E− 01
F17 8.92E+ 02 2.73E+ 02 3.36E+ 02 1.62E+ 02 1.61E+ 02 8.88E+ 02 1.98E+ 02 8.56E+ 02 1.71E+ 02
F18 9.44E+ 02 2.61E+ 02 3.28E+ 02 3.31E+ 02 1.86E+ 02 7.98E+ 02 1.66E+ 02 7.76E+ 02 1.40E+ 02
F19 6.07E+ 01 4.35E+ 01 1.89E+ 01 1.26E+ 01 7.38E+ 01 5.56E+ 01 523E+ 00 6.01E+ 01 7.02E+ 00
F20 1.44E+ 01 1.44E+ 01 1.47E+ 01 1.48E+ 01 1.19E+ 01 1.34E+ 01 1.26E+ 01 1.41E+ 01 1.25E+ 01
F21 3.38E+ 02 3.27E+ 02 3.22E+ 02 3.03E+ 02 3.39E+ 02 3.38E+ 02 3.34E+ 02 3.37E+ 02 3.33E+ 02
F22 5.94E+ 03 3.15E+ 03 3.32E+ 03 1.20E+ 03 2.81E+ 03 5.91E+ 03 5.61E+ 03 5.88E+ 03 5.48E+ 03
F23 5.77E+ 03 5.03E+ 03 6.03E+ 03 5.81E+ 03 6.10E+ 03 5.72E+ 03 5.59E+ 03 5.73E+ 03 5.55E+ 03
F24 3.15E+ 02 2.92E+ 02 3.22E+ 02 3.23E+ 02 2.97E+ 02 3.13E+ 02 2.96E+ 02 3.03E+ 02 2.93E+ 02
F25 3.49E+ 02 3.32E+ 02 3.53E+ 02 3.52E+ 02 3.01E+ 02 3.32E+ 02 3.28E+ 02 3.39E+ 02 3.25E+ 02
F26 2.00E+ 02 2.83E+ 02 3.54E+ 02 3.35E+ 02 2.55E+ 02 2.01E+ 02 2.03E+ 02 2.00E+ 02 2.02E+ 02
F27 1.28E+ 03 1.19E+ 03 1.33E+ 03 1.34E+ 03 1.84E+ 03 1.25E+ 03 1.20E+ 03 1.21E+ 03 1.12E+ 03
F28 3.42E+ 03 2.89E+ 03 4.68E+ 03 4.34E+ 03 3.45E+ 03 3.39E+ 03 2.26E+ 03 3.34E+ 03 2.23E+ 03
w/t/l 26/1/1 22/0/6 24/1/3 23/0/5 22/0/6 25/1/2 27/1/0 26/1/1
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functions F14, F21, and F22, respectively. *erefore, we
conclude that the IBA can find effective solutions on most of
the benchmark test functions.

Figure 3 shows the results of the convergence for dif-
ferent test functions. As is clear in the figure, the proposed
IBA performs well in terms of convergence in most cases.
However, the IBA performs poorly compared with other
algorithms on functions F3, F5, F6, F7, F14, F15, and F18.
*is is because a suboptimal strategy was selected that made
the algorithm fall into a local optimum. It can be seen clearly
from Figure 3 that the convergence rate of the IBA is faster
than that of OCS on most functions.

*e performance of IBA-2 is superior to those of IBA-1
and IBA-3 on most functions, which indicates that the
Gaussian distribution has little impact on the algorithm ac-
curacy, but it can accelerate the convergence rate of the IBA.
IBA-1 converges more slowly than IBA-3 on most functions,
which indicates that the integration strategy can improve
accuracy. In terms of search accuracy and convergence, the
performances of IBA-1 and IBA-2 are superior to that of the
BA, which means that the adaptive weight can improve the
stability and search speed of the IBA. From these results, it can
be concluded that the IBA has high accuracy and better
convergence rate than the original BA algorithm.

*e results of the Friedman test [52, 54] can be seen in
Table 5. Smaller rank values indicate better performance of
the algorithm. Compared with the other eight algorithms,
IBA has the smallest rank. *us, we can come to the con-
clusion that the IBA is the best algorithm among the nine
methods.

*e results of the Wilcoxon test [55] are shown in Ta-
ble 6, for BA, CBA, LBA, FLFBA, OCS, IBA-1, IBA-2, and
IBA-3, p< 0.05. As Table 6 shows, IBA performs better than
the other four algorithms.

To evaluate the performance of the proposed algorithm
and related algorithms at different numbers of high di-
mensions, scaling simulations were performed on the
CEC2008 benchmark set. *e parameter settings of the
algorithms are the same as in Table 3. *e results of IBA and
the other algorithms in different dimensions are compared
in Tables 7 and 8.

Figures 4 and 5 show the results of the convergence for
different test functions. As is clear from the figure, the
proposed IBA performs well in terms of convergence inmost
cases, although it performs poorly in some functions.

As it can be seen from Tables 6 and 7, as the dimensions
of the functions increase, the performances of all algorithms
decrease. However, IBA performs better than the other al-
gorithms for most of the functions. IBA had better results for
six functions (F1, F3, F4, F5, F6, and F7) in 100 dimensions
and for six functions (F1, F2, F3, F5, F6, and F7) in 1,000
dimensions.

*e above results show that the IBA is superior to the
algorithms at different numbers of high dimensions.

*e results of the Friedman test are listed in Table 9 for
different dimensions. Compared with the other five algo-
rithms, IBA has the smallest ranking value. *us, we can
conclude that the IBA is the best algorithm of the six
methods.

*e results of the Wilcoxon test are listed in Table 10 for
different dimensions. As can be seen in Table 10, IBA
performs better than the other five algorithms.

5.3. Comparison on Two Real-World Application Problems.
To test the feasibility and performance of IBA on real-world
applications, we chose two problems from the real world
[56]: the design of a gear train [57] and parameter estimation
for frequency-modulated (FM) sound waves [58]. We
compared the IBA with the following ten algorithms:

(i) Social learning PSO (SLPSO) [56]
(ii) Adaptive PSO (APSO) [59]
(iii) Comprehensive learning PSO (CLPSO) [60]
(iv) Cooperative approach to PSO (CPSOH) [61]
(v) Fully informed particle swarm (FIPS) [62]
(vi) Supervised PSO (SPSO) [63]
(vii) Adaptive differential evolution with optional ex-

ternal archive (JADE) [64]
(viii) Global and local real-coded genetic algorithm

(HRCGA) [65]
(ix) Frankenstein’s PSO (FPSO) [66]
(x) Restart CMA evolution strategy with increasing

population size (G-CMA-ES) [67]

*e first problem is to optimize the gear ratio for a
compound gear train that contains three gears. *e function
of the problem is as follows:

f(x) �
1

6.931
−

x1x2

x2x3
 

2

, (28)

where xj ∈ [12, 60], j � 1, 2, 3, 4.
*e second problem is to estimate the parameters of an

FM synthesizer. *e components of the parameters vector
are as follows: X � a1, w1, a2, w2, a3, w3 , and the expres-
sions for the estimated target sound waves are shown as
follows:

y(t) � a1 · sin w1 · t · θ(  + a2 · sin w2 · t · θ( 

+ a3 · sin w3 · t · θ( ,
(29)

y0(t) � ((1.0) · sin 5.0 · t · θ − (1.5) · sin(4.8) · t · θ
+(2.0) · sin(4.9) · t · θ),

(30)

where θ � 2π/100, and the parameters are defined in the
range [− 6.4, 6.35]. *e fitness function is the sum of the
squared errors between the estimated wave in equations (29)
and (30) as follows:

f(X
→

) � 
100

t�100
y(t) − y0(t)( 

2
. (31)

A comparison of the performances on two real-world
problems is listed in Table 11. A set of heuristic algorithms
were used for the comparison.*e parameter settings of IBA
are the same as those listed in Table 3. *e IBA and the
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related algorithms were 30 times for a crucial analysis, where
“Min,” “Max,” “Mean,” and “Std” denote the best, worst,
mean, and standard deviation values, respectively.

As can be seen from Table 11, IBA can easily solve the
first real-world problem and obtained the best values. For
the second one, the proposed IBA can find the optimal
solution and obtained the smallest standard deviation values,
which shows that IBA has good ability to find the global
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Figure 3: Convergence curves of different algorithms on the CEC2013 benchmark set. (a) F1, (b) F2, (c) F3, (d) F4, (e) F5, (f ) F6, (g) F7, (h)
F8, (i) F9, (j) F10, (k) F11, (l) F12, (m) F13, (n) F14, (o) F15, (p) F16, (q) F17, (r) F18, (s) F19, (t) F20, (u) F21, (v) F22, (w) F23, (x) F24, (y)
F25, (z) F26, (aa) F27, and (ab) F28.

Table 5: Friedman test results of nine algorithms.

Algorithm Rank
BA 7.18
CBA 5.43
LBA 6.05
FLFBA 5.34
OCS 4.57
IBA-1 5.55
IBA-2 3.45
IBA-3 5.48
IBA 1.95

Table 6: Wilcoxon test of five algorithms.

IBA VS p value
BA 0
CBA 0.023
LBA 0.001
FLFBA 0.006
OCS 0.016
IBA-1 0
IBA-2 0
IBA-3 0
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Table 7: Comparison of the average error obtained with IBA and the other algorithms on the CEC2008 benchmark (100 dimensions).

Function BA CBA LBA FLBA OCS IBA
1 6.79E+ 00 6.55E+ 02 1.04E+ 01 5.66E+ 00 1.55E+ 01 1.56E− 13
2 8.21E+ 01 7.66E+ 01 5.36E+ 01 8.45E+ 01 6.15E+ 01 6.12E+ 01
3 3.59E+ 03 3.51E+ 03 6.07E+ 03 6.33E+ 03 1.71E+ 06 2.26E+ 02
4 1.51E+ 03 7.85E+ 02 1.06E+ 03 1.13E+ 03 7.27E+ 02 5.11E+ 02
5 1.42E+ 03 4.57E+ 02 1.25E − 01 8.88E+ 00 2.12E+ 00 5.11E− 03
6 2.07E+ 01 1.49E+ 01 3.5E+ 01 1.78E+ 01 1.95E+ 01 5.02E+ 00
7 − 8.53E+ 02 − 8.55E+ 02 − 8.96E+ 02 − 9.32E+ 02 − 1.06E+ 03 −1.28E+ 03
w/t/l 7/0/0 7/0/0 6/0/1 7/0/0 7/0/0

Table 8: Comparison of the average error obtained with IBA and the other algorithms on the CEC2008 benchmark (1000 dimensions).

Function BA CBA LBA FLBA OCS IBA
1 1.13E+ 06 1.86E+ 06 5.76E+ 03 1.56E+ 05 5.66E+ 01 7.72E− 07
2 1.42E+ 02 1.23E+ 02 1.28E+ 02 1.45E+ 02 1.25E+ 02 1.11E+ 01
3 1.55E+ 11 3.11E+ 11 5.25E+ 07 4.87E+ 09 3.56E+ 06 3.61E+ 03
4 1.99E+ 04 9.86E+ 03 1.77E+ 04 1.69E+ 04 7.25E+ 03 8.12E+ 03
5 3.62E+ 04 1.55E+ 04 4.51E+ 02 7.33E+ 03 3.26E+ 03 3.47E− 03
6 2.41E+ 01 1.99E+ 01 2.11E+ 01 2.33E+ 01 2.36E+ 01 1.89E+ 01
7 − 6.63E+ 03 − 7.55E+ 03 − 7.12E+ 03 − 7.29E+ 03 − 7.56E+ 03 −1.28E+ 04
w/t/l 7/0/0 7/0/0 7/0/0 7/0/0 6/0/1
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Figure 4: Convergence curves of different algorithms on the CEC2008 benchmark (100 dimensions): (a) F1, (b) F2, (c) F3, (d) F4, (e) F5,
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Figure 5: Convergence curves of different algorithms on the CEC2008 benchmark (1,000 dimensions): (a) F1, (b) F2, (c) F3, (d) F4, (e) F6,
(f ) F7, and (g) F7.

Table 9: Friedman test results of six algorithms.

100 dimensions 1000 dimensions
Algorithms Rankings Rankings
BA 4.86 5.57
CBA 3.86 4.14
LBA 3.57 3.86
FLBA 4.00 4.43
OCS 3.57 1.86
IBA 1.14 1.14

Table 10: Wilcoxon test of six algorithms.

100 dimensions 1000 dimensions
IBA vs p value p value
BA 0.018 0.008
CBA 0.018 0.008
LBA 0.043 0.008
FLBA 0.018 0.018
OCS 0.018 0.091

Table 11: Comparison on two real-world problems.

Gear ratio Estimation error
IBA 7.71E− 32 2.65E− 24 2.24E− 25 6.26E− 25 0 24.76 17.62 5.62
SLPSO 2.70E − 12 6.19E − 09 2.22E − 09 9.83E − 09 0 13.79 4.18 26.99
APSO 2.70E − 12 1.31E − 08 1.59E − 09 1.44E − 08 0 34.22 11.33 41.13
CLPSO 2.70E − 12 1.36E − 09 1.99E − 10 2.22E − 09 0 14.08 3.82 23.53
CPSOH 1.54E − 10 2.02E − 06 2.80E − 07 2.33E − 06 0.01 42.52 27.08 60.61
FIPS 8.88E − 10 8.90E − 07 3.27E − 08 8.77E − 07 3.45 15.11 5.93 25.75
SPSO 2.70E − 12 2.56E − 07 1.39E − 08 2.57E − 07 0 18.27 9.88 33.85
JADE 2.70E − 12 1.36E − 09 2.10E − 10 2.26E − 09 0 13.92 7.55 26.18
HRCGA 2.70E − 12 1.18E − 09 1.53E − 10 1.88E − 09 0 17.59 8.41 32.54
FPSO 2.06E − 09 1.70E − 04 1.57E − 05 1.80E − 04 0 15.82 5.22 28.31
G-CMA-ES 2.70E − 12 7.32E − 01 2.44E − 02 1.31E − 01 3.326 55.09 38.75 16.77
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optimum when dealing with real-world problems with good
stability and is stable.

6. Summary

Although heuristic algorithms perform well in optimization
problems, it is easy for them to fall into local optima and
output unstable results. To solve these problems, the IBAwas
proposed to improve the performance of the BA. *e
convergence of the algorithm was proved by mathematical
analysis and simulation experiments. In the future, we will
use the IBA to solve modeling, optimization, and control
problems in different fields。In particular, we will further
improve our algorithm to solve the constrained optimization
problem.
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