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Aiming at solving the problem that the parameters of a fault detection model are difficult to be optimized, the paper proposes the
fault detection of the wind turbine variable pitch system based on large margin distributionmachine (LDM) which is optimized by
the state transition algorithm (STA). By setting the three parameters of the LDMmodel as a three-dimensional vector which was
searched by STA, by using the accuracy of fault detection model as the fitness function of STA, and by adopting the four state
transformation operators of STA to carry out global search in the form of point, line, surface, and sphere in the search space, the
global optimal parameters of LDM fault detection model are obtained and used to train the model. Compared with the grid search
(GS) method, particle swarm optimization (PSO) algorithm, and genetic algorithm (GA), the proposed model method has lower
false positive rate (FPR) and false negative rate (FNR) in the fault detection of wind turbine variable pitch system in a real
wind farm.

1. Introduction

With the rapid development of the wind power industry, the
installed capacity and quantity of wind turbines are growing
continuously. -e World Wind Energy Association predicts
that by the end of 2020, the global installed capacity will reach
1.9×106mw [1]. However, the availability of wind turbines is
not ideal due to the increasing failure rate and maintenance
cost of wind turbines along with the development of wind
farms. -e wind turbine variable pitch system is one of the
important parts of the wind turbine, which has a complex
internal mechanical structure and operated in a harsh envi-
ronment that will lead to its failure rate significantly higher
than other wind turbine subsystems. Since the safe and stable
operation of the variable pitch system directly affects the op-
eration efficiency of wind turbines, fault detection of the
variable pitch system is of great significance for stable and
efficient generation of wind turbines [2, 3].

-e fault detection method is generally divided into the
model-based method and the data-driven method [4]. -e
model-based fault detection method needs to establish an
accurate mathematical model for the diagnosis object through
mathematical and physical knowledge and detect faults by
observing the change of the residual value [5]; the residual value
of an equipment under normal state should be zero or close to
zero, and it is not zero when the equipment is disturbed or
malfunctioned.-is method can be divided into the parameter
estimation method [6], state estimation method [7], and
equivalent space method [8]. -e model-based fault detection
method can quickly get a more accurate mathematical model
and detect faults accurately for the system with simple
structure. However, for the fault detection of large-scale wind
turbines, the modeling process is easy to be affected by various
parameters which will influence the robust performance and
the accuracy of the fault detection and evenmakes it difficult to
locate the wind turbine internal fault causes.
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-e data-driven fault detection method extracts useful
information through various data processing and analysis
methods based on the collected data, compares the collected
historical data with the real-time data of the system, and
analyzes their potential relationship so as to carry out fault
detection. Being capable of detecting the fault of the equip-
ment through data analysis, this method does not need to
establish an accurate mathematical model. It does not depend
on the complexity and uncertainty of the system, so a good
detection performance is obtained of it. As the method meets
the needs of the industrial big data era, it is widely used in the
industrial field. Artificial neural networks (ANNs), SVM,
LDM, and other models are usually used for fault detection of
equipment in the data-driven fault detection method.

-e ANN is a classic data-driven model based on
mimicing the biological nervous system. It can automatically
analyze and infer the input information to detect faults by
simulating the physiological structure and thinking mode of
the human brain. -e application of ANNs in wind turbine
fault detection has a good detection performance. Con-
cerning the problem of sensor fault of the wind turbine, Qiu
et al. proposed a damage prediction method for the offshore
wind turbine tower structure based on ANNs, which can
improve the accuracy of fault prediction [9]. In the case of
gearbox fault, Chen et al. proposed a fault diagnosis method
based on wavelet analysis and neural networks to diagnose
the wind turbine gearbox and predict the early fault signs
and obtained good results [10]. -e ANN has the ability of
self-study which is similar to the human brain. It has good
robustness to the interference and noise of the system.
However, due to the nature of the black box, this method is
difficult to make a good explanation for specific faults.
Moreover, it has high requirements for data in actual use and
requires high running cost.

SVM is another classic data-driven model based on global
optimization. It has good performance and can solve the
problems of multiclassification recognition and regression
prediction [11, 12], which has been widely recognized in the
field of wind turbine fault research. Hang et al. proposed awind
turbine fault diagnosis method based on a multiclass fuzzy
SVM classifier to improve the accuracy of fault diagnosis [13].
Rotating parts in wind turbines are one of the key objects in
fault diagnosis of wind turbines. However, in fact, the vibration
signals collected from the rotating parts are generally non-
Gaussian and nonstationary, and the fault samples are very
limited. Liu et al. proposed a wind turbine fault diagnosis
method based on a diagonal spectrum and clustering binary
tree SVM, which achieved good results [14]. Although having a
good performance on simple binary classification problems,
SVM is ineffective in dealing with large-scale data problems
and sensitive to model parameters and data integrity.

-e distribution machine supported by large margin
theory can find the distributionmodel according to the sample
distribution characteristics while considering the sample mean
value and sample variance. Compared with the former two
models, LDM has higher fault detection performance. In the
fault detection of wind turbines, Tang et al. proposed a cost-
sensitive large margin distribution machine (CLDM) to solve
the problems of class imbalance data and misclassification

unequal cost of large wind turbine data sets, which has ef-
fectively improved the fault detection performance [15].

-e data-driven fault detection model has good practi-
cability in actual wind turbine fault detection and fault di-
agnosis. However, most of these models depend on the
selection of parameters, so it is necessary to use the parameter
optimization algorithm to quickly and accurately find the
global optimal model parameters. -e GS, PSO, and GA are
most commonly used to optimize the parameters of the fault
detection model in wind turbine fault detection. Aguilar et al.
proposed a multiobjective particle swarm optimization
(MOPSO) algorithm for the electrical fault of variable-speed
wind turbines, which improved the stability of wind turbines
[16]. Concerning the problem that the traditional threshold
setting is difficult to identify the abnormal operation of wind
turbines, Zhang et al. put forward a new backpropagation
neural network (BPNN) anomaly identification model
combined with GA, which provides good performance effect
for abnormal identification of wind turbines [17]. Yan et al.
optimized the parameters of SVM by the GS method in wind
turbine fault detection to improve the diagnostic accuracy
[18]. PSO, GA, and GS can achieve approximate global op-
timal solution for parameter optimization of a simple model,
but it is easy to fall into local optimum when used in fault
detection of large and complex wind turbines.

-e STA is a parameter optimization algorithmwith four
state transition operators, facing the complex fault detection
problem; the global optimal value can be quickly and ac-
curately found by the four state transformation operators
alternately, which is suitable for detecting the complex fault
of the wind turbine variable pitch system. Because of its
strong performance and practicability, the STA has solved
many problems in the industry and other fields [19, 20].

It is of great significance to choose a fault detection
model with proper performance. However, in the fault
detection model based on machine learning, parameter
optimization is an important process, and how to select
appropriate parameters to enable the detection model to
meet the fault detection standard of the wind turbine var-
iable pitch system is the key and difficult problem of all
machine learning models. -erefore, an improved LDM
model based on the STA is studied with an aim to effectively
finding out the optimal model parameters, making it meet
the fault characteristics of the variable pitch system, and
improving the accuracy of fault detection.

2. Large Margin Distribution Machine

If the traditional machine learning algorithm based on
margin theory for optimization is adopted, attention should
be paid to find the minimum margin between samples, such
as SVM, which can be adopted to find the hyperplane that
maximizes the minimum margin between two kinds of
samples in the optimization process [21]. However, the
method only focuses on the support vectors that only ac-
count for a small proportion in a large number of samples,
while the rest of the sample information is not considered in
the learning process. -e above method will lead to the loss
of some samples of useful information as well as reduction of
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the learning ability of the algorithm for samples; in addition,
the learning effect remains to be improved.

-e LDM proposed by Zhang and Zhou is used to find
the separation hyperplane according to the distribution
characteristics of samples under the premise of considering
the margin distribution of the whole sample [22]. Compared
with the support vector machine which only optimizes the
minimum margin, it has stronger generalization perfor-
mance. Figure 1 shows the different results of the final
classification hyperplane due to different margin consider-
ations in the classification process.

In Figure 1, the triangle icon refers to the first type of
sample, the square icon refers to the second type of sample, the
elliptical dotted line shows the potential distribution of the two
types of samples, and the red triangle and red square indicate
the distribution mean of the two types of samples. If the
classification hyperplane is searched based on the minimum
margin between the two types of samples as hmin in the figure,
it can be found to intersect with the potential distribution
range of the right sample, and there is the possibility of
misclassification; if the overall distribution of two types of
samples has been considered in the classification hyperplane
with the classification plane as hdist in the figure, the con-
clusion can be drawn that it has better classification perfor-
mance and stronger robustness for two types of samples [23].

For LDM, we should set X � [ϕ(x1), . . . ,ϕ(xm)] and set
the algorithm y � [y1, . . . , ym] as the m-dimensional col-
umn vector, where ϕ(·) is the feature mapping through a
positive definite function κ(·, ·), Y is an m-order square
matrix, and the diagonal is y1, . . . , ym; therefore, the mean
value of the margin can be defined as follows:
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It is important to make a linear combination of margin
mean and margin variance into an optimization problem,
introduce L2-norm as the regularization term, and select
hinge loss for the loss function; therefore, the formalization
of LDM is as follows:

min ω,ξi
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(3)

where parameters λ1 and λ2 are trade-off parameters and are
used to adjust the weight of the margin mean and margin
variance in the objective function, while C is a loss function

parameter. Although the theory of large margin distribution
has achieved good results in theory and practice, the clas-
sification surface may show unbalanced tendency in the face
of the number of unbalanced margins and samples with
noise, and the robustness to noise is not strong. -erefore,
the model needs further development and improvement.

3. The State Transition Algorithm

Being a global optimization method proposed by Zhou et al.
[24] the STA is an individual-based intelligent stochastic
global optimization method. It uses different state trans-
formation operators to operate independently through the
given current solution, thus generating the candidate so-
lution set and finding out the solution better than the current
candidate solution in the candidate solution set, which
serves as a new solution of the update iteration. -e process
should be repeated till the certain termination condition is
met.

In brief, the STA is based on the state space of modern
control theory, which treats the solving process of the op-
timization problem as the process of state transition and
treats the generation and update of the solution as the
formation and update of the state.

3.1. 1e State Transformation Operator. -e state-space
expression in modern control theory is used as the unified
framework of the candidate set, and the state transformation
operators are designed for the framework. -e unified
framework of candidate solutions for the STA is as follows:

xk+1 � Akxk + Bkuk,

yk+1 � f xk+1( 􏼁,
􏼨 (4)

where xk � [x1, x2, . . . , xn]T is the current state and rep-
resents a candidate solution in the optimization problem, Ak

hmin hdist

Figure 1: Minimum margin hyperplane and margin distribution
hyperplane.
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and Bk are the state transition matrices, which are random
matrices and equivalent to state transformation operators,
uk is a function of the historical state and current state,
which is equivalent to a control variable, and f(·) is the
objective function, that is, the fitness function.

-e four state transition operators in the STA corre-
spond to four search functions, and each state transfor-
mation operator can form a regular geometric neighborhood
with unique shape and adjustable size. State transformation
operators mainly include rotation transformation operator,
translation transformation operator, expansion transfor-
mation operator, and axesion transformation operator.

(1) -e rotation transformation operator:

xk+1 � xk + α
1

n xk

����
����2

Rrxk, (5)

where α> 0 is the rotation factor; Rr ∈ Rn×n is a ran-
dom matrix with its element values evenly distributed
between [−1, 1]; ‖ · ‖2 is the vector L2-norm, and the
function of the rotation transformation operator is to
search in the hypersphere with α as the radius.

(2) -e translation transformation operator:

xk+1 � xk + βRt

xk − xk−1

xk − xk−1
����

����2
, (6)

where β> 0 is the translation factor; the value range of
Rt ∈ R is [0, 1], meeting the uniform distribution. As
a heuristic search operator, the translation transfor-
mation operator can search with β as the maximum
length from point xk−1 to point xk along the line.

(3) -e expansion transformation operator:

xk+1 � xk + cRexk, (7)

where c> 0 is the expansion factor and Re ∈ Rn×n is a
diagonal matrix, with its element value of nonzero,
complying with the Gaussian distribution. As the global
search operator, the expansion transformation operator
can expand each element in xk to the whole range of
(−∞, +∞), thus realizing the search of thewhole space.

(4) -e axesion transformation operator:

xk+1 � xk + δRaxk, (8)

where δ > 0 is the axesion factor and Ra ∈ Rn×n is a sparse
random diagonal matrix, with its element value of
nonzero, complying with the Gaussian distribution. Being
a heuristic search operator with relatively strong single-
dimensional search ability, the axesion transformation
operator can search along the axesion axis direction.

4. Large Margin Distribution Machine
Optimized by the State Transition Algorithm

Fitness function is a main factor affecting the convergence
speed and finding the optimal solution of the parameter

optimization algorithm, and it is an evaluation criterion to
select and update the optimal solution in the process of
parameter optimization. In the STA, the mean accuracy of
the LDM optimization model which was verified by 10-fold
cross-validation is used as the fitness function to judge the
selection and update of the current parameter state; if the
accuracy is higher than that of the current optimal state, the
new parameter will be used as a better solution to update the
current state, and if the accuracy is lower than that of the
current optimal state, the parameter will be abandoned for
the next iteration. -e fitness function is as follows:

fitness �
􏽘

kcv

i�0accuracy LDM λ1, λ2, C( 􏼁( 􏼁

kcv

, (9)

where kcv � 10 is the number of cross-validations, λ1, λ2, and
C are the three parameters in LDM, which are the margin
variance parameter, margin mean parameter, and loss
function parameter, respectively. -e meaning and value
range of three parameters are shown in Table 1.

LDM parameters are adjusted by the STA, and the three
parameters in LDM are taken as a three-dimensional vector
form, a state in the STA. -e new candidate solution set is
generated by alternately using the four transformation op-
erators of rotation, expansion, axesion, and translation.

-e use of the fitness function of the improved LDM and
the selection and updated pseudocode of the current optimal
state solution are given in Algorithm 1.

However, Best0(λ10, λ20, C) refers to the initial state, and
the three parameters of LDM are assigned from Step 6 to
Step 8; the training set is adopted to train the adjusted LDM
algorithm to establish the learning model in Step 9; the
testing set is used to predict the model in Step 10; the
classification accuracy of the predicted results is used as the
evaluation criterion of fitness function in Step 11; the ro-
tation transformation, expansion transformation, axesion
transformation, and the function of selection and update are
realized from Steps 12 to 14, and the discriminant rules for
selection and update follow the fitness function Fitness based
on predicted accuracy of LDM. If the specified termination
criterion is met, the output solution Best(λ1, λ2, C) will be
the global optimal parameters to improve the LDM. Figure 2
shows the specific process of the STA selecting the optimal
parameters of LDM by the fitness function.

5. Experimental Results and Analysis

-e experimental data used the wind turbine variable pitch
system fault data of one year’s SCADA data set collected by a
wind farm in East China, including variable pitch main
power supply fault, variable pitch blade server drive tem-
perature over-limit fault, and variable pitch system emer-
gency stop fault. -e number of fault samples and the
number of fault features of the three fault data are shown in
Table 2.

According to the different fault detection of the wind
turbine variable pitch system, the sample set in normal
operation should be classified as normal, and the sample set
in failure should be classified as a fault. It is important to

4 Mathematical Problems in Engineering



divide the whole sample set into two parts with each part
containing normal data and fault data, which are used as a
training set and testing set, respectively. -e training set is
mainly used to train the fault detection model, and the
testing set is used to predict the model.-e parameters of the
STA are set as αmax � 1, αmin � 1e − 4, β � 1, c � 1, δ � 1,
SE � 30, and fc � 2.

In order to verify that the STA can be adopted to im-
prove the parameter adjustment of LDM and the improved
LDM is effective for fault detection of the wind turbine
variable pitch system, measures should be taken to introduce
GS, PSO, and GA into the model parameter optimization
method for comparison. -e evaluation indexes were four
indexes produced by the confusion matrix, including ac-
curacy, F1-score, FPR, and FNR:

accuracy �
TP + TN

TP + FN + FP + TN
,

F1 − score �
2

(1/(TP/(TP + FP))) +(1/(TP/(TP + FN)))
,

FPR �
FP

TN + FP
,

FNR �
FN

TP + FN
,

(10)

where TP means the actual sample is positive and the
prediction is positive; FP means the actual sample is

negative and the prediction is positive; TN means the
actual sample is negative and the prediction is negative;
FN means the actual sample is positive and the prediction
is negative.

In terms of the fault of wind turbine variable pitch main
power supply, the boxplot of accuracy is shown in Figure 3.
-e comparison results of F1-score, FPR, and FNR are
shown in Table 3.

-e results indicated that the detection accuracy and F1-
score of the improved LDM based on the STA for the
variable pitch main power supply fault were higher than the
values in terms of the methods of parameter adjustment
through PSO, GA, and GS. FNR and FPR were the lowest
among the four parameter adjustment methods.

For wind turbine variable pitch blade server drive
temperature over-limit fault situation, Figure 4 shows the
accuracy boxplot. -e comparison results of F1-score, FPR,
and FNR are shown in Table 4.

-e results indicated that the detection accuracy and F1-
score of the improved LDM based on the STA for wind
turbine variable pitch blade server drive temperature over-
limit fault were the highest while FNR and FPR were lower
than the other three parameter adjustment methods.

For the wind turbine variable pitch system emergency
stop fault situation, Figure 5 shows the accuracy boxplot.-e
comparison results of F1-score, FPR, and FNR are shown in
Table 5.

-e results indicated that the detection accuracy and F1-
score of the improved LDM based on the STA for wind
turbine variable pitch system emergency stop fault were

Table 1: Meaning and value range of LDM parameters.

Parameter Meaning Value range
λ1 -e trade-off parameter of margin variance, which is adopted to adjust the weight of margin variance [2−1, 210]
λ2 -e trade-off parameter of margin mean, which is adopted to adjust the weight of margin mean [2−1, 210]
C -e loss function parameter, which is adopted to adjust the weight of the loss function in the objective function [20, 220]

(1) Best⟵Best0(λ10, λ20, C)

(2) repeat
(3) if α< αmin then
(4) α⟵αmax
(5) end if
(6) λ1⟵Best(1)

(7) λ2⟵Best(2)

(8) C⟵Best(3)

(9) LDM⟵(λ1, λ2,C, training set)
(10) accuracy(LDM)⟵testing set
(11) Fitness⟵accuracy(LDM)

(12) Best⟵rotation transformation(Fitness,Best, SE, β, α)

(13) Best⟵expansion transformation(Fitness,Best, SE, β, c)

(14) Best⟵axesion transformation(Fitness,Best, SE, β, δ)

(15) α⟵α/fc
(16) Until the specified termination criterion is met
(17) Output Best

ALGORITHM 1: Optimal parameters of the improved LDM.
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Figure 2: -e specific process of the STA selecting optimal parameters of LDM by fitness function.

Table 2: -e number of fault samples and the number of fault features of the three variable pitch system fault data.

Fault type Number of fault samples Number of fault features
Variable pitch main power supply fault 2902 212
Variable pitch blade server drive temperature over-limit fault 4864 212
Variable pitch system emergency stop fault 5893 212

6 Mathematical Problems in Engineering



Table 3: Performance comparison of variable pitch main power supply fault detection.

Fault detection model F1-score FPR FNR
PSO_LDM 95.54% (±0.0057) 9.39% (±0.1086) 3.43% (±0.0296)
GA_LDM 89.38% (±0.0779) 13.19% (±0.0868) 9.84% (±0.1456)
GS_LDM 91.17% (±0.0081) 11.31% (±0.1059) 8.05% (±0.0159)
STA_LDM 96.49% (±0.0142) 5.07% (±0.1091) 2.97% (±0.0143)
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Figure 3: Boxplot of variable pitch main power supply fault detection accuracy.
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Figure 4: Boxplot of variable pitch blade server drive temperature over-limit fault detection accuracy.

Table 4: Performance comparison of variable pitch blade server drive temperature over-limit fault detection.

Fault detection model F1-score FPR FNR
PSO_LDM 96.24% (±0.0092) 5.44% (±0.0166) 2.73% (±0.0371)
GA_LDM 95.68% (±0.0457) 6.71% (±0.1048) 3.04% (±0.0018)
GS_LDM 87.37% (±0.0135) 8.75% (±0.0191) 13.64% (±0.0713)
STA_LDM 98.72% (±0.0241) 1.10% (±0.0049) 1.16% (±0.0118)
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higher than the values in terms of the methods of parameter
adjustment through PSO, GA, and GS. FNR and FPR were
the lowest among the four parameter adjustment methods.

6. Conclusion

Concerning the problem of dependent parameter selection of
the fault detection model, this paper introduces the STA to
improve LDM in terms of the parameter optimization of the
classification algorithm. First, in order to meet the structure
need of the optimization problem, the three parameters in
LDM were regarded as a three-dimensional vector form, a
state in the STA. In addition, a new state candidate assembly
was generated by alternately using the four transformation
operators. Second, the accuracy of the fault detection model
output is used as a fitness function to support parameter
updating and optimization. Finally, for verifying the effec-
tiveness of the wind turbine variable pitch system fault de-
tection method based on the improved LDM, the paper
introduced the GS method, PSO, and GA for comparison on
parameter optimization. -e evaluation indexes were accu-
racy, F1-score, FPR, and FNR. -e experimental data were
variable pitch main power supply fault data, variable pitch
blade server drive temperature over-limit fault data, and
variable pitch system emergency stop fault data.

Experimental results showed that the fault detection
model which used the STA for parameter optimization had
higher accuracy and lower FPR and FNR than the other
three optimization algorithms, which proved that the im-
proved LDM has stronger capability of detecting wind
turbine variable pitch system fault.

On account of the vulnerability of the wind turbine to be
affected by the environment and load while running, it is
incomprehensive to use a single detection method in the
process of fault detection. As a result, it is indispensable to
study a hybrid fault detection method based on various fault
detection methods and technologies in the future.
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