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In China, the transportation sector contributes about 18% of the total carbon emissions. +is research contributes to measuring
the energy and carbon emission efficiency (ECEE) of regional transportation systems (RTS) in China considering uncertain
carbon emissions. A radial chance-constrained data envelopment analysis (DEA) model is developed to estimate the overall
efficiency, and a nonradial chance-constrained DEA model is presented to evaluate the pure energy efficiency (PEE) and the pure
carbon emission efficiency (PCEE). We prove that the proposed chance-constrained DEA models can effectively address the
uncertain carbon emissions whenmeasuring efficiency.We find that most of China’s RTS have low ECEE and the inefficiencies are
mainly due to the lower gasoline utilization efficiency and the lower kerosene utilization efficiency. In addition, east China
performs better than central China, and central China performs better than west China. In China, the unbalanced regional
development of the ECEE in transportation corresponds with the unbalanced regional economic development. We provide some
valuable suggestions based on the evaluation of the potential cuts in each kind of energy and the potential decreases in
carbon emissions.

1. Introduction

Since China started economic reforms in 1978, the country
has been experiencing rapid economic development [1, 2].
According to the International Monetary Fund (IMF),
China had a nominal Gross Domestic Product (GDP) of
about 13.37 trillion U.S dollars in 2018. +e nominal GDP
value of China accounted for approximately 15.7 percent of
the global economy [3]. IMF rated China as the largest
economy by purchasing power parity (PPP) in the world [4].

China’s rapid economic growth has significantly ex-
panded its energy consumption [5].+erefore, China should
make every effort to shift to a green economy. Chinese
government has been implementing many policies and
measures to increase energy efficiency and reduce carbon

emissions. By 2020, China intends to contract carbon di-
oxide (CO2) emissions per unit of GDP by 18% compared
with the level in 2015 [6].

+e energy consumption and carbon emissions in the
transportation sector are very high [7, 8]. +e total energy
consumption in the transportation sector of China was
approximately 402 million tons of standard coal equivalent
in 2017, an increase of 4.6% on the previous year. +e
transportation energy consumption in east China, central
China, and west China (the detailed information of the three
areas is shown in Section 3) occupied about 49% (197million
tons), 32% (127 million tons), and 19% (78 million tons) of
the total energy consumption, respectively. In China, the
transportation sector contributes about 18% of the total
carbon emissions [9]. Hence, it is necessary to research the
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energy and carbon emission efficiency (ECEE) of the
transportation sector in China.

Several mathematical approaches can be used to
evaluate the ECEE. However, data envelopment analysis
(DEA) is most widely used (see the following paragraphs)
[10]. DEA is a nonparametric mathematical method to
measure the efficiency of decision-making units (DMUs)
[11, 12]. DEA has been applied to evaluate the performance
of hospitals, supply chains, universities, and other entities
[13]. +e CCR model (proposed by Charnes et al.) and the
BCC model (proposed by Banker et al.) are two basic DEA
models [14, 15]. +e former assumes that technology ex-
hibits constant returns to scale (CRS), and the latter is
developed under the condition of variable returns to scale
(VRS). In the past forty years, many DEA models, e.g.,
integer-valued DEA models [16], super-efficiency DEA
models [17], generalized DEA models [18], slack-based
DEA models [19], network DEA models [20], and sto-
chastic DEA models [21], have been proposed based on the
two models.

Scholars have been studying the energy efficiency
measurement for a long time. Ramanathan applied the
CCR model and the BCC model to evaluate the energy
efficiency of railways and roadways in India [22]. Hu and
Wang used the DEA method to measure the total-factor
energy efficiency of 29 regions in China [23]. Wu et al.
proposed a DEA technique with nonhomogeneous vari-
ables to estimate the energy efficiency of industrial sectors
in China [24]. Geng et al. proposed a DEA approach with
the affinity propagation clustering algorithm (AP-DEA) to
evaluate the energy efficiency of petrochemical industries
[25]. However, undesirable outputs, e.g., carbon emissions,
are not considered in the aforementioned DEA models.
+ese energy efficiency evaluation models are not suitable
in reality because the fossil fuel energy consumption will
definitely generate carbon emissions [26]. +erefore, the
efficiency scores obtained from these models may be
distorted.

Zhou et al. proposed slacks-based measures (SBM) to
evaluate the CO2 emission efficiency of 30 OECD
countries (the Organization for Economic Cooperation
and Development) [27]. Zhou et al. applied DEA ap-
proaches to evaluate the carbon emission efficiency of
eight world regions [28]. Wang et al. developed DEA
approaches to compare the environmental efficiency of
several provinces in China by taking CO2 emissions into
account [29]. Wei et al. evaluated the CO2 emission ef-
ficiency of China’s 29 provinces by an extended SBM-
DEA model [30]. Wang et al. applied a DEA window
analysis approach to evaluate the regional environmental
efficiency in China considering CO2 emissions [31]. Guo
et al. developed a dynamic DEA model to measure the
energy efficiency of OECD countries by taking CO2
emissions into consideration [32]. Cheng et al. used a
time substitution DEA approach to estimate the carbon
emission efficiency of China [33]. Chu et al. proposed an
SBM-DEA approach to evaluate the environmental effi-
ciency of China’s transportation system considering CO2
emissions [34]. Cui developed a network DEA approach

to measure the greenhouse gas emission efficiency of 28
international airlines [35]. Djordjevic and Krmac applied
a nonradial DEA and TOPSIS (the Technique for Order of
Preference by Similarity to Ideal Solution) approach to
measure the environmental efficiency of European
transport systems by taking greenhouse gas emissions
into account [36]. Zhou et al. proposed a DEA method
according to an exponential transformation to evaluate
the energy efficiency of China’s industry considering
greenhouse gas emissions [37]. Omrani et al. developed a
DEA-cooperative game method to estimate the energy
efficiency of the transportation system in Iran by taking
greenhouse gas emissions into account [38]. +e disad-
vantage of the abovementioned literature is that they
assume deterministic carbon emissions. However, it is
impossible to get precise data related to carbon emissions,
which could be caused by measurement errors, natural
uncertainty of carbon emissions, and so on [39]. +e
results would be erroneous if decision-makers do not
consider the uncertainty of carbon emissions when
measuring the ECEE [39–43]. As a matter of fact, the
deterministic DEA model is only a particular case of the
uncertain DEA model [39].

Wu et al. [40], Jin et al. [41], Zha et al. [39], Chen et al.
[42], and Zhou et al. [43] used the chance-constrained DEA
method to evaluate the environmental efficiency considering
uncertain undesirable outputs. However, as far as we know,
there is no literature on measuring the efficiency of regional
transportation systems (RTS) by taking the uncertainty of
carbon emissions into account, especially China’s RTS. It is
necessary to research the RTS because of the unbalanced
regional development in China [44]. +e Chinese govern-
ment should set up different policies for different RTS to
improve their ECEE.

+e innovation of this paper is that, to the best of our
knowledge, this is the first paper to measure the efficiency
of RTS by taking uncertain carbon emissions into con-
sideration. +e contributions of this paper are that (1) a
radial chance-constrained DEA model is presented to
evaluate the overall efficiency; (2) a nonradial chance-
constrained DEAmodel is developed to accurately estimate
the pure energy efficiency (PEE) and the pure carbon
emission efficiency (PCEE); (3) the proposed approaches
are applied in the RTS in China and some valuable sug-
gestions are provided.

+is paper is structured as follows. +e chance-con-
strained DEA models are developed by taking uncertain
carbon emissions into consideration in Section 2. In Section
3, these models are applied to estimate the ECEE of thirty
RTS in China, and some valuable suggestions are provided.
Some conclusions are proposed in Section 4.

2. Methodology

A regional transportation system can be regarded as a DMU.
Suppose that DMUi(i ∈ 1, 2, . . . , q) has p nonenergy inputs
xji(j � 1, 2, . . . , p), r energy inputs eti(t � 1, 2, . . . , r), m

desirable outputs yli(l � 1, 2, . . . , m), and an undesirable
output ci (carbon emissions).
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To measure the environmental efficiency, Färe et al.
handled undesirable outputs under the assumption of the
weak disposability of undesirable outputs [45]. Nowadays,
this method has been widely used. For given levels of inputs,
it is impossible to simultaneously reduce carbon emissions
and expand desirable outputs, e.g., passenger turnover,
freight turnover, and transportation value-added. +erefore,
to estimate the overall efficiency of RTS, we propose a radial
DEA model (model 1) under the assumption of the weak
disposability of the undesirable output (the amount of
carbon emissions) [45, 46]. Model (1) is a radial DEA model
as this model aims to proportionally reduce inputs and the
undesirable output of DMUk [22, 45].
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(1)

where λi is the weight of DMUi; ε is a non-Archimedean
infinitesimal; and sx−

j , se−
t , and s

y+

l are the slack variables for
the j th nonenergy input, the t th energy input, and the l th
desirable output, respectively; δ � 0 and δ � 1 respectively
represent the assumption of CRS and VRS.

+e optimal value ΨD∗
k is the technical efficiency score

(or pure technical efficiency score) of DMUka when δ � 0
(or δ � 1). According to the definition of DEA efficiency, we
have the following propositions: (i) DMUk is efficient when
ΨD∗

k � 1(θ ∗k � 1 and sx−∗
j � s

y+∗
l � se−∗

t � 0); (ii) DM Uk is
inefficient when ΨD∗

k < 1.
Model (1) is called the radial deterministic DEA model

because it can only be used when all the needed data are
precise. However, as discussed above, the value of carbon
emissions is uncertain. +erefore, we have to develop a
stochastic DEA model. To do so, we first propose model (2)
that is the dual of model (1). All slack variables are deleted in
the following transformation processes for the sake of
clarity.
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(2)

where μl, vj, ft, and w are the weights for the l th desirable
output, the j th nonenergy input, the t th energy input, and
the undesirable out, respectively.

As stated in Section 1, the stochastic chance-constrained
DEA is an effective method to evaluate the environmental
efficiency considering uncertain undesirable outputs. +us,
we also propose a radial stochastic chance-constrained DEA
model (model 3) based on model (2) to measure the overall
efficiency of RTS by taking uncertain carbon emissions into
consideration.
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(3)

where ci

∧
indicates stochastic carbon emissions; E(ck

∧
)

represents the expected value of ck

∧
; P is the “probability”

measurement of the corresponding constraint; and 1 − αi is
the probability of satisfying the inequality
􏽐

m
l�1 μlyli − δμ0 − 􏽐

p

j�1 vjxji − 􏽐
r
t�1 fteti − wci

∧ ≤ 0. In other
words, 1 − αi indicates a confidence level while αi represents
a risk criterion [47, 48].

As model (3) is a nonlinear model, we should transform
it into a linear model. Obviously, inequality (4) is only a
transformation of the stochastic chance constraint in model
(3).
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where Φ− 1 represents the inverse function of Φ. We assume
ci
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+edual ofmodel (7) can be denoted bymodel (8) that aims
to proportionally reduce inputs and uncertain carbon emissions
of DMUk. It is worth noting that slack variables are added into
model (8).Wehave transformed nonlinearmodel (3) into linear
model (8) that is called the radial chance-constrained DEA
model.+e optimal objective function value (ΨS∗

k ) ofmodel (8)
is the technical efficiency score (or pure technical efficiency
score) of DMUk when δ � 0 (or δ � 1).
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According to the definition of DEA efficiency, we have
the following propositions: (i) DMUk is superefficient when
ΨS∗

k > 1; (ii) DMUk is efficient when ΨS∗
k � 1(θ∗k � 1 and

sx−∗
j � s

y+∗
l � se−∗

t � 0); (iii) DMUk is inefficient when
ΨS∗

k < 1.
+e advantages of the radial chance-constrained DEA

model are that (1) it can be used to deal with undesirable
outputs that cannot be disposed of; (2) it can be used to
handle stochastic variables. However, model (8) cannot be
used to evaluate the PEE or PCEE. +erefore, we have to
extend it to a nonradial chance-constrained DEA model
(model 9). Model (9) optimizes the carbon emissions and
energy consumption without changing the desirable outputs
and nonenergy inputs. We evaluate the ECEE by assigning
weights to the PEE and PCEE [29, 39].
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where θe
t indicates the t th PEE (pure efficiency of energy t);

θc is the PCEE; ϖe and ϖc respectively represent the weights
of the PEE and PCEE; and ρt is the weight of the t th energy
input. +ere must be ϖe + ϖc � 1 and 􏽐

r
t�1 ρt � 1. +e PEE

indicates the utilization performance of transportation fuels,
and the PCEE reflects the performance of carbon emission
cuts.

For an inefficient regional transportation system, its
potential energy savings and carbon emission cuts can be
calculated using the following equations, respectively:

Δetk � 1 − θe∗
t( 􏼁etk + s

e−∗
t , (10)

Δck � 1 − θc∗
( 􏼁ck. (11)

3. Empirical Study

+e proposed models are used to estimate the ECEE of
China’s RTS in 2017.

3.1. Data. Mainland China includes 31 provinces, and the
regional disparity is wide. +ese provinces can be classified
into three areas, i.e., the eastern area, the central area, and
the western area. +e eastern area, which is the most de-
veloped and densely populated area, comprises of eleven
provinces; +e central area includes ten provinces; +e
western area, which is the least developed and sparsely
populated area, is composed of ten provinces [44]. +e data
about transportation energy consumption in Tibet are not
available so that we have to exclude Tibet. +erefore, thirty
provinces are involved in this research.

We select employed persons (labor), fixed-asset invest-
ment (capital), and civil motor vehicles as three nonenergy
input variables. Gasoline consumption, kerosene con-
sumption, and diesel consumption are regarded as three
energy input variables. Passenger turnover, freight turnover,
and transportation value-added are selected as three

desirable output variables. +e amount of carbon emissions
from transportation is defined as a single undesirable output.

+e chosen nonenergy input, desirable outputs, and
undesirable outputs in this paper are vital indicators for
transport systems and have been used widely in previous
research [36, 38]. Gasoline, kerosene, and diesel are selected
as three energy inputs because they are the dominant
transportation fuels in China. As shown in Figure 1, diesel
makes up more than 40% of the total transportation energy
consumption, gasoline occupies more than 20%, and ker-
osene accounts for more than 10% [49]. We cannot select all
transportation fuels as energy inputs according to the rule of
thumb [50].

+e data related to employed persons (unit: 10 thou-
sand persons), civil motor vehicles (unit: 10 thousand
vehicles), fixed-asset investment (unit: 1 billion CNY),
passenger turnover (unit: 1 billion passenger/km), freight
turnover (unit: 1 billion ton/km), and transportation
value-added (unit: 1 billion CNY) are obtained from [51].
+e data related to energy consumption (unit: 10 thousand
tons of standard coal equivalent) are calculated using the
following equation:

eti � zti × Ft, t � 1, 2, 3, (12)

where eti (unit: 10 thousand tons of standard coal equiv-
alent) represents the consumption of energy t by DMUi; zti

(unit: 10 thousand tons) also indicates the consumption of
energy t by DMUi; and Ft denotes the standard coal co-
efficient of the t th energy (gasoline, 1.4714; kerosene,
1.4714; diesel, 1.4571) [52]. +e values of zti(t � 1, 2, 3) are
obtained from [49].

+e amount of carbon emissions from transportation
(units: 10 thousand tons) can be calculated using the fol-
lowing equation:

ci � 􏽘
6

t�1
eti × Dt( 􏼁, (13)

where ci represents the carbon emissions of DMUi; eti

indicates the consumption of the t th energy by DMUi; and
Dt denotes the carbon emission coefficient for the t th
energy (gasoline, 0.5538; kerosene, 0.5714; diesel, 0.5921;
coal, 0.7559; fuel oil, 0.6185; natural gas, 0.4483) [53].
Although we only select three transportation fuels as en-
ergy inputs, we want to calculate carbon emissions gen-
erated from all transportation fuels. Note that the electric
power, which can be generated by wind power and hy-
dropower, is not included in our research because the
carbon emission coefficients of both wind power and hy-
dropower are zero.

We suppose that the expected carbon emissions from
transportation are equal to the estimated carbon emissions.
+erefore, we have E(ci

∧
) � ci � ci

∧
(i � 1, 2, . . . , q). +e

standard deviation of carbon emissions from transportation
is calculated using the dataset of the estimated carbon
emissions from 2013 to 2017. +e descriptive statistics of all
selected variables of RTS in mainland China are shown in
Table 1. Table 2 shows the detailed data related to carbon
emissions from transportation.
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3.2. Results

3.2.1. Overall Efficiency. +e overall efficiency of the thirty
RTS in mainland China is calculated using the proposed
radial chance-constrained DEA model (model 8). We also
compare the efficiency scores resulting from model (8) with
those resulting from the radial deterministic DEA model
(model 1).

Tables 3 and 4 respectively show the efficiency scores
under the assumption of CRS (δ � 0) and VRS (δ � 1). We
use four groups of values (αi � 0.5, αi � 0.1, αi � 0.05, and
αi � 0.01) to study the effects of αi on the results of efficiency
evaluation, and we select αi � 0.05 as the risk criterion in this
study as it is set 0.05 in the related literature [39–43].

As shown in Table 3, the efficiency scores resulting from
model (1) are the same as those resulting from model (8)
with αi � 0.5, which implies that the radial deterministic
DEA model (model 1) is only a particular case of the radial
chance-constrained DEA model (model 8). Furthermore,
only four RTS are regarded as inefficient DMUs based on
their overall technical efficiency scores resulting from model
(1). However, based on their overall technical efficiency
scores resulting from model (8), we have thirteen inefficient
RTS when αi � 0.1, αi � 0.05, or αi � 0.01. +e results prove
that decision-makers should take the uncertainty of carbon
emissions into account when they measure the efficiency of

RTS. Otherwise, the results may be doubtful. As shown in
Table 4, we can get the same results under the assumption of
VRS (δ � 1).

+e proposed radial chance-constrained DEA model
(model 8) is more effective than the radial deterministic
DEA model (model 1) because (i) it has higher discrimi-
natory ability than model (1) as stated above; (ii) we cannot
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Figure 1: China’s transportation energy consumption.

Table 1: Descriptive statistics of all selected variables.

Variable Max Min Mean Std. dev.
Employed persons 52.05 3.23 22.11 12.00
Fixed-asset investment 449.26 33.01 188.70 114.44
Civil motor vehicles 1922.38 98.73 688.92 494.96
Gasoline 853.54 12.09 264.67 216.21
Kerosene 958.79 0.00 170.73 233.92
Diesel 1618.71 61.74 520.02 351.02
Passenger turnover 201.23 9.92 77.52 50.59
Freight turnover 2791.98 51.95 632.24 651.67
Added-value 358.09 10.37 133.48 89.72
Carbon emissions 1848.20 101.50 659.15 386.65

Table 2: Carbon emissions.

Area Province Mean Std. dev.

East

Beijing 622.92 38.24
Tianjin 233.78 5.39
Hebei 487.88 31.90

Liaoning 1008.50 61.30
Shanghai 1241.82 142.31
Jiangsu 1077.54 72.99
Zhejiang 793.02 33.80
Fujian 560.66 48.75

Shandong 1082.88 76.60
Guangdong 1668.08 140.85
Hainan 162.14 4.35

Central

Shanxi 517.54 27.50
Nei Mongol 632.02 111.62

Jilin 464.58 40.56
Heilongjiang 614.18 23.60

Anhui 555.98 31.15
Jiangxi 378.08 22.92
Henan 696.00 32.46
Hubei 865.16 108.76
Hunan 739.22 80.20
Guangxi 486.14 58.30

West

Chongqing 491.32 51.57
Sichuan 594.00 159.15
Guizhou 393.00 29.62
Yunnan 566.96 34.73
Shaanxi 394.06 27.25
Gansu 276.88 8.04
Qinghai 89.10 13.91
Ningxia 100.90 3.31
Xinjiang 501.36 64.89
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rank efficient RTS because all of their efficiency scores
obtained from model (1) are equal to one (for example, as
shown in Table 3, Beijing, Tianjin, Hebei, Liaoning,
Shanghai, Jiangsu, Zhejiang, Shandong, Guangdong,
Hainan, Shanxi, Nei Mongol, Jilin, Heilongjiang, Anhui,
Jiangxi, Henan, Hubei, Hunan, Chongqing, Guizhou,
Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.), but their
efficiency scores resulting from the radial chance-con-
strained DEAmodel can be greater than one, which makes it
possible to differentiate the efficient RTS.

As shown in Tables 3 and 4, the efficiency scores
(technical efficiency score and pure technical efficiency
score) of Qinghai are the highest, while Yunnan has the
lowest scores. +erefore, Yunnan should make every effort
to improve the performance of its transportation system.

As shown in Table 5, based on the overall efficiency
scores of the three areas under both CRS and VRS, the
performance of east China is the best while west China is the
worst. It indicates that the unbalanced regional development
of overall efficiency in transportation corresponds with the
unbalanced regional economic development.

3.2.2. PEE and PCEE. +e proposed nonradial chance-
constrained DEA model (model 9) is used to evaluate the

PEE and PCEE of China’s RTS. We set ϖe � ϖc � 0.5 be-
cause carbon emissions are generated by combusting energy
fuels. Moreover, the weights for the three energy inputs can
be calculated using the following equation [39]:

ρt �
Dt

􏽐
3
t�1 Dt

, (14)

where Dt is the carbon emission coefficient of energy t (as
shown in Section 3.1). We finally obtain ρkerosene � 0.332732,
ρkerosene � 0.332732, and ρdiesel � 0.344785.

Tables 6 and 7 show the efficiency scores of these RTS
resulting from the nonradial chance-constrained DEA model
(model 9) under the assumption of CRS (δ � 0) and VRS
(δ � 1), respectively. It can be observed that the transportation
system of Ningxia does not have feasible solutions for its
kerosene utilization efficiency. +e reason is that the con-
sumption of kerosene inNingxia’s transportation system is zero.

Table 6 shows that the technical efficiency score (ΨESk ) of
energy utilization and carbon emissions in Qinghai is the
highest while Yunnan has the lowest score. +e results are
consistent with those obtained from model (8) under the
CRS condition. +e technical efficiency score (ΨGask ) of
gasoline utilization in Henan is the highest while Hei-
longjiang has the lowest score. +e technical efficiency score

Table 3: Overall technical efficiency (assuming CRS).

Area Province Model 1
Model 8

αi � 0.5 αi � 0.1 αi � 0.05 αi � 0.01

East

Beijing 1.000 1.000 0.977 0.971 0.961
Tianjin 1.000 1.000 1.029 1.037 1.053
Hebei 1.000 1.000 1.085 1.109 1.154

Liaoning 1.000 1.000 1.056 1.072 1.101
Shanghai 1.000 1.000 1.120 1.154 1.216
Jiangsu 1.000 1.000 0.919 0.905 0.886
Zhejiang 1.000 1.000 1.002 1.003 1.004
Fujian 0.992 0.992 0.906 0.892 0.875

Shandong 1.000 1.000 1.033 1.042 1.058
Guangdong 1.000 1.000 0.948 0.937 0.918
Hainan 1.000 1.000 0.995 0.994 0.991

Central

Shanxi 1.000 1.000 1.011 1.013 1.018
Nei Mongol 1.000 1.000 0.974 0.969 0.963

Jilin 1.000 1.000 0.975 0.969 0.959
Heilongjiang 1.000 1.000 1.021 1.027 1.038

Anhui 1.000 1.000 1.047 1.060 1.085
Jiangxi 1.000 1.000 1.071 1.092 1.130
Henan 1.000 1.000 1.051 1.066 1.097
Hubei 1.000 1.000 0.965 0.958 0.947
Hunan 1.000 1.000 1.060 1.075 1.101
Guangxi 0.857 0.857 0.843 0.846 0.857

West

Chongqing 1.000 1.000 0.927 0.912 0.890
Sichuan 0.808 0.808 0.819 0.822 0.827
Guizhou 1.000 1.000 1.043 1.054 1.073
Yunnan 0.435 0.435 0.421 0.426 0.436
Shaanxi 1.000 1.000 1.020 1.024 1.031
Gansu 1.000 1.000 1.031 1.041 1.061
Qinghai 1.000 1.000 1.155 1.198 1.278
Ningxia 1.000 1.000 1.042 1.054 1.076
Xinjiang 1.000 1.000 0.948 0.937 0.919

Average 0.970 0.970 0.983 0.989 1.000
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(ΨKerk ) of kerosene utilization in Shanxi is the highest while
Hainan has the lowest score. +e technical efficiency score
(ΨDiek ) of diesel utilization in Heilongjiang is the highest
while Yunnan has the lowest score. +e technical efficiency
score (Ψc

k) of carbon emissions in Qinghai is the highest
while Yunnan has the lowest score.

+e average ΨESk , ΨGask , ΨKerk , ΨDiek , and Ψc
k under CRS are

0.745, 0.673, 0.618, 0.877, and 0.772, respectively, which implies
that the technical inefficiencies of energy utilization and carbon
emissions (ΨESk ) in transportation are mainly due to the lower
technical efficiency of gasoline utilization (ΨGask ) and the lower
technical efficiency of kerosene utilization (ΨKerk ).

Table 7 shows that the pure technical efficiency score
(ΨESk ) of energy utilization and carbon emissions in Qinghai
is the highest while Yunnan has the lowest score. +e results
are consistent with those obtained frommodel (8) under the
assumption of VRS.+ere is no pure technical superefficient
province of gasoline utilization or kerosene utilization. +e
pure technical efficiency score (ΨGask ) of gasoline utilization
in Heilongjiang is the lowest, and the pure technical effi-
ciency score (ΨKerk ) of kerosene utilization in Yunnan is the
lowest. +e pure technical efficiency score (ΨDiek ) of diesel
utilization in Heilongjiang is the highest while Yunnan has
the lowest score. +e pure technical efficiency score (Ψc

k) of

Table 4: Overall pure technical efficiency (assuming VRS).

Area Province Model 1
Model 8

αi � 0.5 αi � 0.1 αi � 0.05 αi � 0.01

East

Beijing 1.000 1.000 0.977 0.972 0.962
Tianjin 1.000 1.000 1.029 1.037 1.053
Hebei 1.000 1.000 1.085 1.109 1.154

Liaoning 1.000 1.000 1.057 1.073 1.102
Shanghai 1.000 1.000 1.129 1.165 1.234
Jiangsu 1.000 1.000 1.080 1.102 1.144
Zhejiang 1.000 1.000 1.006 1.007 1.010
Fujian 0.996 0.996 0.910 0.897 0.876

Shandong 1.000 1.000 1.080 1.103 1.145
Guangdong 1.000 1.000 1.097 1.125 1.176
Hainan 1.000 1.000 1.027 1.035 1.049

Central

Shanxi 1.000 1.000 1.019 1.025 1.034
Nei Mongol 1.000 1.000 1.040 1.047 1.058

Jilin 1.000 1.000 0.975 0.969 0.960
Heilongjiang 1.000 1.000 1.024 1.031 1.043

Anhui 1.000 1.000 1.048 1.061 1.086
Jiangxi 1.000 1.000 1.072 1.092 1.130
Henan 1.000 1.000 1.058 1.074 1.105
Hubei 1.000 1.000 0.969 0.963 0.960
Hunan 1.000 1.000 1.076 1.095 1.128
Guangxi 0.895 0.895 0.877 0.881 0.887

West

Chongqing 1.000 1.000 0.929 0.915 0.894
Sichuan 0.853 0.853 0.834 0.834 0.833
Guizhou 1.000 1.000 1.051 1.064 1.085
Yunnan 0.622 0.622 0.495 0.497 0.503
Shaanxi 1.000 1.000 1.023 1.027 1.035
Gansu 1.000 1.000 1.038 1.049 1.069
Qinghai 1.000 1.000 1.159 1.201 1.280
Ningxia 1.000 1.000 1.042 1.054 1.076
Xinjiang 1.000 1.000 0.983 0.979 0.972

Average 0.979 0.979 1.006 1.016 1.035

Table 5: Overall efficiency of east, central, and west China.

Area Technology Model 1
Model 8

αi � 0.5 αi � 0.1 αi � 0.05 αi � 0.01

East CRS 0.999 0.999 1.006 1.011 1.020
Central CRS 0.986 0.986 1.002 1.008 1.019
West CRS 0.916 0.916 0.934 0.941 0.955
East VRS 1.000 1.000 1.043 1.057 1.082
Central VRS 0.989 0.989 1.016 1.024 1.039
West VRS 0.942 0.942 0.950 0.958 0.972
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carbon emissions in Qinghai is the highest while Yunnan has
the lowest score.

+e average ΨESk ,ΨGask ,ΨKerk ,ΨDiek , andΨc
k under VRS are

0.833, 0.741, 0.697, 0.966, 0.869, respectively, which implies
that the pure technical inefficiencies of energy utilization and
carbon emissions (ΨGask ) in transportation are mainly due to
the lower pure technical efficiency of gasoline utilization
(ΨGask ) and the lower pure technical efficiency of kerosene
utilization (ΨKerk ).

As shown in Table 8, under both CRS andVRS, the ECEE
(ΨESk ) of the eastern area is the best while the western area is
the worst. +e results are consistent with those obtained
frommodel (8).+e PCEE (Ψc

k) of the eastern area is also the
best under both CRS and VRS. However, the rankings of the
central area and the western area are different under dif-
ferent assumptions of production technology. +e PEE
(ΨGask , ΨKerk , or ΨDiek ) of the eastern area is not always the
highest in mainland China. For instance, the eastern area has
the lowest technical efficiency score of gasoline utilization.

3.3. Discussion and Suggestion. +e uncertainty of carbon
emissions can significantly affect the results of efficiency
evaluation. +erefore, decision-makers should take uncer-
tain carbon emissions into account when they measure the
performance of RTS [54, 55]. +e risk criterion also has

effects on the results of efficiency evaluation. Hence, a sci-
entific risk criterion is required when decision-makers
measure the performance of DMUs using the proposed
chance-constrained DEA models.

+e performance of Yunnan’s transportation system is
the worst in mainland China. It has the lowest overall ef-
ficiency scores (the technical efficiency score and the pure
technical efficiency score), the lowest pure technical effi-
ciency score of kerosene utilization, the lowest efficiency
scores (the technical efficiency score and the pure technical
efficiency score) of diesel utilization, and the lowest effi-
ciency scores (the technical efficiency score and the pure
technical efficiency score) of carbon emissions. +erefore,
Yunnan should put forth the greatest possible effort to in-
crease the efficiency of its transportation system. +e
transportation system of Heilongjiang should make every
effort to increase its efficiency of gasoline utilization. +e
transportation system of Hainan should put forth its best
effort to increase its technical efficiency of kerosene
utilization.

In China, the unbalanced regional development of the
ECEE in transportation corresponds with the unbalanced
regional economic development. East China performs better
than central China, and central China performs better than
west China. Hence, China should try its best to improve the
performance of RTS in the western area.

Table 6: PEE and PCEE (assuming CRS).

Area Province ΨESk ΨGask ΨKerk ΨDiek Ψc
k

East

Beijing 0.455 0.448 0.180 0.835 0.418
Tianjin 1.019 1.000 1.000 1.000 1.037
Hebei 1.055 1.000 1.000 1.000 1.109

Liaoning 1.047 1.000 1.000 1.000 1.095
Shanghai 1.083 1.000 1.000 1.000 1.165
Jiangsu 0.520 0.170 0.400 0.877 0.551
Zhejiang 0.510 0.155 0.160 1.086 0.543
Fujian 0.621 0.326 0.626 0.780 0.661

Shandong 1.052 1.000 1.000 1.000 1.103
Guangdong 0.728 0.497 0.878 0.629 0.788
Hainan 0.437 0.460 0.060 1.017 0.355

Central

Shanxi 0.709 0.676 1.179 0.510 0.634
Nei Mongol 0.560 0.170 0.837 0.890 0.480

Jilin 0.611 0.886 0.969 0.640 0.394
Heilongjiang 0.469 0.130 0.101 1.573 0.320

Anhui 1.043 1.000 1.000 1.000 1.086
Jiangxi 1.046 1.000 1.000 1.000 1.092
Henan 0.970 1.351 0.313 0.945 1.075
Hubei 0.537 0.383 0.235 0.842 0.583
Hunan 1.079 1.000 1.000 1.000 1.157
Guangxi 0.511 0.385 0.155 0.673 0.615

West

Chongqing 0.447 0.808 0.257 0.372 0.420
Sichuan 0.429 0.197 0.062 0.906 0.464
Guizhou 1.062 1.000 1.000 1.000 1.124
Yunnan 0.254 0.206 0.087 0.303 0.309
Shaanxi 0.771 0.527 0.245 1.053 0.928
Gansu 1.024 1.000 1.000 1.000 1.049
Qinghai 1.104 1.000 1.000 1.000 1.208
Ningxia 0.860 1.000 — 1.000 1.054
Xinjiang 0.332 0.412 0.170 0.375 0.346

Average 0.745 0.673 0.618 0.877 0.772

Table 7: PEE and PCEE (assuming VRS).

Area Province ΨESk ΨGask ΨKerk ΨDiek Ψc
k

East

Beijing 0.560 0.472 0.180 1.164 0.508
Tianjin 1.019 1.000 1.000 1.000 1.037
Hebei 1.055 1.000 1.000 1.000 1.109

Liaoning 1.047 1.000 1.000 1.000 1.095
Shanghai 1.083 1.000 1.000 1.000 1.165
Jiangsu 1.051 1.000 1.000 1.000 1.102
Zhejiang 0.517 0.162 0.151 1.101 0.553
Fujian 0.631 0.329 0.630 0.797 0.671

Shandong 1.052 1.000 1.000 1.000 1.103
Guangdong 1.063 1.000 1.000 1.000 1.125
Hainan 1.021 1.000 1.000 1.000 1.043

Central

Shanxi 1.041 1.000 1.000 1.000 1.082
Nei Mongol 0.679 0.343 0.547 1.313 0.613

Jilin 0.653 0.921 0.681 0.851 0.489
Heilongjiang 0.583 0.123 0.133 1.997 0.393

Anhui 1.043 1.000 1.000 1.000 1.086
Jiangxi 1.046 1.000 1.000 1.000 1.092
Henan 1.037 1.000 1.000 1.000 1.075
Hubei 0.720 0.448 0.703 0.801 0.785
Hunan 1.079 1.000 1.000 1.000 1.157
Guangxi 0.542 0.398 0.160 0.723 0.653

West

Chongqing 0.492 0.714 0.370 0.409 0.490
Sichuan 0.454 0.206 0.058 0.970 0.490
Guizhou 1.062 1.000 1.000 1.000 1.124
Yunnan 0.305 0.277 0.052 0.372 0.376
Shaanxi 0.778 0.523 0.255 1.063 0.937
Gansu 1.024 1.000 1.000 1.000 1.049
Qinghai 1.104 1.000 1.000 1.000 1.208
Ningxia 0.860 1.000 — 1.000 1.054
Xinjiang 0.380 0.327 0.307 0.421 0.408

Average 0.833 0.741 0.697 0.966 0.869
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Figure 2 shows the potential cuts in each kind of energy
and the potential decreases in carbon emissions of each
inefficient regional transportation system under the as-
sumption of CRS. It is noteworthy that there are twelve
efficient DMUs, i.e., Tianjin, Hebei, Liaoning, Shanghai,
Shandong, Anhui, Jiangxi, Hunan, Guizhou, Gansu, Qing-
hai, and Ningxia (as shown in Table 6). It can be observed
that the eastern area (especially, Jiangsu, Zhejiang, and
Guangdong) can save many energy fuels and reduce lots of
carbon emissions as the eastern area is the largest trans-
portation fuel consumer and the largest carbon emitter in
the three areas. Hence, China should also improve the ef-
ficiency of RTS in the eastern area.

4. Conclusion

+is study proposes chance-constrained DEA models to
estimate the energy and carbon emission efficiency (ECEE)
of regional transportation systems (RTS) considering un-
certain carbon emissions. +e overall efficiency of thirty
regional transportation systems in mainland China is cal-
culated using the radial chance-constrained DEAmodel. We
prove that the radial deterministic DEA model is only a
particular case of the radial chance-constrained DEAmodel.
+e pure energy efficiency (PEE) and the pure carbon
emission efficiency (PCEE) of the thirty regional trans-
portation systems are estimated using the proposed non-
radial chance-constrained DEA model. We prove that this
model can provide more valuable information for decision-
makers, i.e., how to save each transportation fuel and reduce
carbon emissions. We find that most of China’s regional

transportation systems have low energy and carbon emission
efficiency and the inefficiencies are mainly due to the lower
gasoline utilization efficiency and the lower kerosene utili-
zation efficiency.

We suggest that (1) China should try its best to improve
the performance of the regional transportation systems in
the western area because its efficiency is the lowest; (2) China
should also improve the performance of the regional
transportation systems in the eastern area because the
eastern area can save many energy fuels and reduce lots of
carbon emissions (especially, Jiangsu, Zhejiang, and
Guangdong).

Measuring the energy and carbon emission efficiency
(ECEE) of regional transportation systems is an important
and hot topic. +e results of this study are helpful for the
Chinese government to set up different policies for different
RTS to improve their ECEE. In fact, the proposed ap-
proaches can be also applied to measure the RTS in other
countries. In addition, we can measure the ECEE of RTS
considering other uncertain inputs and outputs.

Data Availability

+e research data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Table 8: PEE and PCEE of east, central, and west China.

Area Technology ΨESk ΨGask ΨKerk ΨDiek Ψc
k

East CRS 0.775 0.641 0.664 0.929 0.802
Central CRS 0.754 0.698 0.679 0.907 0.743
West CRS 0.698 0.683 0.478 0.779 0.767
East VRS 0.918 0.815 0.815 1.006 0.956
Central VRS 0.842 0.723 0.722 1.069 0.843
West VRS 0.718 0.672 0.505 0.804 0.793
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Figure 2: +e potential energy savings and the potential carbon emission cuts.
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