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.e traditional energy detection algorithm has been widely used in the field of signal detection, and a variety of improved
algorithms have been derived. In the case of low signal-to-noise ratio, existing methods have shortcomings on achieving fast and
accurate spectrum sensing that need to be resolved. .is work proposes a normalized-variance-detection method based on
compression sensing measurements of received signal. .e discrete cosine transform sensing matrix is used to compress the
signal, whose normalized variance is then calculated before being used as the testing variable for detecting the primary user signal.
Taking the detection results as historical data into consideration, the classification model is obtained after training by applying a
support vector machine for classifying and predicting test signals. Simulation results show that the proposed method outperforms
the current state-of-the-art approaches by achieving faster and more accurate spectrum occupancy decisions.

1. Introduction

Many spectrum-detection algorithms have been proposed
and developed. Conventional energy detection (ED) is one
of themost widely usedmethods for spectrum sensing due to
its simplicity and cost-effectiveness, from which many im-
proved algorithms have been developed, such as maximum-
minimum ED [1]. Unfortunately, the performance of ED is
dramatically degraded in low signal-to-noise (SNR) ratio
regimes and in the presence of noise uncertainty [2]. Al-
ternative spectrum-sensing methods have been investigated
to address these problems. Eigenvalue-based spectrum-
sensing algorithms as proposed in [3] are currently the most
attractive solution [4], while spectrum-sensing algorithms
based on statistical covariance of the received signal have
been proposed in [5], and a spectrum-sensing scheme using
the sample covariance matrix was proposed in [6]. Re-
grettably, the computational cost and the implementation
burden of these methods are overwhelming. More recently,
certain spectrum-sensing methods based on high-order
statistics of the received signal have been proposed [7] to
overcome the drawbacks of ED under noise uncertainty

without dramatically increasing the overall computational
complexity, but their method cannot be applied to signals
that conform to a symmetric distribution. In [8], the authors
first estimate the second- and fourth-order moments of the
received signal to avoid problems.

However, the traditional spectrum-sensing techni-
ques—especially those for wideband spectrum sensing due
to problems with hardware circuit and complexity—have
major limitations such as high cost, high power con-
sumption, and insufficient digital signal processing speed [9]
and possibly even infeasibility with existing devices. .ese
challenges can be addressed by exploiting compression
sensing (CS) [10], and several sub-Nyquist wideband-
sensing techniques have been proposed recently. Following
the ideas in [11], spectrum sensing and sharing based on
cyclic prefix autocorrelation have been proposed based on a
low-order matrix of the received signal [12]. In [13], based
on higher order cumulants and kurtosis spectrum-sensing
methods are proposed, in a real-world communication
channel, simulation results have verified improvement of the
performances. All of these algorithms aim to reduce the
computational complexity and shorten the average detection

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 9867823, 9 pages
https://doi.org/10.1155/2020/9867823

mailto:shenzy@nuaa.edu.cn
https://orcid.org/0000-0001-6103-750X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9867823


time. However, it would be very expensive to directly apply
CS methods for spectrum sensing due to high-computa-
tional complexity of signal recovery. Moreover, it is not
necessary to completely reconstruct the signal because its
existence can be detected based on the main features of the
signal. .e possibility of using compressed signals for de-
tection without reconstruction was proposed in [14]. Ei-
genvalue-based spectrum detection for compressed
nonreconstructed signals was proposed in [15], which not
only greatly reduces the computational complexity but also
does not affect the probability of signal detection. .e
discrete cosine transform (DCT) is increasingly being ap-
plied to CS because it is capable of compressing most of the
energy of a signal into low frequencies [16].

Nevertheless, as mentioned above, most existing
methods are based on the assumption of an asymptotic
distribution and apply limit theory to calculate the threshold
value and detection probability, which are approximate
values that are not good representations of the real envi-
ronment. .is situation prompted a proposal for a machine-
learning-based spectrum-sensing algorithm [17]. A ma-
chine-learning algorithm based on the traditional sample
covariance matrix detection was used in [18], the Bayesian
algorithm was introduced in [19], and a spectrum-sensing
algorithm based on a support vector machine (SVM) was
proposed in [20]. An SVM is a powerful machine-learning
tool that employs quadratic programming to solve diverse
problems in pattern recognition, regression analysis, and
probability. It is based on the principles of minimizing
structural risk and limiting sample data, which are highly
applicable to real situations of solving spectrum perception
problems at a low SNR. To complement previous studies of
spectrum sensing, in the present study, we focused on ef-
ficient scheduling of sensing in a timely and cost-effective
manner with the aim of improving the selection of detection
variables and threshold values.

.e aim of this paper is to introduce a more effective
spectrum-sensing method for the electromagnetic envi-
ronment in the terminal control zone. .e signal is first
sampled according to the sub-Nyquist sampling theorem.
.e measurement y is obtained by using a DCTmatrix. .e
normalized variance (NV) of measurement y defined as the
ratio between its second-order and fourth-order estimates is
used as the new testing variable and compared with the
testing variable for the energy composition of non-
reconstruction measurements for detection. In addition, to
break the shortcoming that the threshold value and detec-
tion probability obtained by the traditional detection al-
gorithm are based on the approximate values of the limit
theorem, this paper presents a proposed an SVM-based
spectrum-sensing model. SVM uses these detection results
as historical data to train and establish the classification
model, which can give the actual threshold value and de-
tection probability. .en, the test data are preprocessed and
implemented into the classifier to achieve detection. .e
simulation results show that the proposed methods exhibit
an improvement on sensing performance. A comparison
between the proposed nonreconstruction compression-
sensing normalized variance (NRCSNV) with the

nonreconstruction compression sensing using energy de-
tection (NRCSED) demonstrates the higher performance in
terms of probability of detection and processing time by
testing different numbers of samples.

.e remainder of this work is organized as follows.
Section 2 presents the signal model and Section 3 describes
the EDmethod for the case of nonreconstruction CS. Section
4 describes the novel proposed scheme, and simulation
results and discussions are drawn in Section 5. .e final
conclusions are drawn in Section 6.

2. Signal Model

.e spectrum-sensing process involves detecting the exis-
tence of the primary user, which can be regarded as a simple
binary hypothesis-testing model expressed as follows:

r(t) � n(t), H0,

r(t) � s(t) + n(t), H1,
 (1)

where s(t) is the primary user signal and n(t) ∼ N(0, σ2n)

indicates Gaussian white noise. H1 states that, in the
presence of the signal of interest, the received signal is
r(t) � s(t) + n(t); otherwise, H0 states that, in the absence
of the signal, the received signal is r(t) � n(t). By setting the
decision variable to be compared with a fixed threshold, a
decision can bemade as to whether the primary user exists in
a certain frequency band.

.e CS algorithm is introduced in order to shorten the
mean detection time. .e subsample vector obtained by CS
as

y � Φr, (2)

where r is the N × 1 vector of Nyquist sampling denoting
signal r(t), y is the M × 1 measurement vector, and
Φ ∈ CM×N(M≪N) is the sensing matrix. A DCTmatrix is
selected as the sensing matrix in the absence of prior in-
formation about the signal. Most of the energy information
of the time-domain signal can compressed into a small
number of DCT domains, as represented by

ϕ(k, i) � c(k)cos
π(2i + 1)k

2N
 , (3)

where k ∈ (0, M − 1), i ∈ (0, N − 1), and c(k) is the matrix
coefficient. Hence, we arrive at the measurement signal
notation of

y � y1, y2, . . . , yM 
T

� s1 + n1, s2 + n2, . . . , sM + nM 
T
.

(4)

3. Energy-Detection Algorithm of
Nonreconstruction Compression Sensing

An NRCSED algorithm is firstly applied. According to
Figure 1, the spectrum-sensing problem is stated as follows.
.e compressed signal energy needs to be calculated from
the measured signals, comparing it to the predetermined
threshold value λ. Corresponding to the abovementioned
detection problem, the detection result is given.
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.e energy of the estimated measurement, which is used
as a decision variable, is formulated as

ξ1 �
1

M


M− 1

k�0

yk���
σ2ω

 

2

, (5)

where σ2ω is the variance of nonreconstruction CS of the
received signal. If the testing variable is larger than the
threshold, the algorithm decides for hypothesis H1; other-
wise, the choice is for hypothesis H0.

Under hypothesis H1, there is only additive white
Gaussian noise, and so (5) obeys the central χ2 distri-
bution with M degrees of freedom and obeys the non-
central χ2 distribution with M degrees of freedom under
hypothesis H0. .us, we can obtain the probability density
function:
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where Γ(·, ·) is the incomplete gamma function and u �


M− 1
k�0 (sk/

���σω
√

)2 is a noncentrality parameter. Let uE �


N− 1
k�0 s2k be the total energy of the primary user signal before

it is compressed. It is easy to conclude that the two are
proportional, and so it is derived as u � ηc, where η is the
proportionality coefficient and c is the SNR. .e probability
of a false alarm is calculated as

Pf � P H1 H0
  � P y> λ1 H0

  �
Γ M/2, λ1/2( 

Γ(M/2)
. (7)

.e constant false-alarm rate (CFAR) procedure, which
is often employed to perform effective tests, is adopted to
determine the threshold value:

λ1 � Q
− 1

Pf 

����

4σ4w
M



+ 2σ2w. (8)

.e probabilities of detection and missed detection,
respectively, become

Pd � P H1 H1
  � P y> λ1 H1

  � QM/2
��
u

√
,

��

λ1


 ,

Pm � P H1 H1
  � 1 − Pd � 1 − QM/2

��
u

√
,

��

λ1


 .

(9)

Accurate prior information about the signal is impos-
sible to obtain in most cases. .e central limit theorem can
be used to approximate the mean and variance of the signal
data 2σ2w and 4σ4w/M, respectively. In the range of variance
[(1/ρ) · σ2w, ρ · σ2w], the noise uncertainty can be ρ � 1 dB.

4. Normalized Variance of Nonreconstruction
Compression Sensing

Section 3 summarizes how the NRCSED algorithm—and
particularly the CS algorithm—is applied to the spectrum-
sensing problem. Unfortunately, the detection performance
is not optimal in the case of a low SNR, and so this section
derives the nonreconstructed-signal NV algorithm to fur-
ther improve the detection probability for a low SNR. .e
NRCSNV is a detection variable defined as the ratio between
the fourth- and the second-order estimated values of the
nonreconstructed compressed received signal. Section 4.1
explains the detection algorithm and Section 4.2 explains the
design of the signal-discrimination algorithm.

4.1. Spectrum-DetectionNRCSNVAlgorithm. Assuming that
the signal and the noise are both zero mean, mutually in-
dependent complex random processes, the fourth- and
second-order estimated values of the nonreconstructed
compressed measured received signals are as follows:
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Figure 1: Time-domain waveform (a) and waveform after applying the DCT (b).
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.e variance can be written as
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.en, the NRCSNV can be formulated as

ξ2 �
(1/M)
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Let (12) be the new test variable, which is asymptotically
Gaussian as a direct consequence of the central limit the-
orem. On the basis of the constant false alarm rate (CFAR)
procedure, under hypothesis H0, the mean of ξ2 is
E[ξ2 | H0] � 0. Since Pf � P(ξ2 > λ2 | H0) �


∞
λ2
1/

������������

2πvar[ξ2 | H0]



exp(− ξ
2
2/2var[ξ2 | H0])d

ξ2, solving
for the algebra of Pf, the new threshold value is calculated as

λ2 � E ξ2 H0
  +

�����������

2var ξ2 H0
 



· erfc 1 − 2Pf , (13)

where erfc(·) is the inverse of the well-known error function.
In the same way, if the detection variable is greater than the
threshold, the algorithm decides for H1; otherwise, the
choice is for H0. .e detection probability can then be
defined as

Pd �
1
2

+
1
2
erf

− λ2 + E ξ2 H1
 

�����������

2var ξ2 H1
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.emean probabilities of missed detection and the error
are, respectively, obtained as
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(15)

4.2. Signal-Discrimination NRCSNV SVM Algorithm. An
NRCSNV SVM algorithm is proposed for solving the
problem that the threshold and detection probabilities are
approximate. .is SVM algorithm transforms the low-di-
mensional data into nonlinear high-dimensional data,

bypassing the situation where the main user signal and the
noise signal are mixed in a low-SNR condition by separating
the noise and the signal space through the use of a hyperplane.

.e detection results of the NRCSNV algorithm with
better performance are selected as historical data, and the
classification model is established using an SVM. .e de-
tection results are classified using the detection function
y � sgn(xi∈Syiαik(x, xi) + b). If the results are consistent
with hypothesis H1, y� 1; otherwise, y� − 1. Let the training
data be S � (x1, y1), . . . , (xl, yl) , xi ∈ Rn, yi ∈ +1, − 1{ },
and yi ∈ +1, − 1{ }, αi ≥ 0, i � 1, 2, . . . , l, where n is the ample
dimension, l is the number of samples, xi denotes the
training data vector, yi represents the class of xi, and sgn is

the signum function, where sgn(α) �
1 α≥ 0
− 1 α< 0 . Instead

of all training examples, only l examples need to be stored,
thereby reducing computation and memory costs. .e
learning performance of SVM is strongly dependent on
selection of a suitable feature S. .e training set is put into
the SVM to construct the optimal separating hyperplane,
which is used to obtain the actual threshold and detection
probabilities. .e optimal separating hyperplane obtained in
the training process is utilized to detect the testing data and
get the judgment result about whether the primary user
exists or only noise is present. .e general procedure is
described in Algorithm 1.

.e computational complexity of the training steps in
the proposed NRCSNV method can be roughly expressed as
Table 1. Since M≪N, the number of computations sig-
nificantly decreases with compressive sensing.

5. Simulations and Discussion

.is section presents the results of numerical simulations
used to analyse the performance of ED, NV, NRCSED,
NRCSNV, NRCSED-SVM, and NRCSNV-SVM. .e ob-
tained simulation results indicate that our proposed algo-
rithm performs well.

5.1. Simulation Setting. In this section, a variety of Monte
Carlo simulations are presented to illustrate the performance
of the algorithm. .e number of Monte Carlo simulations
was set as 105, assuming Pf � 10− 2 and a noise uncertainty
of ρ � 1 dB as required for the IEEE 802.22 draft standard.
.is study chose an actual communication environment that
involved signals with a bandwidth of 2.4GHz and sub-
Nyquist sampling using 16QAM and QPSK modulation
types including AWGN, which were simulated using
MATLAB. .e SNR was varied between − 15 dB and 5 dB,
and N was 500. A Gaussian kernel function was selected for
training in the SVM-based algorithm, and the input two-
dimensional data were the NV of the nonreconstruction
measurements and the decimal SNR. All the simulation
results are generated on a Windows 10 personal computer
equipped with a 64 bit Intel Core i5-8265U CPU running at
1.6GHz and 4GB of RAM. .e proposed algorithm and the
competing methods are implemented with MATLAB
R2016a (64 bit).
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5.2. Results and Discussion. PSK modulation is used in the
SATCOM air-ground communication system. In this work,
the QPSK-modulated signal was verified first.

Figure 1 illustrates the DCTmatrix compressionmethod,
in which the time-domain signal for a specific frequency
used in civil aviation is received and the DCT is applied. .e
figure shows that, after applying the DCT, the energy of a
spectrally sparse signal is concentrated within a small area in
front, and the redundant part of the signal can be discarded
to achieve signal compression.

.e compression ratio is defined as the size of the
compressed signal as a percentage of the original signal:

r �
compressed signal
original signal

× 100%. (16)

.e task is to find the optimal compression ratio.
Figure 2 presents the signal energy preservation for

different compression ratios. .e simulation results show
that, for compression ratios of 10%–20%, up to 90% of signal
energy was saved, which indicates that most of the energy is
concentrated in this region, as shown in Figure 1. It is
therefore feasible to apply the DCT matrix as the sensing
matrix.

In our previous work, we have selected three kinds of low
SNR (− 8 dB, − 10 dB, and − 15 dB) to verify detection
probabilities under different false alarm probabilities.

Figure 3 shows the ROC performance in the three kinds
of low SNR. It is easy to see the detection probability is
higher when the SNR is higher. When false alarm probability
is between 0 and 0.1, detection probabilities can be higher. In

order to get the appropriate threshold value, we did sim-
ulations by setting different false alarm probabilities from
0.001 to 0.1. .en, according to the simulation results, our
method is most effective when false alarm probability is 0.01.
.erefore, this work only discusses the simulations under
the condition of false alarm probability 0.01.

Figure 4 shows the detection probabilities of NRCSED
for compression ratios of 10%, 15%, 20%, and 1, according to
the results of Figures 1 and 2. .e detection performance of
the NRCSED algorithm was optimal for a compression ratio
of 15%. At SNR� − 10 dB, the detection probability im-
proved by 0.28 compared with that, without compression,
which indicates that the introduction of nonreconstruction
CS does not destroy the feasibility of the algorithm, while it
improves the detection efficiency.

Proposed NRCSNV SVM algorithm
A. Training Procedure (30% of total samples)
Input: r, Φ, SNR,
Step1: y � Φr is the sensing sample.
Step2: Compute feature value vector NV using (12).
Step3: Result of Step2 is used as training data to train and save the training model.
Step4: Calculate the threshold using (13), if the detection function is 1, the primary user is detected; if the detection function is − 1, the
primary user is not exist. Generate historical data with obtained values.
Step5: Put the simulated data into the training classifier.
Output: generate parameters that adapt to the environment.
B. Testing Procedure (70% of total samples)
Step1: As in Step1 of the training process.
Step2: As in Step2 of the training process.
Step3: Put the training set into the classifier constructed to obtain the judgment result.
Step4: Generate detection results: An output of 1 indicates that the spectrum is occupied and that the primary user exists; otherwise, it
does not exist.

ALGORITHM 1: Proposed NRCSNV SVM algorithm.

Table 1: Computational complexity of NRCSNV.

Training steps Computational complexity
1 Input signal r O (N)
2 Measurement signal y O (N2M)
3 NRCSNV O (KM)
4 .reshold value calculation O (M)
5 Detection calculation O (M)
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.e proposed NRCSNV and NRCSED algorithms are
compared in Figure 5, which illustrates that the NRCSNV
algorithm still had good detection performance. When the
SNR is − 10 dB, the detection probability of NRCED is 34%
and the detection probability of NRCSNV is 47%, which
increased by 14% for a compression ratio of 15%. At
SNR� − 5 dB, the compression ratio is 15% and the detection
probability of NRCSNV can be reached 60% higher 13%
than NRCSED under the same condition. .e green curve
with the triangle and the red curve with the triangle both
show high level of performance under nonreconstruction

framework. .e proposed method could fully detect the
signal when the SNRwas − 3 dB, while ED could only be used
when the SNR was 2 dB, indicating that the proposed al-
gorithm is still highly applicable in a low-SNR environment.

For spectrum-sensing processing, the mean detection
time reflects the algorithm performance..emean detection
time is defined as the time needed on an average before a
correct detection is declared.

Figure 6 indicates that the mean detection time was
much longer (by up to 41 s) for ED than for the other three
detection algorithms and for the NV it was up to 16 s longer,
but this is still one-third lower than that of ED..e detection
times for the two nonreconstruction detection algorithms
utilizing CS were very short, at less than 10 s (6 s for the
NRCSNV), which is much faster than that, for ED. .is
corresponds to Figure 2 indicating that when the com-
pression ratio was about 15%, most of the energy of the
original signal had been obtained so that the mean detection
time could be further reduced without wasting time on
processing the redundant signal.

16QAM is another modulation method that is com-
monly used in communication systems..e frequency-band
utilization ratio of a 16QAM-modulated signal is higher
than that of a QPSK-modulated signal, while the anti-in-
terference performance is worse. We verified the usefulness
of the proposed algorithm with a 16QAM-modulated signal.
According to the results of Figures 2 and 3, compression
ratios of 10% and 15% have been used for simulations.

Figure 7 shows that the performances of NRCSED and
NRCSNV for compression ratios of 15% and 10%..anks to
the high information rate and spectrum utilization of
16QAM, most of the energy was compressed when the
compression ratio was 10%, and so the performance was
only slightly better than for a compression ratio of 15%. .e
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overall detection probability decreased slightly under the
same conditions due to the poor anti-interference perfor-
mance of 16QAM relative to QPSK, while the bit error rate
was relatively high. However, the performance of the pro-
posed method was still better than for the other algorithms,
and when the SNR is − 5 dB, the detection probability of
NRCSNV can be achieved to 78%, while NRCSED detection
probability is 57%..e top green curve shows the superiority
of the proposed algorithm in detection. All of the detection
processes could be completed at an SNR of − 2 dB, which
shows that the proposed algorithm is still applicable in this
situation.

Figure 8 presents the 16QAM-modulated signal detected
when the compression ratio was 10%. Reducing the com-
pression ratio significantly shortened the mean detection
time compared with the QPSK-modulated signal which had
a compression ratio of 15%. When the SNR was − 15 dB, the

mean detection time of ED was still the longest in this case
(up to 20 s), while it was the shortest for the NRCSNV at 1.7 s
and 1.9 s for NRCSED. Combined with the detection
probability, the proposed method performance is still
optimal.

.e NRCSNV algorithm detection result was used as
historical data, with the QPSK-modulated signal that has
better anti-interference performance being selected, a
compression ratio of 15%, and 5000 data points to verify the
performance of the NRCSNV-SVM detection method.

.e test data preprocessed such as the historical data
were put into classification model to perform the detection,
and the accuracies of the four algorithms were compared.

Figure 9 shows that the detection probabilities of the two
SVM-based detection algorithms were higher than those of the
nonreconstruction measurement algorithms, as expected,
when the compression ratio was 15% and SNRwas − 15dB..e
accuracy of the input data used for the training historical data is
particularly important, for the considered scenarios, both the
NRCSED-SVM and NRCSNV-SVM could achieve optimal
detection at an SNR of − 5dB, while the other two methods
achieved optimal detection results; when SNR was close to
0dB, NRCSNV just can be get 60%..e top purple curvewith a
star shows that NRCSNV-SVM is validated by its accuracy.

Figure 10 presents the performance of the NRCSNV-
SVM for different SNRs and numbers of samples for a fixed
compression ratio. It can be seen that the algorithm per-
formance was significantly improved for 10,000 samples,
with no obvious changes when this was increased to 20,000
or 40,000. Consequently, the NRCSNV-SVM provided no
obvious performance advantage when there were more than
40,000 samples. .is also indicates that an SVM is suitable
for processing a small amount of sample data, while too
much data will adversely affect its performance. .e de-
tection probability was significantly higher for NRCSED and
the NRCSNV. Our results also show that the threshold value
obtained by using historical data was more suitable for the
real detection situation.
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Figure 7: Performances of NRCSED and NRCSNV for different
compression ratios.
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Figure 8: Comparison of mean detection times for a compression
ratio of 10%.

–15 –10 –5 0
SNR (dB)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Ti

m
e (

m
s)

×104

ED
NRCSED

NV
NRCSNV

5

Figure 6: Comparison of mean detection times for a compression
ratio of 15%.
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6. Conclusion

In this work, a novel and effective spectrum sensing method
has been presented for the electromagnetic environment in
the terminal control zone. .e signal was firstly sampled
according to the sub-Nyquist sampling theorem by using a
DCTmatrix..e normalized variance (NV) of measurement
defined as the ratio between its second-order and fourth-
order estimates is used as the new testing variable for the
primary user. Furthermore, a SVM-based spectrum-sensing
model using detection results as historical data to train the
classification model was proposed, which gives the actual
threshold value and detection probability. And the test data
were preprocessed and implemented into the classifier to

achieve final detection. .e simulation results have dem-
onstrated that the proposed method exhibits significant
improvement on detection performance with a less mean
detection time competing with other state-of-the-art spec-
trum-sensing methods. In the future, the adaptive threshold
values need further research. Moreover, it is also worth
investigating the impact of false alarm possibility when
exploiting deep neural network on big data.
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