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(e traditional Kinetic Dynamic Relaxation (KDR) method can only deal with simple constraints such as the fixed joints, which
restricts its practical applications. (is study has proposed a new algorithm to implement the complex position constraints in
KDR. (e proposed algorithm is developed by transforming the position constraints to the acceleration form through combining
time differentiation and Taylor expansion with dimensional analysis, and then solving the governing equation of the constraint
forces with the Newton’s 2nd law. For the nonlinear constraints, projection technique is applied to avoid the drift-off phe-
nomenon. Several tests have been performed to verify the proposed algorithm. (e numerical results show the algorithm is
adaptive in both linear and nonlinear problems and works efficiently.

1. Introduction

(eDynamic Relaxation (DR)method is a way of finding the
equilibrium solution for the static problem through the
damping effect of the dynamic system. Since the method was
proposed in the 1960s [1, 2], it has been improved and
applied in many fields [3–5], especially in structural me-
chanics such as plate analysis [6–8], frame and truss analysis
[9], cable membrane structures [10–12], actively bent
structures [13, 14], and postbuckling analysis [15]. Recently,
Rezaiee-Pajand et al. [16] made a good summary in the
structural applications of DR.

(e most important feature of DR is that the time steps,
the mass, and the damping terms are virtual [17], for only the
final state of the dynamic system is concerned other than the
motion. And also it is an explicit iterative technique because
it does not solve linear equations or even assemble the stiff
matrix [18], which are time and memory consuming. Hence,
the method is suitable for highly nonlinear problems.
Usually, the fictitious time step is set as a constant. However,
some researchers also developed several ways to obtain
better time steps, including the residual force or residual

energy minimizing [19, 20], zero damping [21], and error
estimate [22]. For fictitious masses, Alamatian [23] proposed
a general mass formulation for the Kinetic DR method.
Based on whether there exists a damping matrix, there are
two kinds of damping techniques used: Viscous Damping
Relaxation and Kinetic Damping Relaxation (KDR). (e
viscous damping technique includes a fictitious damping
matrix which is closer to the real dynamic system than the
KDR. (e most rapid convergence is obtained by damping
the lowest mode of vibration. Several important methods
[24–26] belong to this technique. (e kinetic damping
technique was firstly introduced by Cundall [3] for appli-
cation to unstable rock mechanism. In the technique, only
the time step and the fictitious nodal masses are required
other than viscous damping term. When the peak of an
undamped system kinetic energy is traced, the potential
energy is minimized simultaneously, and then all velocity
components are set to zeros. (e process is restarted and
repeated through further peaks until the most kinetic energy
has been dissipated. High stability and rapid convergence
make it widely used. It is reported that the KDR has good
performance in the nonlinear analysis of frame and cable
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structures [9, 27]. Also, KDR can be paralleled to accelerate
the large problem in form finding [11, 28].

(e existing DR techniques always concentrate on the
improvement of convergence speed, applications to various
structures, or the key problems in the nonlinear analysis.
However, researchers rarely focus on developing general
techniques to deal with various complex position con-
straints, which are very common in the structure analysis.
For instance, the traditional KDR method only implements
simple constraints such as the fixed joints by assigning large
masses or setting the zero residual forces [10, 11], which is
not enough in the structure modelling. (is research mainly
focuses on how to extend the KDR method to handle more
complex constraints.

In the applications, many structures contain very stiff
components so that not all the stiffness of degrees of freedom
is in the same order. For example, the stiffness of stretching
of the long thin beam is much larger than bending.
According to the stability condition of KDR [17]

Mi ≥
Δt2

2
􏽘

j

Sij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (1)

the fictitious mass should be set in the same order with the
largest stretching stiffness which led to extremely large
masses. Apparently, this will slow down the convergence of
KDR if the beam is under significant bending but neglectable
stretching. If any deformations are not significant, position
constraints should be introduced to accelerate the conver-
gence. Common linear constraint is the Multipoint Con-
straint (MPC), which can be introduced for many situations
such as the structures containing rigid components, the
interface transition between high and low order elements,
and implementation of cyclic symmetry boundary. Some
inextensible problems such as the deformation of rods or
fabrics can introduce nonlinear constraints [29]. All the
mentioned constraints above are described as the complex
position constraints. (ey cannot be implemented in the
traditional KDR for the missing corresponding constraint
forces.

(is study proposes a new algorithm dealing with the
complex position constraints, which can be in the form of
linear or nonlinear. As this method is based on the KDR, a
brief method description is offered in Section 2. In Section 3,
it shows how to obtain the constraint forces in detail and a
modified KDR with constraints is followed. Section 4 verifies
the proposed algorithm by several models including MPCs
and nonlinear constraints. (e final conclusions are made in
Section 5.

2. A Short Summary of KDR

For a systemwithm-degree of freedom x � x1 x2 . . . xm􏼂 􏼃
T,

the governing equation describing Newton’s 2nd law is

M _u � R − Cuwith _x � u, (2)

in which M � diag M1 M2 . . . Mm􏼂 􏼃( 􏼁 is the diagonal
fictitious mass matrix; u � u1 u2 . . . um􏼂 􏼃

T is the velocity
vector; R � R1 R2 . . . Rm􏼂 􏼃

T is the residual force vector

implying R � fext − f int, where fext is the external force
vector and f int is the internal force vector; and
C � diag C1 C2 . . . Cm􏼂 􏼃( 􏼁 is the viscous damping matrix
and the elements of which are set to zeros in the KDR.

(e acceleration is assumed constant over the time step,
which induces the following velocity iterative relations:

ut+(Δt/2)
� ut− (Δt/2)

+ _utΔt, (3)

and the position iterative relations:

xt+Δt
� xt

+ ut+(Δt/2)Δt, (4)

where the superscripts indicate the time point and Δt is time
step.

Having the updated geometry, the new residual forces can
be calculated. (e total kinetic energy of the system is traced
during iterations, which is calculated by the relationship

U
t+(Δt/2)
k �

ut+(Δt/2)( 􏼁
TM ut+(Δt/2)( 􏼁

2
. (5)

When the current kinetic energy is less than the previous one
at t − (Δt/2), an energy peak is detected. Topping and Ivanyi
[11] assumed that the peak point of kinetic energy occurs at
t − (Δt/2) and hence the new positions are set to xt− (Δt/2):

∗x0 � xt− (Δt/2)
� xt+Δt

−
3Δt · ut+(Δt/2)

2
+
Δt2M− 1Rt

2
, (6)

(e analysis can be restarted from ∗x0 as the initial
position. Meanwhile, all current velocities are reset to zero:
u0 � 0. For the first iteration or restarting the process after
the peak, the velocities at time Δt/2 are set as

uΔt/2 �
M− 1R0Δt

2
, (7)

which is obtained from the relation

u− Δt/2
� − uΔt/2 � −

1
2

_u0Δt, (8)

where R0 should be evaluated from the position of (6). (is
process is iterated through several peaks until the conver-
gence criterions are satisfied. In practice, the time step is set
to 1 and the elements of the mass matrix are determined by
equation (1) to ensure the stability.

3. Algorithm Implementing Complex Position
Constraints in KDR

An m-degree freedom system contains n complex position
constraints:

g � g1(x) g2(x) . . . gn(x)􏼂 􏼃
T

� 0. (9)

(e constraints can be linear or nonlinear. Taking time
derivative of the position constraints (9) and according to
the chain rule, the velocity constrains are obtained:

G(x) · u � 0, (10)

in which G(x) is the Jacobian matrix with elements
Gij � zgi/zxj. Based on Lagrange’s equations of the first
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kind, the governing equations of a dynamic system of m-
degree of freedom can be written as

_x � u,

M · _u � R − GTλ,

G · u � 0,

⎧⎪⎪⎨

⎪⎪⎩
(11)

where λ � λ1 λ2 . . . λn􏼂 􏼃
T is the corresponding constraint

force vector. (e system is called Differential-Algebraic
Equations (DAEs) of index 2 [30]. If the velocity constraints
of (11) are replaced with position constraint (9), index 3
DAEs are obtained. From (9) to (10), it is the index reduction
of DAEs by time differentiation.

Newton’s 2nd law (the second equation in (11)) gives the
acceleration at time t:

_ut
� M− 1 Rt

− GtTλt
􏼐 􏼑. (12)

However, the corresponding constraint force vector λt

remains unknown and needs to be solved. (e inspiration is
from the half-explicit method for DAEs, which means
solving x and u in an explicit manner and the algebraic
variables λ in an implicit manner [30]. By inserting the
velocity and position iterative relations (3) and (4), the
velocity constraint (10) at time t + Δt/2 gives

G xt
+
ut+(Δt/2)Δt

2
􏼠 􏼡 · ut− (Δt/2)

+ _utΔt􏼐 􏼑 � 0. (13)

(en, the Taylor expansions of (13) at time t leads to the
constraints with acceleration _ut:

G xt
􏼐 􏼑+ Gx · ut− (Δt/2)Δt

2
+ _utΔt2

2
􏼠 􏼡􏼢 􏼣· ut− (Δt/2)

+ _utΔt􏼐 􏼑 � 0,

(14)

whereGx is the derivative of the Jacobianmatrix with respect
of x, with the components of (Gx)ijk � zGij/zxk.

Obviously, solving equation (14) combined with Newton’s
law (12) can obtain the acceleration and constraint forces.
However, Gx in (14) is too complicated for most cases. Di-
mension analysis technique is employed here to simplify the
equation. (e typical final deformation of a node l0 is con-
sidered as the length scale, and the external force of a node F as
the force scale.(ere are two time scales which are the time step
Δt and the typical time t0 to reach equilibriumwith the relation
Δt � εt0, in which ε≪ 1. (e value of ε can be chosen by
experience. Usually the larger the deformation l0, the smaller ε
will be chosen to ensure more time steps are employed. (e
velocity scale can be set as u0 � l0/t0. Supposing that the typical
velocity u0 can be reached in the time scale of several Δts from
static status, based on the theorem of momentum, the mass
scale can be written as

M ∼
FΔt
u0

∼
FΔt2

εl0( 􏼁
, (15)

which also indicates that the acceleration has the scale of
_u ∼ u0/(t0ε). If the system contains the elastic component,
based on the balance equation in the equilibrium state, the
stiffness scale is S ∼ F/l0. Accordingly, the right-hand side

term of the stability condition has the scale of
(Δt2/2)􏽐j|Sij| ∼ ε(FΔt/u0) ∼ εM. It is obvious that the
stability condition (1) is satisfied.

Next, the scale of equation (14) is estimated. Supposing
the scale of 2-norm of G is ‖G‖ ∼ G0, then other terms have
the following scales:

Gx · ut− (Δt/2)Δt
2

�������

�������
∼ Gx · _utΔt2

2

��������

��������
∼ G0ε,

ut− (Δt/2)
�����

����� ∼ _utΔt
����

���� ∼ u0.

(16)

Zero order of ε for (14) gives out the approximate
constraints for acceleration, which also have a simple form:

G xt
􏼐 􏼑ut+(Δt/2)

� G xt
􏼐 􏼑 ut− (Δt/2)

+ _utΔt􏼐 􏼑 � 0. (17)

Inserting Newton’s 2nd law at time t (12) into (17) gives
the equation for constraint forces:

GtM− 1GtT
􏼐 􏼑λt

� GtM− 1Rt
+

1
Δt
Gtut− Δt/2

. (18)

It is very efficient to get the inverse of diagonal mass
matrices M− 1 in (18). By solving out the constraint force at
time t, the new residual forces including the effect of con-
straints is

􏽥Rt
� Rt

− GtTλt
, (19)

and the new velocities iterative relation turns out to be

ut+(Δt/2)
� ut− (Δt/2)

+ M− 1 􏽥RtΔt. (20)

When implementing the constraints at the first iteration
or restarting the process after the peak, inserting (8) into
constraints for acceleration (16) gives

G0
_u0 � 0, (21)

and by inserting (12) into (21), the constraint forces at time 0
can be solved out through

G0M− 1G0T
􏼐 􏼑λ0 � G0M− 1R0

. (22)

(us, the initial updated residual forces 􏽥R0 can be given
out by (19). (e velocity update relation is achieved by
following the expression similar with (7):

uΔt/2 �
M− 1 􏽥R0Δt

2
. (23)

For most linear MPCs,G · x � b,G and b is independent
of x, and (17) can describe the position constraints G · Δx �

0 exactly. However, for nonlinear problems, original posi-
tion constraint (9) needs to be satisfied too. A position
projection technique is employed after one or several po-
sition updates to prevent the drift-off phenomenon [30].(e
Taylor expansion of g(xt + δx) � 0 at xt leads to

G xt
􏼐 􏼑 · δx � − g xt

􏼐 􏼑, (24)

where δx is the drift-off value and g(xt) is the residual of
original position constraints. Another equation from the-
orem of momentum read
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M · δx + G xt
􏼐 􏼑

T
μ � 0. (25)

Combining (24) and (25), μ can be solved out by

GM− 1GT
􏼐 􏼑μ � g xt

􏼐 􏼑. (26)

(e new position after projection will be

xnew � x + δx � x − M− 1GTμ. (27)

By inserting (27) into g, the new residuals of original
position constraints are calculated. (e projection process is
solved iteratively, until the norm of residuals satisfies the
tolerance. LU factoring of GM− 1GT is taken only in the first
iteration to reduce the computational cost.

(e iterative procedure of the modified KDR is sum-
marized as follows:

(i) Set physical properties and number of nodes.
(ii) Set the initial position of the structure. Set time step
Δt to 1 and convergence criterion for the kinetic
energy, and Tol� 1.0×10− 12 is used for this study.

(iii) Set initial fictitious velocities u and kinetic energy
Uk to 0. Set the first time step flag “ini” to 1.

(iv) Time iterations:

(1) Calculate the internal forces and the external
forces related to x at time t to obtain the un-
balanced forces Rt � fext − f int. If possible, the
stiffness matrix is given here.

(2) Estimate the mass matrix according to the
stability condition from stiffness (1) or the mass
scale (15).

(3) Supply the constraint derivative matrix G and
solve the constraint forces λt according to (18)
(if “ini” is 1, using (22) instead).

(4) Calculate unbalanced forces 􏽥R
t according to

(19).
(5) Update the node speed using (20) (if “ini” is 1,

using (23) instead and reset “ini” to 0). Update
the node coordinate with (4).

(6) If the kinetic energy (5) is less than the previous
(t − (Δt/2)), calculate the initial position of
restarted analysis by (6), set the previous kinetic
energy to 0 and reset “ini” to 1.

(7) For nonlinear constraints, project x onto the
geometric constraint equations by iterations
with equations (26) and (27).

(8) If “ini” is 1 and the kinetic energy is less than
tolerance, jump out of time iterations, otherwise
continue the time loop.

(v) Completion

4. Algorithm Verification and Discussion

Several static problems are chosen to verify the proposed
algorithm. (e first and the second are linear problems with
MPCs. (e third and the fourth ones are the geometry
nonlinear problems with nonlinear constraints. Finally, a

complex cyclically repeated structure with MPCs is solved
for both linear and nonlinear cases.

4.1. Linear Problems withMPCs. (e first example is a linear
problem with MPCs. A rigid bar of negligible mass with one
end pinned is hanged by two rods with different physical
properties, as shown in Figure 1 (this example is from [31]).
And load P is applied on the other end. Two bar elements
(number with circle) and five nodes are used to model
the structure. Only the vertical displacement vector
x � [x1, x2, x3, x4, x5]

T is considered to be unknown. (is
problem can be treated as linear because of the small dis-
placements of nodes with two MPCs, including 3x1 − x5 � 0
and 6x2 − 5x5 � 0. It can be found that the fifth node has no
elastic connection with other nodes except the constraints,
which induced that the elements of the 5th row and column of
the global stiffness matrix are all zeros. (is will bring failure
in estimation of the fifth nodes mass by equation (1). Al-
ternatively, the estimations of all node masses are Mi ∼ 1.5 ×

108 kg from equation (15), in which F ∼ 30 × 103 N, ε ∼ 0.02,
and l0 ∼ 1 × 10− 2 m. (e exact solution of the problem
is xexact � [27, 67.5, 0, 0, 81]T/55375m. Figure 2 shows
the kinetic energy, relative error of displacement
‖x − xexact‖/‖xexact‖, and relative unbalanced force ‖􏽥R‖/P
converge with the increase of the time step. It takes 49 time
steps to reach kinetic energy tolerance. (e dropping down
of energy peaks, the exponential decrease of the dis-
placement error and unbalanced forces can also be ob-
served in the figure.

(e second example is about uniformly stressed plate
containing a circular hole. (e geometry, the finite element
model, and the loading and boundary conditions are shown
in Figure 3. One-quarter of the square plate with the center
hole is all needed to solve the problem for the symmetry of
geometry and loading. Uniform pressure 25 Pa is acting
parallel to the x-axis. (e thick of the plate is 1m. Young’s
modulus and Poisson’s ratios are 20GPa and 0.2, respec-
tively. Hence, the problem is in plane stress and also a linear
problem for the small displacement. Because of stress
concentration, the stress gradient near the hole can be very
high which needs high order elements such as eight node
quadrilateral elements. But far away from the hole, stress
distribution is flatter and four node quadrilateral elements
are enough. One way of transition between two kinds of
element is by using MPCs for maintaining compatibility. As
shown in Figure 3, two linear MPCs are required between
elements A and B for nodes i, j, and k, which are ui − 2uj +

uk � 0 and vi − 2vj + vk � 0 (u and v are horizontal and
vertical displacements). (e mass is estimated by equation
(1) because the stiffness matrix can be obtained by traditional
finite element procedure. In the calculation by KDR with
MPCs, it takes 451 time iterations to reach kinetic energy
tolerance; meanwhile, the norm of relative unbalanced
forces endure a continuous drop down and reach to
‖􏽥R‖/‖fext‖ � 8.09 × 10− 5, as shown in Figure 4(a). From
Figure 4(b), the well-known distribution of stress σx is
obtained, and the maximum pressure is approximately
78 Pa, about 3 times of the load.
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4.2. Geometry Nonlinear Problems with Nonlinear Position
Constraints. (e third example involves the form finding of
an inextensible suspension cable which is important to
suspension bridges. Two forms of cable are studied here:
parabola when the weightless cable subjected to a uni-
formly distributed deck weight load and catenary for a
heavy cable with neglectable deck weight. (e size and
load condition is from [12]. (e main span L is taken as
1000m and the sag h is set to 90m. (e lengths of cable
are calculated as S = 1021.1984m for parabola and
S = 1021.2831m for catenary. (e self-weight of the deck is
taken as q = 72.4 kN/m and cable weight is mg = 26 kN/m.
(e half cable is divided into N bar elements with equal
length Δl � S/N. Relation between elements and nodes is
shown in Figure 5. (e total external force for the ith el-
ement is qΔxi for parabola and mgΔl for the catenary case,
where Δxi � xi+1 − xi is the x coordinate difference between
two neighbouring nodes. Instead of using extremely large
tension stiffness, zero stiffness is employed here which

leads to zero internal force. Alternatively, the inextensible
condition for the ith bar is guaranteed by the nonlinear
constraints:

����������

Δxi2 + Δyi2
􏽱

� Δl, (28)

where Δyi � yi+1 − yi. (en, the nonzero elements of the
sparse matrix G are setting as

Gi,(2i− 1):(2i+2) �
− Δxi − Δyi Δxi Δyi􏼂 􏼃

Δl
, (29)

the elements of which belong to the ith row and the col-
umns of 2i − 1 to 2i + 2. (e node mass Mi is estimated
from equation (15), in which F ∼ ‖fext‖, ε ∼ 0.01, and
l0 ∼ Δl. N is set to 50 to simulate half span. Results are
shown in Figure 6. It takes 752 and 603 steps to reach
kinetic energy tolerance for parabola and catenary from a
straight line, and the numerical results fit the exact curves
very well, as shown in Figures 6(a) and 6(b). Figures 6(c)
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Figure 2: Validation of convergence for rigid bar problem.
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Figure 1: Sketch of a structure with rigid bar.
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and 6(d) show both the kinetic energy and relative un-
balanced force ‖􏽥R‖/‖fext‖ converge. But the relative dis-
placement errors ‖x − xexact‖/‖xexact‖ do not go down after
about 300 steps for both cases because these inevitable
errors are from the space discretization.

(e fourth example involves inextensible and incom-
pressible long thin vertical cantilever beams subjected to
momentM on the tip (Figure 7(a)) and vertical load P which
causes large postbulking displacement (Figure 7(b)). (e
numerical model (Figure 7(c)) shows that the beam is

24m

25Pa

3m

x
y A B

A

B

i

j

k

Figure 3: Finite element modelling of stress concentration problem.
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Figure 4: Numerical result of stress concentration problem calculated by KDR with MPCs. (a) Validation of convergence. (b) (e
distribution of stress σx.

6 Mathematical Problems in Engineering



divided into N bars with equal length Δl in the plane xy.
Xi � xi yi􏼂 􏼃

T presents the position vector of the ith node.
(e edge vector is defined as ti � (Xi+1 − Xi)/Δl, and the
curvature at the ith node is [32]

κi �
2
Δl

ti− 1 × ti · d1
1 + ti− 1 · ti

, (30)

in which d1 is along the z-axis and the normal of the plane.
(us, di

2 � − ti
2 ti

1􏼂 􏼃
T. d1 and d2 point along the principal

direction of the section. Based on the geometry relation, the
variation of the curvature can be given as

δκi �
BiδXe

i

Δl
, (31)

in which

Xe
i � xi− 1 yi− 1 xi yi xi+1 yi+1􏼂 􏼃,

Bi � − diT
2 Δt

i
+ di− 1T

2 Δt
i− 1

,

Δti � 02×2 − I2×2 I2×2􏼂 􏼃,

Δti− 1 � − I2×2 I2×2 02×2􏼂 􏼃.

(32)

I is the identity matrix. (is relation corresponds to the
continuous form of [33]

δκ � (t × δt)′ · (I − t⊗ t) · d1 � − δt · d2( 􏼁′, (33)

where t is the tangent vector of the curve. Around each node,
an element is defined between the centers of the neigh-
bouring bars. (e internal virtual work δκiEIκiΔl of element
i suggests the internal force vector of the element is

fe
int � Bi

T
EIκi, (34)

in which E is Young’s modulus and I is the moment of
inertia. (e incensement of the internal virtual work gives
out the material stiffness of the element:

ke
i �

EIBi
TBi

Δl
. (35)

(is stiffness is only used to estimate the mass matrix. (e
nonlinear constraints (28) should be satisfied for the in-
variable length condition. And the nonzero elements of G
have the same expressions with (29).

In both cases about beam, N is set to 50. (e parameters
for the cantilever beam subjected to moment M are the
length L� 2, EI� 100, and M� 100π. As shown in
Figure 8(a), the final calculated beam configuration is almost
a perfect circle which is the analytical solution from the
initial state of the straight line. (e parameters for the
cantilever beam subjected to vertical load P are the length
L� 1, EI� 4/π2, and P � (4K2(k)/π2) ≈ 4.0301. And the
analytical solution is [34]

x �
2k(cos ϕ − 1)

K(k)
,

y �
[2E(ϕ, k) − F(ϕ, k)]

K(k)
,

(36)

in which k � sin(4π/9) and ϕ ∈ [0, 2π]. K(k) is the complete
elliptic integral of the first kind and F(ϕ, k) and E(ϕ, k) are
the elliptic integrals of the first and second kind separately.
As shown in Figure 8(b), the final beam configuration is
close to the analytical solution from the initial state of the
straight line. Figures 8(c) and 8(d) show the kinetic energy
and relative unbalanced force ‖􏽥R‖/‖fext‖ converge for both
cases. (e dashed lines in Figures 8(c) and 8(d) show the
distance between two endpoints and the error of maximum
deflection comparing the analytic solution, respectively.
Both of them do not go down further after certain steps
because of the errors from space discretization.

4.3. Linear and Nonlinear Analysis of Cyclically Repeated
Structure with MPCs. For cyclically repeated space struc-
tures under the cyclical load, if only one repeated piece is
modelled instead of the whole structure, the computing costs
will be reduced drastically. In this situation, complex
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y N + 1

N
N

h

1 2

3

1
2

∆x2

L/2

mg (for catenary)

x

Figure 5: Numerical model of half-span cable.

Mathematical Problems in Engineering 7



0 100 200 300 400 500
–20

0

20

40

60

80

100
y

x

Initial position of the cable
Result of KDR with constraints
Exact parabola

(a)

0 100 200 300 400 500
–20

0

20

40

60

80

100

x

y

Initial position of the cable
Result of KDR with constraints 
Exact catenary

(b)

0 200 400 600 800

10–12

10–09

10–06

10–03

1000

1003

1006

Time step

Kinetic energy (J)
Relative position error compared to parabola
Relative norm of unbalanced forces

(c)

10–12

10–09

10–06

10–03

1000

1003

Kinetic energy (J)
Relative position error compared to catenary
Relative norm of unbalanced forces

0 100 200 300 400 500 600 700
Time step

(d)

Figure 6: (e numerical results of cables using KDR with constraints. (a) and (b) are the simulation shapes of half-span cables for parabola
and catenary, respectively. (c) and (d) are the validations of convergence for parabola and catenary, respectively.
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Figure 7: Sketches and numerical model of the inextensible and incompressible beam. (a) A cantilever beam under tip moment. (b) A
vertical cantilever beam under vertical load which causes large postbulking displacement. (c)(e numerical model of a beam in the plane xy.
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position constraints should be introduced for the node pairs
at the cyclic symmetry boundary, which cannot be achieved
by the traditional treatment of simple support. For example,
a single layer circular truss dome is concerned, as shown in
Figure 9(a) [23, 35], which has 216 nodes and 600 elements
for the whole truss. (e structure is generated by cyclic
replication of 24 similar pieces. Figure 9(b) shows one piece
with 25 elements (continuous lines) covering 15° of the truss.
(e details of nodal numbers and coordinates are also il-
lustrated in the figure. (e cross-sectional area and the
modulus of elasticity of members are 2×10− 3m2 and
200GPa, respectively. All the underside nodes (z� 0.0) are

pinged. 35 kN load is applied to all other free nodes of the
dome in negative z-axis.

(e structure is solved by both linear small deflection
and nonlinear large deformation (total Lagrangian bar
elements) theories. Owing to the cyclic symmetry, just
one piece of truss (17 nodes with 51 freedoms) is solved
instead of solving the whole structure (216 nodes with 648
freedoms). Obviously, the cost of calculating one piece of
truss with MPCs is much cheaper than the whole dome.
However, the cyclic symmetry constraints for 8 node
pairs must be introduced by 24 MPCs which have the
form of
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Figure 8: (e numerical results of cables using KDR with constraints. (a) and (b) are the simulation shapes of cantilever beams under tip
moment and vertical force, respectively. (c) and (d) are the validations of convergence for beams under tip moment and vertical forces,
respectively.
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ui − ui− 1 cos 15∘ − vi− 1 sin 15∘ � 0,

vi + ui− 1 sin 15∘ − vi− 1 cos 15∘ � 0,

wi − wi− 1 � 0,

⎧⎪⎪⎨

⎪⎪⎩
(37)

where u, v, andw are displacements along x-, y-, and z-axis
and i is the odd node number from 3 to 17 in Figure 9(b).
For one piece, only node 1 is hinged, which leads to
u(1) � v(1) � w(1) � 0. Figure 10(a) shows the numerical
results (the dashed line and the continuous line with circle)
of the one-piece model with which MPCs coincide with the
results from the literature very well. Both the kinetic energy
and relative unbalanced force ‖􏽥R‖/‖fext‖ vs. the time steps of
linear analysis have been plotted in Figure10(b), which
verified the convergence of our model.

4.4. Discussion. Similar with the existing KDRs, the algo-
rithm proposed in this paper does not need fictitious
damping matrix. And it also can deal with simple constraints
such as the fixed joints, which led to the degeneration of the
method to the existing KDR. (is is implemented by (19)
which equals to set zero residual forces. Numerical results
show our method not only inherits good performance in
stability and rapid convergence for both linear and nonlinear
problem but also can reduce the computing costs dramat-
ically by introducing the complex position constraints than
the traditional one.

Unlike the traditional full explicit KDR, the algorithm is
half-explicit: solving linear equations is needed to obtain the
constraint forces from (18) but explicitly with respect to
velocity and positions. Because the dimension of GtM− 1GtT

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Deflection of node 17 (cm)

Lo
ad

 (k
N

)

Linear
Linear (J. Alamatian)

Nonlinear
Nonlinear (J. Alamatian)

(a)

0 200 400 600 800 1000
10–15

10–12

10–09

10–06

10–03

1000

1003

Time step

Kinetic energy (J)
Relative norm of unbalanced forces

(b)

Figure 10: (e numerical results of the circular truss dome. (a) (e load-deflection curve at tip of the truss tower. Data shown by stars and
crosses are taken from Ref. [23] while dashed line and continuous line with circle are our results. (b) Convergence of the linear case.
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in (18) is n × n, the numerical costs of KDR with constraints
depend on the number of constraints n other than degrees of
freedom m. Usually n≪m, which indicates the solving scale
of the problem is small.

One limitation of the proposed algorithm is about es-
timating the mass matrix. For most cases, it can be deter-
mined based on the stiffness matrix. However, if it lacks
stiffness for few degrees of freedom, it has to estimate the
mass by using (15) which needs artificial intervention and
experience to ensure less iterations. A better way to generate
the proper mass matrix automatically is needed, which will
be studied further.

5. Conclusion

In this study, the new algorithm is proposed to implement
the complex position constraints in the traditional KDR
methods. Based on the combination of the index reduction
of DAEs and Taylor expansion with dimensional analysis,
equation (18) is proposed to obtain the missing constraint
forces. And drift-off avoiding projection method is further
proposed for the nonlinear constraints. Stiff bar problem,
stress concentration near the circular hole, inextensible
hanging cables, inextensible beams with tip forces, and
cyclically repeated structure problem are tested with linear
MPCs or nonlinear position constraints. (e results show
that the newly proposed algorithm can extent the KDR
method to the structures with complex position constraints
and is of more modelling flexibilities.
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