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Aiming at overcoming the problem that the mechanism function of the unlocking trigger device is difficult to obtain and the
corresponding reliability analysis cannot be performed, a motion reliability analysis method based on the CPSO-BR-BP neural
network proxy model is proposed. Firstly, the particle swarm algorithm is optimized through the chaotic sequence, and the back-
propagation (BP) neural network is optimized using Chaos Particle Swarm Optimization (CPSO) and Bayesian Regularization
(BR) algorithm. ,e CPSO-BR-BP neural network proxy model is established, and the reliability of shape memory alloys (SMA)
wire unlocking based on the structural function is calculated. Moreover, according to the structural function of the separation
process, the motion reliability based on the proxy model and the improved membership function is calculated. Finally, a series
reliability model is established based on the unlocking process and the separation process to calculate the reliability of the whole
machine. ,e reliability of the unlocking trigger device is analyzed by the proposed method. Results show that the proposed
method is computationally efficient with the calculated reliability of 0.9987.

1. Introduction

,e connection and separation device in the spacecraft is
designed to realize the connection between spacecraft sections
as well as that between the body and components in the
launch section. At the same time, it achieves reliable
unlocking and separation on the orbit according to the
established requirements.,e reliability can not only quantify
the motion performance of the device under the condition of
parameter uncertainty but also provide the necessary theo-
retical basis for its further optimization [1–5]. Future space
station construction and manned missions to the moon make
higher demands on the reliability, safety, and separation
impact of the connection and separation device, and also
more urgent needs for the connection and separation module
with large load capacity and low impact are put forward [6, 7].

To reduce the separation impact of the device, ensure the
safety of connection and separation, and avoid space pollu-
tion, researchers have applied shape memory alloys (SMA) to
achieve the unlocking function [8–13]. Zhang et al. [8]
designed a separation release device using SMA wire. ,e

device has a simple structure, but it lacks further tests on
impact performance and load-bearing capacity. Hu et al. [9]
proposed an unlocking mechanism based on memory alloy
drive with non-self-locking transmission characteristics and
multistage force-increasing structure. ,e key parameters
affecting the drive performance of memory alloy and the
design of non-self-locking trapezoidal thread pairs were
determined through simulation, but the impact of parameter
uncertainty on device performance was not considered. Han
et al. [10] proposed a low-impact, light-weight, interlocking
connection and separation device based on the shapememory
alloy tube unlocking. ,e key parameters were determined
through theoretical analysis and simulation, and the
unlocking impact and unlocking time of this prototype were
tested. However, the reliability analysis of the device was not
performed.Most of the above-mentioned studies were carried
out on deterministic experiments or simulations to determine
the structural parameters of the device, without considering
the influences of parameter uncertainties on its motion re-
liability. Reliability analysis is the focus of the design process,
which can be used to conduct quantitative analysis of sports
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performance under deterministic conditions. Due to the
complex structure of the unlocking trigger device, it is difficult
to directly obtain its structure function. ,e proxy model is
introduced to establish themapping relationships between the
uncertainty parameters and the responses.

Currently, the most widely used proxy models are
polynomial response surface proxy model [11], Kriging
proxy model [12–14], radial basis function proxy model
[15, 16], and BP neural network proxy model [17–19].
Among them, the BP neural network proxy model signifi-
cantly improves the robustness of the overall design of the
mechanical structure with low calculation cost and high
noise processing capability. However, the gradient descent
method used by BP neural network models often converges
to a local optimal solution, which affects the accuracy and
efficiency of proxy models. For this reason, researchers have
optimized the BP neural network models [20–23]. Tang et al.
[20] proposed an analytic method for the reliability and
sensitivity of motion mechanisms based on BP neural
networks, which can effectively improve the reliability and
robustness of machine tool motion mechanisms. Dai et al.
[21] proposed an explorer optimization algorithm based on
heuristic search, which trains the neural network through
evolutionary methods to adjust the structure and parameters
of the neural network. Gong et al. [22] improved the particle
swarm optimization (PSO) by evolutionary strategy to op-
timize a BP neural network for storage reliability prediction
and combined the global search capability of PSO with the
local search capability of the BP network to improve the
convergence speed and prediction accuracy of the algorithm.
Yan et al. [23] proposed an artificial neural network model
based on genetic algorithm optimization to analyze the
reliability of aviation bearing fatigue and overcomed the
problem of artificial neural network local optimization and
premature convergence problems. ,e above studies mostly
optimize the characteristics of BP neural network models
and do not analyze the accuracy and efficiency of proxy
models. Moreover, they are difficult to solve the reliability
issues of actual engineering cases.

To this end, considering working principle of unlocking
trigger device and uncertain parameters duringmovement, a
new reliability analysis method based on CPSO-BR-BP
neural network (Chaos Particle Swarm Optimization-
Bayesian Regularization-BP neural network) is proposed,
and the unlocking trigger device is used as the research
object. ,e influence of each uncertainty parameter on the
device performance is clarified, and the motion reliability of
the SMA wire unlocking and separation process is analyzed
under different coefficients to verify its motion reliability
under uncertain parameters. ,e research method provides
a reliable theoretical reference for further improving the
structural performance of the unlocking trigger device.

2. Configuration and Working Principle of
Unlocking Trigger Device

,e overall configuration of unlocking trigger device is shown
in Figure 1. ,e device is mainly composed of three parts: the
SMAwire trigger component, the unlocking and transmission

component, and the connection and separation component.
Among them, the SMA wire trigger component plays a re-
liable limit and lock function when locked, and it provides
trigger driving force for releasing the limit and lock when
unlocked. ,e connection and separation component can
realize the loading of the pretightening force to keep overall
connection strength and rigidity when locked. Besides, it can
quickly realize the separation of the connecting parts while
unlocking. ,e unlocking and transmission components can
complete the load amplification and reduce the impact while
unlocking [6].

,e unlocking trigger device is a new type of non-
pyrotechnic unlocking device. It is to make the nut of the
non-self-locking thread pair into a flywheel. When the
connection is locked, the flywheel nut is restricted by the
triggering mechanism to rotate in the circumferential di-
rection. Besides, it is combined with the non-self-locking
thread to realize the connection of the spacecraft and its
accessories. To ensure the tightness of the connection, the
lower end of the screw is pretightened by the loading nut to
provide the unlocking driving force. At this time, the fly-
wheel nut is in the unlocked state under the action of non-
self-locking force. When it is released, the SMA wire is
heated by electricity to shrink it to release the restriction of
the locking mechanism on the nut. ,e flywheel nut is
unlocked by inertial reversal under the action of the non-
self-locking force of the threaded connection.,e device can
not only complete the heavy-duty connection through the
thread pair connection but also complete the separation of
the screw and the nut by releasing the non-self-locking
thread after the nut limit to achieve the goal of low-impact
separation. ,e working principle is shown in Figure 2.

3. Reliability Analysis Method Based on CPSO-
BR-BP Neural Network Proxy Model

,e premise of the reliability analysis of the unlocking
trigger device is to construct the functional function of the
mechanism. Since it is difficult to obtain the physical
equation of the device uncertainty parameter and its re-
sponse, the key is to obtain the relationship between the
uncertainty parameter and its response, that is, the proxy
model. Currently, the most widely used proxy models are
polynomial response surface proxy model [11], Kriging
proxy model [12–14], radial basis function proxy model
[15, 16], and BP neural network proxy model [17–19].
Among them, the BP neural network proxy model signifi-
cantly improved the robustness of the overall design of the
mechanical structure with its low calculation cost and high
noise processing capability [17]. To improve the accuracy
and efficiency of the reliability calculation, the motion re-
liability analysis of the SMA wire unlocking process and the
separation process is carried out based on the BP neural
network proxy model.

3.1. BP Neural Network Proxy Model. BP neural network is
an intelligent algorithm with error back-propagation. Its
topological structure is mainly composed of three parts:
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input layer, hidden layer, and output layer. Each layer is
connected by neurons. Assuming that the nodes of the input
layer, hidden layer, and output layer in the three-layer

structure are m, n, and r, respectively, the function trans-
mitted by the neuron can be expressed by

hk � f1 

m

i�1
Wikxi + bk

⎛⎝ ⎞⎠, (j � 1, 2, . . . , r), (i � 1, 2, . . . , m), (k � 1, 2, . . . , n), (1)

yk � f2 

n

k�1
Wkjhk + bj

⎛⎝ ⎞⎠, (j � 1, 2, . . . , r), (i � 1, 2, . . . , m), (k � 1, 2, . . . , n), (2)

where hk is the output of the hidden layer; yk represents the
output of the output layer; f1(x) and f2(x) are the activation
functions;xi denotes the input variable; bk is the threshold of the

hidden layer; bj is the threshold of the output layer; Wik reflects
the weight between the hidden layer and the input layer; and
Wkj is the weight between the output layer and the hidden layer.
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Figure 1: ,e overall configuration diagram of the unlocking trigger device.
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Figure 2: Working principle diagram of the separation device: (a) the connection status and (b) the separation status.
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According to equations (1) and (2), the mapping rela-
tionship between the network input variable xi and the
output response y can be expressed as

y � f2 

n

k�1
Wjkf1 

m

i�1
Wikxi + bk

⎛⎝ ⎞⎠ + bj
⎛⎝ ⎞⎠. (3)

,e BP neural network uses the gradient descent method
as the training algorithm and the training error of the
network as the performance function. ,e weights and
thresholds in equation (3) can be iterated to make the fitting
accuracy of the BP neural network proxy model reach the
allowable error range. ,e performance function charac-
terized by the gradient descent method can be expressed as

ED � 
s

i�1
Ti − yi( 

2
, (4)

where s is the total number of weights; Ti is the actual
output; and yi is the network prediction output.

However, the gradient descent method often converges
to the local optimal solution in which the initial values of
weights and thresholds are randomly generated in the
training process. ,is makes the network not fully trained,
which will affect the fitting accuracy and computational
efficiency of the agent model. ,erefore, the Chaos Particle
Swarm Optimization (CPSO) and Bayesian Regularization
(BR) algorithm are used to optimize the BP neural network
to improve the calculation efficiency as well as ensuring the
calculation accuracy of the proxy model.

3.2. Chaos Particle SwarmOptimization. ,e particle swarm
algorithm is an optimization algorithm developed based on
the actual biological group activities. ,e significant features
of the algorithm are fast convergence, high robustness, and
strong global optimization ability. ,e particle swarm al-
gorithm is prone to random oscillations and falls into local
optimal values. To solve this problem, chaos algorithm is
introduced into the particle swarm algorithm. In addition,
the chaotic sequence is used to iterate the optimal particles in
the particle swarm to improve the ability of the algorithm to
jump out of the local optimal solution. ,e specific steps are
given as follows:

(1) Initialize the population. ,en, determine the pop-
ulation number N, dimension D, the maximum
number of iterations Kmax, and other parameters.

(2) Calculate the fitness of each particle and update the
local optimal position Pbest and the global optimal
position gbest of each particle.

(3) Normalize the optimal position of each particle
Pbest � (Pg1, Pg2, . . . , Pg D) to obtain (yk1, Pk2, . . . ,

yk D).
(4) Use the logistic equation to iterate on yk1 and

denormalize the obtained results.
(5) Use the obtained new solution to calculate the fit-

ness. If the new solution is better than the old so-
lution, output the new one.

(6) Judge whether the maximum number of chaotic
iterations is reached; if not, return to step (2).

3.3. CPSO-BR-BP Neural Network Proxy Model.
According to the advantages of CPSO and BR algorithms in
correcting weights and thresholds, the traditional BP neural
network is optimized and a new CPSO-BR-BP neural net-
work proxy model is proposed. ,e basic idea is as follows.
Firstly, set the basic parameters of the chaotic particle
swarm, determine the number of random variables and
responses, randomly generate the initial position and initial
velocity of the particle, update the particle velocity and
position, and get the individual extreme value and global
extreme value of the particle by using the mean square error
of the BP neural network as the fitness function. Secondly,
the global extreme value of the particle is optimized cha-
otically by the logistic equation.,e best individual is output
and used as the optimal initial weight and threshold. Finally,
the BP neural network that obtains the optimal initial value
is used for training by BR, and the correction function is
introduced based on equation (4) to optimize the perfor-
mance function. ,e revised performance function ex-
pression is as follows:

E � αED + βEW, (5)

Ew �
1
s



s

i�1
w

2
i , (6)

where E is the modified performance function; α and β are
the regularization coefficients; Ew is the weight attenuation
term; and ωi is the weight of the neural network connection.

,e BR algorithm that takes equation (5) as a perfor-
mance function adaptively adjusts the size of α and β during
the training process. Under the condition of ensuring that
the training error converges to the target error, the final
weight and threshold are output, and CPSO-BR-BP neural
network proxy model is established based on this.

,e main process of the reliability analysis of the
unlocking trigger device based on the CPSO-BR-BP neural
network under the parameter uncertainty is shown in
Figure 3.

3.4. Reliability Calculation Method Based on Improved
Membership

3.4.1. Reliability Calculation Method of SMAWire Unlocking
Process. ,e successful completion of the unlocking process
of the device within the specified time is the basis for en-
suring its reliability. ,e mapping relationship between the
uncertain parameters and the response is constructed, which
is based on the BP neural network, and the key performance
indicator is the recovery displacement. ,e probability
distribution characteristics of the recovery displacement of
the SMA wire under the condition of parameter uncertainty
are obtained by the mapping relationship. ,e unlocking
reliability of the shape memory alloy wire is obtained based
on the allowable displacement. ,e function expression of
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Figure 3: Main processes of reliability analysis of separation mechanism.
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the SMA wire unlocking reliability analysis function can be
represented as

X � L(x) − L �

> 0, displacement is greater than allowable displacement,

� 0, displacement is equal to allowable displacement,

< 0, displacement is less than allowable displacement,

⎧⎪⎪⎨

⎪⎪⎩
(7)

where L(x) is the return displacement of the SMA wire; L is
the allowable displacement when the SMA wire is unlocked.

According to equation (7), the reliability can be defined
as

R(t) �
n

N
. (8)

3.4.2. Reliability Calculation Method of the Separation
Process. In the process of calculating motion reliability, a
reasonable membership function is a prerequisite for the
quantification of parameter uncertainty. ,e traditional dis-
tributions are in the neighborhood centered on the fuzzy
median. It is necessary to artificially determine the value
interval of the uncertainty parameter. Besides, it is difficult to
reflect the actual value of the parameter. Considering the
actual mechanical structure, the uncertainty parameters are
mostly in the 6σ neighborhood centered on its mean value,
and the reliability of mechanical parts based on this range can
meet the actual engineering requirement [24]. ,e mem-
bership function based on the 6σ principle is improved to
reduce the deviation between the uncertainty parameter and
the actual manufacturing, and it also can improve the accuracy
of the motion reliability analysis of the separation process.

,e improved membership function can be represented
as

A xi(  �

0, xi ≤ μi − 6σ i,

����������
xi − μi + 6σi

6σi

d



, μi − 6σ i <xi ≤ μi,

�����������
−xi + μi + 6σi

6σi

d



, μi <xi ≤ μi + 6σi,

0, μi + 6σ i ≤xi,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where xi is the value of a random variable; A(xi) is the
degree of membership corresponding to the random vari-
able xi; μi is the mean value of the random variable xi; σi is
the standard deviation of the random variable xi; d is the
undetermined coefficient.

,e smooth completion of the separation process of the
device within the specified time is the basis and prerequisite
to ensure its movement reliability. For this reason, the fuzzy
reliability model of the separation device is established, and
the key performance index is the separation time of the

device. ,erefore, the separation process of the separation
device can be calculated. According to the overall separation
time index of the unlocking trigger device, the threshold of
the response time of the separation process is determined,
and the movement reliability function is constructed. ,e
function can be represented as

G xi(  � 0.0804 − t2 xi(  �

> 0, reliable separation process,

� 0, limit state separation process,

< 0, failure of the separation process,

⎧⎪⎪⎨

⎪⎪⎩

(10)

where t2(xi) is the response value under each uncertainty
parameter combination, s; xi is a set of uncertainty design
parameters selected at random.

According to equation (10), the probability of each
uncertainty parameter combination can be calculated, and
its expression is as follows:

p G xj   � 
n

i�1
A xi( , (11)

where i is the number of uncertain parameters considered,
i � 1, 2, . . . , n; j is the number of Monte Carlo simulations,
j � 1, 2, . . . , m.

According to equation (11), the calculation formula of
the movement reliability of the separation process can be
expressed as

R(G(x)) �


m
j�1 P G xj  

m
, (12)

P G xj   �
p G xj  , 0≤G xj ,

1 − p G xj  , 0>G xj .

⎧⎪⎨

⎪⎩
(13)

3.4.3. Reliability Calculation Method of Unlocking Trigger
Device. ,e unlocking trigger device consists of the SMA
wire unlocking process and the separation device separation
process according to the working principle, and the
movement process conforms to the characteristics of the
series reliability model. ,is means that any part of the
failure will cause the entire system to fail during the
movement of the unlocking trigger device. Its reliability
block diagram is shown in Figure 4.

,e reliability of the series system is equal to the product
of the reliability of each subsystem, and its expression can be
described as follows:
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R(t) � 
n

i�1
Ri(t), (14)

where R(t) is the reliability of the system, that is, the reli-
ability of the whole machine for unlocking the trigger device;
Ri(t) is the reliability of each unit, that is, the reliability of the
SMA wire unlocking or the separation device separation
process.

4. Reliability Analysis of the Unlocking
Trigger Device

,e unlocking trigger device is effectively and reliably locked
during the launch phase. After reaching the predetermined
orbit, the unlocking action needs to be completed through the
SMAwire, and the separation of the carrier and the payload is
accomplished. In the process of analyzing the movement
reliability of the whole machine, firstly, the movement reli-
ability of the SMA wire in unlocking is analyzed. ,en the
movement reliability of the mechanical separation process is
verified to obtain the reliability of the separation time under
the fluctuation of the uncertainty parameter. Finally, the
reliability of the whole machine is analyzed.

4.1. Analysis of Motion Reliability of SMAWire in Unlocking

4.1.1. Reliability Calculation Method of Unlocking Trigger
Device. ,rough the performance test of the SMA wire
under different parameter conditions, the current, the time,
the load, the wire diameter, and the temperature have sig-
nificant impacts on the performance of the SMA wire, and
there is large uncertainty in the working process. ,erefore,
the parameters are the main parameters that affect the re-
liability of its motion.,e traditional performance analysis is
carried out by changing a single parameter without efficient
experimental design plans. For this reason, the D-optimal
experimental design is used for the experimental design [25],
and the CPSO-BR-BP neural network proxymodel is used to
obtain the relationship between inputs and outputs. ,en
the continuous characterization of the uncertainty param-
eter and the performance of the SMA wire can be set up, and
the influences of parameter uncertainty on the performance
of the SMA wire can be shown. According to the main
parameters of traditional SMA wire performance analysis
and the field test environment, the statistical values of each
parameter are shown in Table 1, and the experimental design
scheme and response values are shown in Table 2.

To observe the effects of different random parameters on
the recovery time and recovery displacement of SMA wire
more clearly, according to the test data and results in Table 2,

the sample space of recovery time and recovery displacement
under the action of any two uncertain parameters are shown
in Figure 5.

It can be seen from Figure 5 that the recovery time and
the recovery displacement of the SMA wire are evenly
distributed in the sample space under the action of different
random parameters with a large dispersion. ,is indicates
that the sample value obtained through the D-optimal ex-
perimental design can reflect the variation range of the
response value of random parameters. ,e proxy model
established based on this set of data can more accurately
characterize the mapping relationship between inputs and
outputs.

25 sets of data from the sample data in Table 2 are
randomly extracted for normalization, which are used as the
prediction data of the neural network agent model. Besides,
the remaining 6 sets of data are used as test data to test the
prediction accuracy of the neural network proxy model. ,e
proxy model of the uncertainty parameters on the response
time of the SMA wire is obtained by predicting. ,e proxy
model can be shown as

t1 �
0.6497

A1
−
2.2306

A2
+
0.7450

A3
+
0.0059

A4
+
0.4022

A5

+
0.3936

A6
+
0.3936

A7
− 0.2406,

(15)

where

A1 � 1 + exp 0.2852I + 0.1185t′ + 0.0054 d(

+ 0.3902F − 0.5300T + 0.8283),

A2 � 1 + exp 0.5403I − 0.0716t′ − 1.6457 d(

− 0.0925F + 1.5852T + 2.7776),

A3 � 1 + exp 0.3202I + 0.2112t′ − 0.0746 d(

+ 0.5373F − 0.5014T + 0.9512),

A4 � 1 + exp −0.2345I − 0.2453t′ + 0.0687 d(

− 0.2266F + 0.0678T + 0.1210),

A5 � 1 + exp −0.4772I − 0.2026t′ + 0.1036 d(

− 0.5309F + 0.0928T + 0.3704),

A6 � 1 + exp −0.4741I − 0.2099t′ + 0.1063 d(

− 0.5222F + 0.0962T + 0.3668),

A7 � 1 + exp −0.4417I − 0.2242t′ + 0.1008 d(

− 0.4833F + 0.0914T + 0.3371).

(16)

,e proxy model of uncertainty parameters on the re-
covery displacement of SMA wire is shown as

l �
2.6947

B1
−
0.3673

B2
−
1.0795

B3
−
0.5471

B4

−
0.6164

B5
+
0.2473

B6
−
0.4259

B7
+ 0.1161,

(17)

SMA wire
unlocking process

Separation device 
separation process

Unlocking the working 
process of the trigger device

Figure 4: Series reliability model of the separation mechanism.
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Table 2: D-optimal experimental design and response values.

No. Heating current Heating time Wire diameter Load Temperature Response time Response displacement
1 5.50 90.0 0.25 7.00 70.0 4.393 11.172
2 5.07 110.0 0.25 9.00 70.0 6.058 11.628
3 4.50 110.0 0.35 7.00 −70.0 140.306 11.989
. . . . . . . . . . . . . . . . . . . . . . . .

29 5.50 110.0 0.35 7.00 70.0 11.932 7.695
30 5.07 110.0 0.25 9.00 70.0 6.058 11.628
31 5.50 101.6 0.25 8.15 70.0 4.826 11.609
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Figure 5: Sample space of uncertain parameters for heating current and heating time (a), heating current and wire diameter (b), heating
time and load (c), and load and temperature (d).

Table 1: Statistical values of uncertain parameters.

Uncertainty parameter Symbol Unit Lower bound Mean Upper bound
Heating current I A 4.50 5.00 5.50
Heating time t′ ms 90.00 100.00 110.00
Wire diameter d mm 0.25 0.30 0.35
Load F N 7.00 8.00 9.00
Temperature T °C −70.00 0 70.00
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where

B1 � 1 + exp 0.5639I + 0.8471t′ − 1.4172 d(

+ 0.7140F − 4.1718T + 4.1867),

B2 � 1 + exp −0.1706 − 0.0847t′ + 0.0924 d(

+ 0.2513F + 0.3391T + 0.5180),

B3 � 1 + exp 0.4742I + 0.2539t′ − 0.7967 d(

+ 0.4270F − 2.0559T + 0.9893),

B4 � 1 + exp −0.3780I + 0.1858t′ − 0.1279 d(

+ 0.2607F + 0.55330T + 0.2446),

B5 � 1 + exp −0.4602I − 0.2625t′ − 0.3707 d(

− 0.8604F − 0.4454T + 0.6977),

B6 � 1 + exp 0.0307I − 0.0019t′ − 0.1778 d(

− 0.0256F − 0.0648T + 0.1118),

B7 � 1 + exp −0.1985I − 0.0520t′ + 0.0631 d(

+ 0.2778F + 0.3952T + 0.2028).

(18)

,e measurement coefficient is used to evaluate the
accuracy of the CPSO-BR-BP proxy model so that the
established proxy model has high accuracy to predict the
response of the actual SMA wire under uncertainty pa-
rameters. ,e response time and the response displacement
are tested on the accuracy of the proxy model, respectively.
,e results are shown in Table 3.

It can be seen from Table 3 that the determination
coefficient values of the CPSO-BR-BP proxy model for the
response time and the response displacement are both close
to 1. ,is indicates that the predicted data obtained from
the proxy model is relatively close to the actual values.
Besides, the established proxy model can reflect the
changing trend and specific values of the response value of
the SMA wire with high accuracy. To show the fitting
accuracy of the proxy model more intuitively, the actual
values of the test data are compared with the predicted
values obtained from the CPSO-BR-BP proxy model. ,e
corresponding change trends and prediction errors are
shown in Figures 6 and 7 .

It can be seen from Figure 6 that the predicted response
time and recovery displacement using the CPSO-BR-BP neural
network proxy model are consistent with the actual value
change trend, while the changing trend obtained from the
traditional BP neural network is quite different. ,is indicates
that the model can more accurately characterize the mapping
relationship between the uncertainty parameters on the re-
covery time and the recovery displacement. In addition, to
further verify the fitting accuracy of the proxy model, the error
between the predicted values and the actual values concerning
the two proxy models is compared. Results show that the error
of the CPSO-BR-BP neural network proxy model presents a
relatively stable fluctuation and all distributes around 0, while
the traditional BP neural network error is relatively larger with
poorly stable fluctuations. ,is explains that the fitting accu-
racy of the improved proxymodel is high, and it can accurately
predict the recovery performance of the SMA wire under the
condition of parameter uncertainty.

4.1.2. Analysis of Motion Reliability of SMA Wire in
Unlocking. According to the working principle of SMA wire
and its role in the separation device, its reliability is defined as
the ability to release the limit stably under the specified time
and conditions. It is more important to achieve the limit
release of the mechanism under specified conditions for SMA
wire. ,erefore, the limit state equation of SMA wire in
unlocking is constructed based on the recovery displacement
value and the design recovery displacement index of the SMA
wire under the uncertainty parameters. ,e Monte Carlo
method is used to analyze the motion reliability of SMA wire
in unlocking, and its reliability value with a certain probability
distribution is obtained.,e uncertainty parameters and their
response values obtained by Monte Carlo simulation are
shown in Table 4. ,e probability distribution characteristics
of the uncertainty parameters are shown in Figures 8(a) to
8(e). ,e recovery displacement distribution of the SMA wire
under the influence of the uncertainty parameters features is
shown in Figure 8(f).

It can be seen from Figure 8(f) that the recovery dis-
placement of the SMA wire shows a certain degree of
fluctuation under the action of various uncertain parame-
ters, and its value is mainly concentrated at about 12mm. In
addition, the probability distribution characteristics ap-
proximately obey the normal distribution. ,rough the
analysis of its truncated data, the recovery displacement of
the SMAwire is lower than the design recovery displacement
due to the influence of uncertainty parameters. ,is indi-
cates that the uncertain parameters have effects on the SMA,
such as heating current and heating time, which will reduce
the reliability of unlocking. Compared with the deterministic
SMA wire unlocking analysis in the traditional sense, the
uncertainty analysis can better evaluate the reliability of the
SMA wire unlocking under the action of uncertain pa-
rameters. Based on the reliability theory and Figure 8(f ), the
cumulative probability of the limit state function of the SMA
wire is obtained, as shown in Figure 9.

It can be seen from Figure 9 that when the limit state
function is smaller than 0 (i.e., the recovery displacement of
the SMA wire fails to reach the specified value), the Monte
Carlo method is used to obtain the failure probability of the
SMA wire unlocking motion; that is, the reliability of the
recovery displacement is 0.9996. From the results of the
reliability calculation, the uncertainty parameters have ob-
vious influences on the recovery performance of the SMA
wire, which can lead to low recovery performance. In ad-
dition, the recovery performance cannot fully meet the
design index requirements. To further study the influence of
parameter uncertainty on the motion reliability of the SMA
wire in unlocking, 10,000 sets of sample data with the co-
efficient of variation within the range are analyzed based on
the CPSO-BR-BP neural network proxy model, and the
response value under each parameter combination is

Table 3: Accuracy verification results of the surrogate model.

Proxy model Decisive factor r2

Response time t1 0.9915
Response displacement l 0.9998
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predicted. ,e mean value and standard deviation of the
recovery displacement of SMA wires with different coeffi-
cients of variation are calculated as shown in Figure 10.

It can be seen from Figure 10 that as the coefficient of
variation increases, the standard deviation of the recovery
displacement gradually increases, indicating that the
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Figure 7: Prediction error of surrogate model: (a) recovery time and (b) recovery displacement.

Table 4: Prediction data of SMA wire under uncertainty parameter fluctuation.

No. Heating current Heating time Wire diameter Load Temperature Response time Response displacement
1 6.07 92.11 0.20 6.51 6.06 27.87 12.02
2 5.21 105.89 0.30 8.49 −34.89 30.43 11.79
3 4.88 101.61 0.35 4.45 35.58 61.56 7.47
. . . . . . . . . . . . . . . . . . . . . . . .

9998 4.15 116.92 0.30 11.05 −56.16 29.38 12.14
9999 3.61 95.80 0.31 7.78 10.71 25.85 11.62
10000 5.82 64.67 0.24 12.38 −9.48 23.51 12.13
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Figure 6: Comparison between predicted values and real values of surrogate model: (a) response time prediction and (b) recovery
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increase in the coefficient of variation makes the dispersion
of the uncertainty parameter values increase. ,e dispersion
of the recovery displacement of the SMA wire becomes
larger, which increases the possibility that the recovery
displacement is smaller than the prescribed threshold.
Secondly, the mean value of the return displacement of the
SMA wire continues to decrease, indicating that the increase

of the coefficient of variation makes the coupling effects of
the uncertain parameters lead to the reduction of the re-
covery performance of the SMAwire. To further quantify the
relationship between parameter uncertainty and SMA wire
movement reliability, the movement reliability of the SMA
wire in unlocking under different coefficients of variation is
calculated, as shown in Figure 11.
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It can be seen from Figure 11 that the movement reli-
ability of the SMA wire in unlocking is continuously reduced
with the increase of the uncertainty parameter variation
coefficient. When the coefficient of variation is 0.05, the

highest working reliability of the device is 0.9996. When the
coefficient of variation is 0.10, the lowest working reliability of
the device is 0.999, indicating that the parameter uncertainty
has a significant impact on the movement reliability of the
SMA wire. In work, the fluctuation range of various pa-
rameters should be strictly controlled to ensure the motion
reliability of the SMA wire.

4.2. Motion Reliability Analysis of Separation Process

4.2.1. Deterministic Dynamic Simulation of the Separation
Process. To consider the accuracy and efficiency of the motion
reliability analysis of the separation process, ADAMS is used to
simulate and analyze the motion process of the separation
process. ,e deterministic analysis of the separation process is
the basis and prerequisite to ensure the parameterization of the
mechanism. For this reason, according to the simplified
separation device, the virtual prototypemodel is established by
ADAMS, as shown in Figure 12.

To accurately simulate the actual working conditions of
the separation device, a measurement function of the dis-
tance between the top of the bearing screw and the bottom of
the flywheel nut needs to be established.,e simulation time
is set to 0.1 s and the step length is 1000 steps. When the
distance between the two is 0, it means that the bearing screw
completely withdraws from the thread pair; that is, the
device separation ends, and the simulation stops. ,e cal-
culation result is shown in Figure 13.

It can be seen from Figure 13 that the constraints of the
separation device at all levels are released at 0 s (initial state),
and the flywheel nut starts to release the stored pretightening
force and drive the bearing screw to rotate at high speed. At
this time, there is a gap between the thread pair, the flywheel
nut, and the thrust roller bearing, so that the normal
pressure between the contact surfaces is small. In addition,
the friction resistance torque of the bearing screw is smaller,
and the resultant torque is relatively stable, so the acceler-
ation of the bearing screw remains unchanged from 0 to
0.0049 s. As the separation process continues, the remaining
pretightening force of the flywheel nut gradually decreases,
and contact between the contact surfaces gradually occurs.
At the same time, the normal pressure increases, and the
friction resistance torque acting on the device continues to
increase. In addition, the resultant torque continues to
decrease, and the acceleration of the bearing screw gradually
decreases within 0.0049–0.0184 s. During the entire move-
ment, the speed of the bearing screw keeps increasing. When
the separation process reaches 0.0184 s, the remaining
pretightening force of the flywheel nut is relatively balanced
with the frictional resistance torque received by the device,
and the total torque received by the bearing screw is 0. In
addition, the acceleration becomes 0, and the bearing screw
moves at a constant speed until 0.0604 s and completely exits
the thread pair, completing the device separation process.

4.2.2. Analysis of the Influence of Parameter Uncertainty on
Separation Time. According to the unlocking mechanism of
the separation device and the ADAMS simulation results, it
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can be seen that the driving torque acting on the flywheel nut
and the frictional resistance torque provided by the thrust
roller bearing and the thread pair are the key factors affecting
its kinematic parameters. Affected by various uncertain factors
such as manufacturing, installation, and working environ-
ment, the force exerted on the separation device has certain
randomness, which makes deviations from the theoretical
value. Besides, this affects the separation time of the device and
its working reliability. ,erefore, three equal moments of
driving torque, frictional resistance torque of thrust roller
bearings, and frictional resistance torque of non-self-locking
thread pairs are used as the uncertainty parameters that affect
the reliability of the separation process. It is assumed that each
parameter obeys the normal distribution with a coefficient of
variation of 0.05 [24], and the characteristic values of its
probability distribution are shown in Table 5.

,e parametric virtual prototype model of the separation
device is established based on the data provided in Table 5.
200 sets of samples are randomly selected by ADAMS for the
three uncertainty parameters, and the motion simulation of
the separation process is performed to obtain the uncertainty
parameter combination under random sampling and its
response value, as shown in Table 6. ,e random value
process of the uncertainty parameter and the changing trend
of the separation time under different parameter combi-
nations are shown in Figure 14.

It can be seen from Figure 14(a) that the sample values of
the 200 sets of uncertainty parameters obtained by ADAMS
simulation have good randomness and can more accurately
characterize the changes of parameters caused by the un-
certainty factors, such as driving torque, frictional resistance
torque of thrust roller bearings, and frictional resistance
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Figure 12: Virtual prototype model of separation device: (a) locking state and (b) unlocking state.
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torque of non-self-locking thread pairs. Figure 14(b) shows
that, under the random fluctuation of parameters, the
combination of parameters has a great impact on the sep-
aration time, and there are a few cases where the separation
time exceeds the specified threshold. ,is indicates that the
uncertainty of the parameters affects the movement reli-
ability of the device’s separation process. To more intuitively
express the influence of the uncertainty parameters on the
separation time, any twomoments are selected as X-axis and
Y-axis, and the sample space of different moments with
respect to the separation time is drawn, as shown in
Figure 15.

It can be seen from Figure 15 that the separation time
of the device under the actions of any two moments shows
a certain degree of dispersion, which is consistent with the
random value of the parameter, and the phenomenon of

clustering occurs in the sample space. ,is indicates that
the random value range of the uncertainty parameter is
relatively small, in line with the parameter fluctuation
caused by uncertain factors under the conditions of
continuously improving the processing and
manufacturing level and the robust design. Secondly,
most of the separation time is concentrated between 0.06
and 0.07 s, and a small part exceeds the specified
threshold, which shows that the uncertainty of the mo-
ment leads to the reduction of the reliability of the sep-
aration process.

,e motion reliability analysis of the separation process
should be performed based on a large number of samples.
However, more accurately reliable results cannot be ob-
tained based on the sample points provided in Table 6. In
addition, the efficiency to determine the sample data using

Table 5: Probability distribution characteristics of uncertain parameters.

Uncertainty parameter Symbol Unit Mean Coefficient of variation Distribution type
Driving torque TD N·mm 786 0.05 Normal distribution
Friction torque of thrust roller bearings Tmtb N·mm 229 0.05 Normal distribution
Friction torque of thread pairs Tmf N·mm 245 0.05 Normal distribution

Table 6: Uncertain parameters and response values.

No. Driving torque Friction torque of thrust roller bearings Friction torque of thread pairs Separation time
1 731.434 246.719 268.045 0.0725
2 739.074 226.417 238.174 0.0644
3 808.139 234.354 244.573 0.0588
. . . . . . . . . . . . . . .

198 835.707 223.411 229.945 0.0545
199 807.476 220.945 270.760 0.0600
200 884.286 218.235 271.858 0.0537
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Figure 14: Sample value distribution of random variables (a) and response time (b).
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ADAMS simulation is low. For this reason, the proposed
CPSO-BR-BP neural network proxy model is used to
characterize the mapping relationship between the three
moments and the separation time to improve the efficiency
of motion reliability analysis.

170 sets of training samples are selected randomly as
listed in Table 6 and normalized. According to the proposed
method, the proxy model of three moments for separation
time is established, and the expression is

t2 � −
0.3220

C1
+
0.6547

C2
+
0.6537

C3
+
0.6744

C4

+
1.1736

C5
−
2.4037

C6
+
0.9187

C7
+ 0.4896,

(19)

where

C1 � 1 + exp 0.3005TD − 0.2550Tmtb + 0.4176Tmf − 0.0161 ,

C2 � 1 + exp −0.3511TD + 0.0938Tmtb + 0.1603Tmf + 0.0533 ,

C3 � 1 + exp −0.3548TD + 0.0944Tmtb + 0.1475Tmf + 0.0524 ,

C4 � 1 + exp −0.3277TD + 0.0934Tmtb + 0.2552Tmf + 0.0769 ,

C5 � 1 + exp −0.9894TD + 0.1032Tmtb + 0.2814Tmf − 1.3137 ,

C6 � 1 + exp 2.3090TD − 0.7647Tmtb − 0.6694Tmf + 3.8676 ,

C7 � 1 + exp −1.1269TD + 0.3873Tmtb + 0.3199Tmf − 0.5233 .

(20)

,e remaining 30 sets of sample data in Table 6 are used
as test samples to test the accuracy of model fitting. ,e
sample data is brought into the proxy model to compare and
analyze the actual value and predicted value, and the
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coefficient of determination is 0.99994. ,e comparative
analysis result is shown in Figure 16.

It can be seen from Figure 16 that the predicted value
based on the CPSO-BR-BP neural network proxy model is
consistent with the actual value change trend, which shows
that the model can more accurately represent the mapping
relationship. To further characterize the fitting accuracy of
the surrogate model, the error distribution is shown in
Figure 17. It can be seen from Figure 17 that although the
prediction errors of the 30 sets of data fluctuate to varying
degrees, their magnitudes are 10− 5, indicating that the
established proxy model has high accuracy and can accu-
rately predict the separation time of the device under dif-
ferent moment values.

4.2.3. Motion Reliability Analysis of Separation Process.
Based on the high-precision CPSO-BR-BP neural network
proxy model, 10,000 Monte Carlo simulations are per-
formed on the uncertain parameters, and the separation time
of the device under each set of parameter combinations is
predicted, as shown in Table 7. ,e random value of each
parameter and the probability distribution characteristics of
the corresponding separation time are shown in Figure 18.

It can be seen from Figures 18(a)–18(c) that the random
distribution of each uncertainty parameter follows the
normal distribution, which is basically consistent with the
fluctuation form of the real situation, and the separation
time of the device can also be predicted. ,e time for the
device to complete the separation process under the un-
certainty of parameter fluctuations is shown in Figure 18(d).
Overall, the graph is affected by the parameter fluctuations,
which make the separation time discrete, and it approxi-
mately obeys the probability characteristics of the normal
distribution. However, there are a few cases where the re-
sponse value exceeds the specified threshold at the censoring
point, indicating that the uncertainty of the parameters
affects the reliability of the separation process to a certain
extent.

Incorporating the predicted separation time into equa-
tions (9)–(12), the motion reliability of the device separation
process under the improved membership function is ob-
tained. ,e undetermined coefficient d directly affects the
profile of the membership function. As the value of d in-
creases, the improved membership function gradually tends
to the traditional rectangular membership function. To
verify the advantages of the improved membership function,
it is compared with the traditional rectangular membership
function and the Monte Carlo simulation analysis results, as
shown in Figure 19.

It can be seen from Figure 19 that the motion reliability
obtained based on the improved membership function
gradually tends to the Monte Carlo result as the number of
iterations of the undetermined coefficient d increases. When
the number of iterations of d reaches 25 times, the improved
membership function is 0.9991, and the motion reliability
calculated by the Monte Carlo method is 0.9998. ,e error
between them is 0.07%. However, the motion reliability of
the separation process based on the traditional rectangular

membership function is not affected by the undetermined
coefficient d, and the result is always maintained at 0.9763,
the error of which is 2.35% compared with the Monte Carlo
method. ,e comparative analysis shows that the use of the
improved membership function to process the uncertainty
parameters can better reflect the actual motion reliability of
the device. ,e reliability calculation method based on the
improved membership function is also certified to be of high
accuracy.

To further study the influence of the uncertainty of the
torque on the motion reliability of the separation process,
the CPSO-BR-BP neural network proxy model is used to
generate 10,000 sets of sample data with a coefficient of
variation of 0.05–0.10 and to predict the response value of
each parameter combination. ,e mean and standard de-
viation of the separation time under different coefficients of
variation are obtained, as shown in Figure 20.

It can be seen from Figure 20 that both the mean and the
standard deviation of separation time are positively corre-
lated with the moment variation coefficient. ,is indicates
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that as the moment variation coefficient increases, the un-
certainty of the resultant moment acting on the load-bearing
screw gradually increases, which expands the separation
time fluctuation range. As a result, the standard deviation of
the separation time continues to increase, and the possibility
of exceeding the threshold becomes great, which affects the
reliability of the separation process of the device to a certain
extent. To quantify the relationship between the moment
uncertainty and the movement reliability of the device
separation process, the separation time obtained in Figure 20

is substituted into equations (9)–(12) to obtain the move-
ment reliability of the device separation process under
different coefficients of variation, as shown in Figure 21.

It can be seen from Figure 21 that the motion reliability
of the separation process is negatively correlated with the
moment variation coefficient, and the changing trend of the
motion reliability obtained based on the improved mem-
bership function is consistent with the Monte Carlo method.
,e value of the result is smaller than that of theMonte Carlo
method because of the fuzzy treatment of uncertainty of

Table 7: Forecast data when the coefficient of variation is 0.05.

No. Driving torque Friction torque of thrust roller bearings Friction torque of thread pairs Separation time
1 801.4149 230.8262 249.5258 0.059537
2 830.3701 243.9656 236.3860 0.056992
3 709.8324 228.5464 222.1646 0.066253
. . . . . . . . . . . . . . .

9998 772.9308 242.3348 245.1185 0.063150
9999 798.3322 205.5270 239.0925 0.056708
10000 827.3862 227.1700 248.8006 0.056889
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Figure 18: Probability distribution characteristics of driving torque (a) (N (786, 39.32)), friction torque of thrust roller bearings (b) (N (229,
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moment in the reliability calculation process. When the
traditional rectangular membership function is used for
calculation, the variation range of uncertainty parameters is
large. Such variation range cannot reflect the manufacturing
requirements of the actual device, resulting in a large error in
the calculation compared with the Monte Carlo method.

,e comparative analysis shows that the movement
reliability of the device separation process under different
coefficients of variation can be accurately obtained based on
the improved membership function. When the coefficient of
variation is 0.05, the maximum reliability of the separation
process is 0.9991, and when the coefficient of variation is
0.10, the minimum movement reliability of the separation
process is 0.9429, indicating that the moment uncertainty
has a great influence on the movement reliability of the
separation process. To ensure the working reliability of the
separation device, the size of each moment should be strictly
controlled, and the dispersion degree of each moment

should be reduced in the actual application of unlocking the
trigger device.

4.3. Motion Reliability Analysis of Unlocking Trigger Device.
According to the working principle of the unlocking trigger
device, the reliability of the whole machine is composed of
two parts of the reliabilities of the SMA wire unlocking and
the separation process. To accurately characterize the in-
fluence of parameter uncertainty on the reliability of the
whole machine, the reliability of the whole machine is
calculated based on the established device reliability model,
and the expression is

Rt � R1 × R2 � 0.9996 × 0.9991 � 0.9987, (21)

where R1 is the motion reliability of the SMA wire in
unlocking and R2 is the motion reliability of the separation
process.

It can be seen from equation (21) that the reliability of
the unlocking trigger device is 0.9987, which is lower than
the reliability requirement of the design index 0.9999. ,e
reason is that the influence of parameter uncertainty on the
reliability of each part is considered in the analysis process.
,e reliability of the whole machine is lower than the re-
liability of each part under the separate action, indicating
that the reliability of each part of the device has a great
impact on the reliability of the whole machine. In the design
process, it is necessary to strictly control the reliability of the
SMA wire unlocking movement and the separation process
to improve the reliability of the whole machine. To further
explore the relationship between the parameter uncertainty
and the overall reliability of the device, the series reliability
model is used to calculate the reliability of the device under
different coefficients of variation. ,e analysis result is
shown in Figure 22.
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It can be seen from Figure 22 that as the coefficient of
variation of the uncertainty parameter increases, the reli-
ability of the whole machine gradually decreases. When the
coefficient of variation is 0.05, the reliability of the device is
0.9987; when the coefficient of variation is 0.10, the reliability
of the device is 0.9419. ,e greater the uncertainty of the
parameters is, the less the probability that the overall per-
formance of the device meets the design index, which re-
duces the reliability of the device. To ensure that the device
can work with high reliability, the influence of uncertain
factors should be reduced as much as possible.

5. Conclusions

(1) Considering the influence of parameter uncertainty
on the motion reliability of the unlocking trigger
device, the BP neural network is optimized by
combining CPSO and BR. Based on the construction
of the unlocking trigger device reliability model, the
CPSO-BR-BP neural network agent is established.
Compared with the traditional neural network proxy
model, the proposed proxy model has higher fitting
accuracy. It can better characterize the mapping
relationship between inputs and outputs and im-
prove the efficiency of reliability calculation. Fur-
thermore, it can save calculation costs.

(2) Based on the CPSO-BR-BP neural network proxy
model, it is calculated that the motion reliability of
the SMA wire in unlocking is 0.9996, the movement
reliability of the separation process is 0.9991, and the
movement reliability of the whole machine is 0.9987,
which are under the condition of parameter un-
certainty. ,e uncertainty of the parameters in the
process of SMA wire in the unlocking and separation
process makes the reliability of the whole machine
lower than the reliability design index, but it is larger
in line with the real reliability of the unlocking
trigger device.

(3) ,e influences of different coefficients of variation on
the motion reliability of SMA wire unlocking, the
separation process, and the whole machine are
compared and analyzed. ,e motion reliabilities of
the three cases all show different degrees of reduction
with the increase of the coefficient of variation, in-
dicating that the degree of dispersion of parameters
has a great impact on the dispersion of the response.
Ultimately, it can result in the reduction of the
motion reliability of the whole machine. ,erefore,
to ensure the stability of the device unlocking and
separation process, the influences of uncertain fac-
tors should be minimized.
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