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*is paper proposes three types of one-dimensional piecewise chaotic maps and two types of symmetrical piecewise chaotic maps
and presents five theorems. Furthermore, some examples that satisfy the theorems are constructed, and an analysis and model of
the dynamic properties are discussed. *e construction methods proposed in this paper have a certain generality and provide a
theoretical basis for constructing a new discrete chaotic system. In addition, this paper designs a pseudorandom number generator
based on piecewise chaotic map and studies its application in cryptography. Performance evaluation shows that the generator can
generate high quality random sequences efficiently.

1. Introduction

Chaos, as a nonlinear deterministic dynamic system with
external complex phenomena due to its inherent random-
ness, has been widely considered and intensively studied. In
the 1870s, the mathematician Li and his tutor Yorke put
forward the definition of chaos in the famous article “Period
*ree Contains Chaos” [1], that is, the Li–Yorke chaos
discrimination theorem. *en, a chaotic discrimination
theorem, namely, Marotto’s theorem, that is more suitable
for high-dimensional discrete dynamic systems, was given
by Marotto [2]. *ese two theorems provide an important
theoretical basis on which later scholars have studied one-
dimensional discrete chaotic systems [2–4]. Since 1989,
chaotic systems have been widely used in the field of secure
communication due to their sensitivity to the initial values or
parameters, ergodicity, and randomness-like properties
[5–8]. After constructing a new chaotic system, we can use it
to design a new chaotic pseudorandom number generator
(CPRNG). *erefore, it is of great theoretical and practical
significance to study and construct a new chaotic system.

In many studies on one-dimensional discrete chaotic
systems, piecewise chaotic mapping has gradually attracted
scholars’ attention. Among them, piecewise linear chaotic
mapping has a simpler form in chaotic systems, and because

of its relatively good uniformity, it is easy to implement by
fixed point algorithms with limited digital precision, which
is convenient for its application in the fields of cryptography
and communication [9]. As a typical one-dimensional
piecewise linear discrete system, the tent map is a basic
example for the promotion and application of chaotic theory
systems. Many scholars have constructed other chaotic
systems based on the tent map. In [10], a new one-di-
mensional piecewise chaotic map was constructed by
combining a tent map with a logistic map. In [11], a class of
oblique tent maps was improved, and it was proved that the
chaotic system has excellent dynamic key space and prac-
ticability, making it more suitable for secure communication
and other fields [12], based on the deformation of a tent map,
provides piecewise linear chaotic mapping, and uses the
period three theorem and topological conjugation theory to
construct quadratic polynomial chaotic mapping and realize
homogenization of a chaotic sequence.

For the study of piecewise nonlinear mapping, most
approaches involve theoretical analyses of a system’s own
dynamic characteristics and periodic phenomena [13, 14] or
piecewise transformations based on known chaotic map-
ping. In [15], a class of one-dimensional piecewise nonlinear
discrete dynamic systems under modulo operation is con-
structed, and the improvedMarotto’s theorem is used to give
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a general theory of the chaotic behavior of piecewise non-
linear functions with nonzero origin. Reference [16] built a
piecewise nonlinear chaotic mapping system based on lo-
gistic mapping so that the system parameters have a larger
value range and better uniformity. Reference [17] discussed
the branch of chaotic attractors in piecewise smooth one-
dimensional mapping with a large number of switching
manifolds based on different nonlinear smoothing models
and applied it in the field of electronic science.

In the field of cryptography, the research of pseudo-
random number generator based on chaotic system mainly
focuses on the following aspects: proposing new chaotic
system and designing controller to realize chaotic syn-
chronization [18] and improving the existing chaotic system
to enhance its complexity and make it have greater Lya-
punov [19, 20]. Some mathematical methods are used to
improve the random performance of pseudorandom
number generator [21], the software and hardware imple-
mentation of pseudorandom number generator [22], and the
encryption scheme and cryptosystem based on chaotic
pseudorandom number generator [23, 24]. *e one-di-
mensional discrete chaotic system has the advantages of
simple structure and easy realization. *erefore, it is an
important content to construct a large number of general
one-dimensional discrete chaotic systems.

*e structure of this article is as follows. Section 2
constructs several types of general one-dimensional discrete
piecewise maps, and based on the Li–Yorke discriminant
theorem and Marotto’s theorem, sufficient conditions for
chaotic mapping are given. One-dimensional discrete
piecewise chaotic nonlinear mapping and a numerical
simulation are performed. Section 3 gives two types of
segmented chaotic mapping models with symmetry, and
based on the proposed models, three examples of chaotic
mapping satisfying the conditions are given. In Section 4, a
new pseudorandom number generator based on piecewise
chaotic map is designed, and the randomness and key
sensitivity of the generator are analyzed. Finally, we con-
clude the full text in Section 5.

2. Three Types of One-Dimensional Discrete
Piecewise Chaotic Maps

First, we introduce the Li–Yorke chaos discrimination
theorem, which is expressed as follows.

Lemma 1 (see [1]). Let J be an interval and let f: J⟶ J be
continuous. If there is a point a ∈ J for which the points
b � f(a), c � f(b), and d � f(c) satisfy d≤ a< b< c (or
d≥ a> b> c), then it is a chaotic map in the sense of Li–Yorke.

In addition, we introduce other related theories. Let
Br(x∗) be a closed ball with point x∗ as the center and radius
r, if the fixed point x∗ of the differentiable map g in Rn

satisfies the following two conditions:

(1) 1ere is a real number r> 0, such that the modulus of
all the eigenvalues of the Jacobian matrix Dg(x) of
any point x in Br(x∗) is greater than 1.

(2) 1ere is a point x0 ≠x∗ and a natural number m≥ 2
in Br(x∗) such that gm(x0) � x∗, and point x0 sat-
isfies det Dgm(x0) ≠ 0.

*en, the fixed point x∗ is a regressive repulsor of the
mapping g [3].

Lemma 2 (Marotto’s theorem [2]). If the n-dimensional
map g: Rn⟶ Rn has a regressive repellent, then the map g

has chaotic behavior in the Li–Yorke sense.

Next, based on the above two lemmas, several kinds of
one-dimensional discrete piecewise chaotic maps are given.

2.1. Construction of One-Dimensional Discrete Piecewise
Chaotic Map

Theorem 1. Let f be a continuously differentiable strictly
monotonically increasing function on the closed interval
[0, 1], let a be a real number on the open interval (0, 1), and
define a function g1 of the following form:

g1(x) �

f(x/a) − f(0)

f(1) − f(0)
, 0≤x≤ a,

f(1 − x/1 − a) − f(0)

f(1) − f(0)
, a< x≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

If the function g1 satisfies |g1′(x)|> 1 in the interval
[0, a)∪ (a, 1], then g1 is a chaotic map in the sense of
Li–Yorke.

Proof of 1eorem 1. *e function f is continuous in the
interval [0, 1], and g1 is a continuous function in
J: [0, 1]⟶ J: [0, 1]. *erefore, it is only necessary to prove
that there are four points satisfying the conditions of the
Li–Yorke theorem:

g1 y3(  � y4 ≤y1 <g1 y1(  � y2 <y3 � g1 y2( . (2)

Let F(x) � g1(x) − x, then F′(x) � g1′(x) − 1, and in
the interval [0, a), F′(x) � g1′(x) − 1≥ 0 can be obtained
from g1′(x)> 1.

*erefore, in the interval (0, a), F(x) � g1(x) − x>
F(0) � 0, that is, g1(x)> x.

g1 is a unimodal function, and its function image
structure is shown in Figure 1.

Take y2 � a, y3 � g1(y2) � g1(a) � 1, and y4 � g1
(y3) � g1(1) � 0. Obviously there is

y4 <y2 <y3. (3)

Because of g1(0) � 0<y2 � a< 1 � g1(y2), from the
continuity of g1 and the intermediate value theorem
∃y1 ∈ (0, y2), if y2 � g1(y1), then

y4 <y1 <y2. (4)

Combining equations (3) and (4), there are four points
satisfying the conditions of the Li–Yorke theorem:
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g1 y3(  � y4 ≤y1 <g1 y1(  � y2 <y3 � g1 y2( . (5)

In conclusion, the function g1 satisfies the Li–Yorke
discriminant theorem; thus, it is a chaotic map in the sense of
Li–Yorke.

Analogous to the piecewise chaotic map constructed by
*eorem 1, another one-dimensional discrete piecewise
chaotic map is constructed below. □

Theorem 2. Let f be a continuously differentiable strictly
monotonically increasing function on the closed interval [0, 1]

and a be a real number on the open interval (0, 1), and define
a function g2 of the following form:

g2(x) �

1 −
f(x/a) − f(0)

f(1) − f(0)
, 0≤x≤ a,

1 −
f(1 − x/1 − a) − f(0)

f(1) − f(0)
, a<x≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

If the function g2 satisfies |g2′(x)|> 1 in the interval
[0, a)∪ [a, 1), then g2 is a chaotic map in the sense of
Li–Yorke.

*e proof process is similar. *e function image
structure of g2 is shown in Figure 2.

Next, we discuss the relationship between *eorems 1
and 2. Let formula (1) be A(x) and formula (3) be B(x); we
can know when a � 0.5 has A(x) � 1 − B(x); A(x) and
B(x) are symmetric piecewise mappings.

Based on this, we can find a homeomorphic mapping
C(x): C(x) � 1 − x, having

C ∘A � C(1 − B(x)) � 1 − 1 + B(x) � B(x),

B ∘C � B(C(x)) � B(1 − x),
(7)

and because we know that B(x) function is obviously
symmetric with respect to x � 0.5, then there is
B(x) � B(1 − x) on [0, 1], so C ∘A � B ∘C holds. *en,
there is a topological conjugate relationship between the
mappings of *eorems 1 and 2. Furthermore, from the fact

that homeomorphic mapping C(x) is a linear mapping, we
can see that *eorems 1 and 2 satisfy affine conjugation and
therefore have the same dynamic behavior.

Theorem 3. Let f be a continuously differentiable strictly
monotonically increasing function on the closed interval [0, 1]

and a be a real number on the open interval (0, 1), and define
a function g3 of the following form:

g3(x) �

f(x/a) − f(0)

f(1) − f(0)
, 0≤x< a,

1 −
f(1 − x/1 − a) − f(0)

f(1) − f(0)
, a≤x≤ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

If the function g3 satisfies |g3′(x)|> 1 in the interval
[0, a)∪ [a, 1), then g3 is a chaotic map in the sense of
Li–Yorke.

Proof of 1eorem 3. According to the conditions, the
function image structure of function g3 is shown in Figure 3.

According to the theorem, g3(0) � 0; thus, x∗ � 0 is
the fixed point of g3(x). Since the derivative of function
g3 on [0, 1] is greater than 1, x∗ � 0 is a repulsive fixed
point.

(1) Consider the auxiliary function h1(x) � g3(x), with
x ∈ [a, 1]:
Choose x1 ∈ [a, 1] that satisfies h(x1) � g3 (x1) �

x∗ � 0 to obtain x1 � h− 1(x∗) � g−1
3 (x∗) � a.

(2) Consider the auxiliary function h2(x) � g3(x) − x1,
x ∈ [0, a):

Because limx⟶a− h2(x) � limx⟶a− g3(x) � 1> a � x1,
there is δ0 > 0, and for ∀x ∈ [a − δ0, a), there is always
h2(x) � g3(x)> x1.

Take x ∈ [a − δ0, a); then, h(x) � g3(x) − x1 > 0, and
h(0) � g3(0) − x1 � −x1 < 0.

According to the one-dimensional intermediate value
theorem, there is x0 ∈ (0, x) such that h(x0) � g3(x0)−

x1 � 0, that is, g3(x0) � x1. *en,

0 a

x

y

Figure 2: Rough function diagram of g2.

y

O x=a 1 x

Figure 1: Rough function diagram of g1.
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g3 x0(  � x1⟶ g3 g3 x0( (  � g3 x1( 

� x
∗ ⟶ g

2
3 x0(  � x

∗
.

(9)

In conclusion, the fixed point x∗ � 0 of g3(x) satisfies
the following conditions:

(1) Take r � x1 and satisfy x0 ∈ (0, x) ∈ (0, x1) such that
Br(x∗) becomes a closed ball including x∗. Its Ja-
cobian matrix is Dg(x) � g3′(x)> 1. *us, for any
x ∈ Br(x∗), the modulus of the eigenvalue of Dg(x)

is greater than 1.
(2) *ere exists a point 0< x0 < 1 and a natural number

m � 2 in Br(x∗) such that gm
3 (x0) � x∗, and x0 is

nondegenerate, that is, it satisfies

det Dg
m

x0(   � det g3 x1(   · det g3 x0(  

� g3′ x1(  · g3′ x0( ≠ 0.
(10)

*erefore, the point x∗ is a regressive repulsor of map g3
and thus is a chaotic map in the sense of Li–Yorke.

*e proof is over. Next, we verify the above three the-
orems by a numerical simulation. □

2.2. Numerical Simulation of One-Dimensional Discrete
Piecewise Chaotic Map. Substituting f(x) � sin ex− 1 into
*eorem 1, the image of function g1, the bifurcation
diagram of parameter a and the Lyapunov exponent
diagram are as shown in Figures 4(a)–4(c). In *eorem 2,
the image of function g2, the bifurcation diagram of
parameter a and the Lyapunov exponent diagram are as
shown in Figures 4(d)–4(f ). In *eorem 3, the image of
function g3, the bifurcation graph of parameter a and the
Lyapunov exponent graph are as shown in Figures 4(g)–
4(i).

Substituting f(x) � e0.01 sin x into *eorem 1, the image
of function g1, the bifurcation diagram of parameter a and
the Lyapunov exponent diagram are as shown in
Figures 5(a)–5(c). In *eorem 2, the image of function g2,
the bifurcation diagram of parameter a and the Lyapunov
exponent diagram are as shown in Figures 5(d)–5(f ). In
*eorem 3, the image of function g3, the bifurcation graph
of parameter a and the Lyapunov exponent graph are as
shown in Figures 5(g)–5(i).

Substituting f(x) � 0.3x cos x + 0.1ex into *eorem 1,
the image of function g1, the bifurcation diagram of pa-
rameter a, and the Lyapunov exponent diagram are as
shown in Figures 6(a)–6(c). In *eorem 2, the image of
function g2, the bifurcation diagram of parameter a, and the
Lyapunov exponent diagram are as shown in Figures 6(d)–
6(f ). In *eorem 3, the image of function g3, the bifurcation
graph of parameter a and the Lyapunov exponent graph are
as shown in Figures 6(g)–6(i).

3. Two Types of Piecewise Chaotic Maps with
Symmetric Properties

3.1. Construction of Symmetric Piecewise Chaotic Map.
Based on the Li–Yorke chaotic discrimination theorem, a
class of piecewise chaotic maps with symmetric properties
are given below.

Theorem 4. Let f be a continuous differentiable strictly
monotone increasing function on a closed interval [0, 1], and
define the following piecewise mapping h1:

h1(x) �
f(|2x − 1|) − f(0)

f(1) − f(0)
�

f(−2x + 1) − f(0)

f(1) − f(0)
, 0≤x≤ 0.5,

f(2x − 1) − f(0)

f(1) − f(0)
, 0.5<x≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

If the function h1 satisfies h1′(x) � 2f′(2x − 1)/
f(1) − f(0)> 1 on (0.5, 1], then h1 is a chaotic map in the
sense of Li–Yorke.

Proof of1eorem 3. From the fact that f is continuous in the
interval [0, 1], it is known that h1 is a continuous function on
J: [0, 1]⟶ J: [0, 1]. *erefore, it is necessary to prove that
there exist four points satisfying the conditions of the
Li–Yorke theorem:

g y3(  � y4 ≤y1 <g y1(  � y2 <y3 � g y2( . (12)

Let F(x) � h1(x) − x, then F′(x) � h1′(x) − 1, and in the
interval (0.5, 1], F′(x) � h1′(x) − 1> 0 can be obtained from
h1′(x) � 2f′(2x − 1)/f(1) − f(0)> 1.

*erefore, F(x) � h1(x) − x≤F(1) � 0, that is, on the
interval (0.5, 1], h1(x)≤ x.

Combined with the function h1 as a unimodal function,
taking y2 � 1/2, y3 � h1(y2) � h1(1/2) � 0, and y4 � h1
(y3) � h1(0) � 1, obviously

y4 >y2 >y3. (13)

Moreover, h1(1/2) � 0<y2 � 1/2< 1 � h1(1). *en, by
the continuity of h1 and the intermediate value theorem of
continuous function ∃y1 ∈ (y2, 1), such that y2 � g(y1),
one obviously has

y4 >y1 >y2. (14)

y

x=aO 1 x

Figure 3: Rough function diagram of g3.
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Figure 4: (a–c)*e function image, bifurcation diagram, and Lyapunov exponent diagram obtained bymaking f(x) � sin ex− 1 in*eorem
1. (d–f)*e function image, bifurcation diagram, and Lyapunov exponent diagram obtained bymaking f(x) � sin ex− 1 in*eorem 2. (g–i)
*e function image, bifurcation diagram, and Lyapunov exponent diagram obtained by making f(x) � sin ex− 1 in *eorem 3.
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Figure 5: Continued.
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Figure 5: (a–c)*e function image, bifurcation diagram, and Lyapunov exponent diagram obtained bymaking f(x) � e0.01 sin x in*eorem
1. (d–f)*e function image, bifurcation diagram, and Lyapunov exponent diagram obtained bymaking f(x) � e0.01 sin x in*eorem 2. (g–i)
*e function image, bifurcation diagram, and Lyapunov exponent diagram obtained by making f(x) � e0.01 sin x in *eorem 3.
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Figure 6: Continued.
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Combining equations (13) and (14) shows that there are
four points that satisfy the conditions of the Li–Yorke
theorem:

h1 y3(  � y4 ≥y1 > h1 y1(  � y2 >y3 � h1 y2( . (15)

In conclusion, the function h1 satisfies the Li–Yorke
discriminant theorem and is a chaotic map in the sense of
Li–Yorke. Equation (11) is obviously symmetric about the
straight line x � 0.5; thus, the function h1 has symmetry.

Similar to *eorem 4, another class of one-dimensional
discrete piecewise chaotic maps with symmetric properties is
given below. □

Theorem 5. Let f be a continuous differentiable strictly
monotone increasing function on a closed interval [0, 1], and
define the following piecewise mapping h2:

h2(x) � 1 −
f(|2x − 1|) − f(0)

f(1) − f(0)
�

1 −
f(−2x + 1) − f(0)

f(1) − f(0)
, 0≤x≤ 0.5,

1 −
f(2x − 1) − f(0)

f(1) − f(0)
, 0.5<x≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

a=0.5
g2 (x)

0.5 10
x

0

0.5

1

X 
(n

)

(d)

0.5 10
a

0

0.2

0.4

0.6

0.8

1

X 
(n

)
(e)

-1

-0.5

0

0.5

1

Ly
ap

un
ov

0.5 10
a

lyapunov
y = 0

(f )

g3 (x)
a=0.7

0.5 10
x

0

0.5

1

X 
(n

)

(g)

0.5 10
a

0

0.5

1

X 
(n

)

(h)

-1

-0.5

0

0.5

1

Ly
ap

un
ov

0.5 10
a

lyapunov
y = 0

(i)

Figure 6: (a–c)*e function image, bifurcation diagram, and Lyapunov exponent diagram obtained bymaking f(x) � 0.3x cosx + 0.1ex in
*eorem 1. (d–f)*e function image, bifurcation diagram, and Lyapunov exponent diagram obtained by making f(x) � 0.3x cosx + 0.1ex

in *eorem 2. (g–i) *e function image, bifurcation diagram, and Lyapunov exponent diagram obtained by making f(x) � 0.3x cosx +

0.1ex in *eorem 3.
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If the function h2 satisfies h2′(x) � 2f′(−2x + 1)/
f(1) − f(0)> 1 on [0, 0.5], then h2 is a chaotic map in the
sense of Li–Yorke.

Obviously, the mappings of *eorems 4 and 5 also have
topological conjugation and satisfy affine conjugation.
*erefore, the mappings of *eorems 4 and 5 have the same
dynamic behavior.

*e following constructs different functions f and
inserts them into the above two theorems, yielding
specific examples of the constructed functions through
numerical simulation.

3.2. Numerical Simulation of Symmetric Piecewise Chaotic
Map. Inserting f(x) � x1/2 into *eorem 4, the function
image and the time-domain waveform of h1 are as shown in
Figures 7(a) and 7(b); if instead substituted into *eorem 5,
the function image and the time-domain waveform of h2 are
as shown in Figures 7(c) and 7(d).

Inserting f(x) � x5 + x into *eorem 4, the function
image and the time-domain waveform of h1 are as shown in

Figures 8(a) and 8(b); inserting it into *eorem 5, the
function image and the time-domain waveform of h2 are as
shown in Figures 8(c) and 8(d).

Inserting f(x) � x · (10 sin x + ex) into *eorem 4, the
function image and time-domain waveform of h1 are as
shown in Figures 9(a) and 9(b); if instead substituted into
*eorem 5, the function image and time-domain waveform
of h2 are as shown in Figures 9(c) and 9(d).

4. Design of PRNG

In order to design the pseudorandom number generator
using the above construction system, we first give a chaotic
example satisfying the chaotic condition.

Corollary 1. Take f(x) � sin x + p · x, a � 0.5, then when
p≥ sin 2, the chaos condition can be satisfied in 1eorems
1–5, so that equations (1)–(8) are chaotic maps.

*erefore, if p � 0.04> sin 2 and a � 0.5 are introduced
into formula (1), then
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Figure 7: Inserting f(x) � x1/2 into *eorems 4 and 5, and the function image (a, b) and the time-domain waveform diagram (c, d) are
obtained.

8 Mathematical Problems in Engineering



0.2 0.4 0.6 0.8 10
x

0

0.2

0.4

0.6

0.8

1

h1
 (x

)

(a)

0

0.2

0.4

0.6

0.8

1

h2
 (x

)

0.2 0.4 0.6 0.8 10
x

(b)

100 200 300 400 500 600 700 800 900 10000
n

0.2
0.4
0.6
0.8

x 
(n

)

(c)

0.2
0.4
0.6
0.8

x 
(n

)

100 200 300 400 500 600 700 800 900 10000
n

(d)

Figure 8: Inserting f(x) � x5 + x into *eorems 4 and 5, the function image (a, b) and the time-domain waveform diagram (c, d) are
obtained.
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g1(x) �

2 sin x + 0.08x

sin 1 + 0.08
, 0≤x≤ 0.5,

2 sin(1 − x) − 0.08x + 0.08
sin 1 + 0.08

, 0.5<x≤ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

It is a chaotic system.
Based on system (17), a transformation of binary

pseudorandom sequence is proposed,

Tran Xk(  � mod round Xk( , 256( ,

s(k) � binary Tran Xk( ( ,
(18)

where L � 255
�
2

√
× 108, function round(X) means to round

x to get an integer, mod(x, n) means to modulo n operation
on x, and function binary(x) means to convert integer x

into binary number.

4.1. Randomness Test of PRNG. PRNG plays an important
role in most chaotic cryptosystems. Because PRNG with
good performance is unpredictable and similar to pseu-
dorandom sequence, it has good statistical performance.
*e following mainly used NIST SP800-22 detection
standard [25] proposed by NIST to test the random
property of binary pseudorandom sequences generated by
chaotic system.

According to system (17), we select 1000 groups of
different parameters and initial values, generate 1000 groups
of different binary pseudorandom sequences by PRNG, and
test the randomness of NIST SP800-22. *e results are
shown in Table 1.

In Table 1, we give the pass rate of the detection sequence
and the P value of the uniformity test (denoted as the
UP value). If the pass rate is in the interval
[(1 − α) − 3

���
α/n

√
, (1 − α) + 3

���
α/n

√
] and all UP values are

greater than α, the PRNG is considered to have passed the
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Figure 9: Inserting f(x) � x · (10 sinx + ex) into *eorems 4 and 5, the function image (a, b) and the time-domain waveform diagram (c,
d) are obtained.

Table 1: *e test results of NIST SP800-22.

No. Test index PRNG based on system (17)
Proportion P value Result

1 Frequency 0.9930 0.544254 Success
2 Block frequency 0.9920 0.869278 Success
3 Cumulative sums1 0.9920 0.361938 Success
4 Runs 0.9910 0.966626 Success
5 Longest run 0.9920 0.757790 Success
6 Rank 0.9920 0.916599 Success
7 FFT 0.988 0.973718 Success
8 Nonoverlapping template1 0.9810 0.678686 Success
9 Overlapping template 0.9900 0.516113 Success
10 Universal 0.9900 0.721777 Success
11 Approximate entropy 0.9860 0.295391 Success
12 Random excursions1 0.9983 0.186164 Success
13 Random excursion variant1 0.9811 0.202783 Success
14 Serial1 0.9920 0.984881 Success
15 Linear complexity 0.9910 0.735908 Success
1*e test item contains several submodules, of which the worst results are listed here.
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detection, where α is the significant level, α � 0.01 is taken
here.

It can be seen from Table 1 that the passing rate of each
data of PRNG based on system (17) is within the acceptable
range, and it has passed the NIST SP800-22 randomness test,
so it is suitable for the design of PRNG and has good
randomness.

4.2. Key Sensitivity Analysis. Key sensitivity means that the
small change of key will also lead to the substantial change of
output. A well-designed PRNG should have good key
sensitivity; even if a bit changes, it will output completely
different sequences. *erefore, it is necessary to detect and
analyze the key sensitivity.

After fixing n � 1050, we disturb the initial value of the
key. For the three generated sequences, the first 20 arrays are
extracted and plotted in Figure 10. It is obvious that the
sensitivity of the key to the initial value is above 10− 16, and
slight changes in the initial value will lead to great differences
in the sequence.*erefore, the above test results and analysis
show that our generator has strong key sensitivity.

5. Conclusions

In this work, we construct three types of one-dimensional
discrete piecewise maps, and based on the Li–Yorke dis-
criminant theorem and Marotto’s theorem, we provide
sufficient conditions for these three types of maps to become
chaotic maps. *en, we design f and further construct
several specific examples, after which numerical simulations
are carried out. *e bifurcation diagram and Lyapunov
exponent diagram of the function with the change in pa-
rameters are given.

In view of the construction method of the one-dimen-
sional discrete piecewise chaotic maps proposed in this
paper, considering the piecewise chaotic map with sym-
metric properties, we construct the functions on this basis.
Sufficient conditions for them to become chaotic maps are
given, several examples satisfying the theorem conditions are
given, the theory is verified by numerical simulation, and the

design idea is proved to be correct. *is method can provide
a theoretical basis for further constructing a new one-di-
mensional discrete chaotic system.

Finally, from the perspective of cryptographic applica-
tion, the PRNG algorithm proposed in this paper is tested.
*e test results show that the PRNG designed in this paper
has passed the sp800-22 randomness test, and the test index
value is equivalent to that of the literature [18, 19, 22, 23].
*e random performance and key sensitivity are analyzed.
*e results show that the proposed pseudorandom sequence
generator can meet the performance requirements of good
PRNG and has strong key sensitivity. *erefore, the PRNG
proposed in this paper is practical and reliable and can
further design a high security encryption scheme, which has
high application potential.
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