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In this paper, we aim to develop a partially linear additive spatial autoregressive model (PLASARM), which is a generalization of
the partially linear additive model and spatial autoregressive model. It can be used to simultaneously evaluate the linear and
nonlinear effects of the covariates on the response for spatial data. To estimate the unknown parameters and approximate
nonparametric functions by Bayesian P-splines, we develop a Bayesian Markov Chain Monte Carlo approach to estimate the
PLASARM and design a Gibbs sampler to explore the joint posterior distributions of unknown parameters. Furthermore, we
illustrate the performance of the proposed model and estimation method by a simulation study and analysis of Chinese housing
price data.

1. Introduction

Spatial econometrics is a subfield of econometrics dealing
with spatial interaction effects among geographical units
Elhorst [1]; it has been widely applied in many research fields
such as economics, geography, and environmental science.
)e traditional spatial parametric autoregressive models
have received a lot of attention from theoretical econome-
tricians and applied researchers, for example, Anselin [2],
Case [4], Cressie [3], LeSage [4], LeSage [5], Anselin and
Bera [6], Lee [7], Lee [8], Kakamu andWago [9], LeSage and
Pace [10], Kazar and Celik [11], and Piribauer and Crespo
Cuaresma [12] among others. However, the spatial para-
metric autoregressive models are highly sensitive to model
misspecification; they may not be adequate in many complex
situations. Indeed, it is confirmed that some economic re-
lationships in space exhibit highly nonlinear shapes [13–16].
Neglecting the underlying nonlinear relationship in spatial
parametric autoregressive models frequently leads to in-
consistent estimation of the parameters.

Although spatial nonparametric autoregressive models
can be used to improve the performance of the spatial
parametric autoregressive models, it is unavoidable to bear

the risk of misspecifying the link function. However, when
the dimension of the explanatory variables is high, a fully
nonparametric spatial autoregressive model is too hard to be
explored because of the so-called “curse of dimensionality”
[17]. Several nonparametric dimension-reduction tech-
niques have been developed to overcome the problem, for
instance, single-index model [18, 19], additive model [20],
and varying-coefficient model [21], among others. )us,
semiparametric spatial autoregressive models have been
proposed for dealing with spatial data. To capture the un-
derlying relationships between the response variables and
their associated covariates, semiparametric spatial autore-
gressive models have gained much attention in the literature
of statistics and econometrics. For example, Su and Jin [22]
discussed the quasi-likelihood estimator for the semi-
parametric partially linear spatial autoregressive model; Su
[23] proposed semiparametric generalized method of mo-
ment (GMM) estimation of the semiparametric spatial
autoregressive model; Sun et al. [24] developed a profile
likelihood estimator for the semiparametric spatial dynamic
model; Chen et al. [25] presented a two-step Bayesian ap-
proach for the semiparametric spatial autoregressive model;
Wei and Sun [26] considered the semiparametric GMM
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estimation of a spatial model with space-varying coefficients;
Hoshino [27] proposed a semiparametric series GMM es-
timator for the semiparametric spatial autoregressive model;
Krisztin [28] studied a novel Bayesian semiparametric es-
timation for the penalized spline spatial autoregressive
model; and Wei et al. [29] considered profile quasi-maxi-
mum likelihood method to estimate the partially linear
varying-coefficient spatial autoregressive model. Sun and
Wu [30] discussed the GMM to estimate the partially linear
single-index spatial autoregressive model. Cheng et al. [31]
developed the GMM estimation of the partially linear single-
index spatial autoregressive model. Du et al. [32] investi-
gated a GMM estimator for PLASARM. Hu et al. [33]
presented a new partial functional linear spatial autore-
gressive model.

In recent years, semiparametric models have become an
important research topic between statistics and economet-
rics due to the explanation of parametric modeling and the
flexibility of nonparametric modeling. Among the various
semiparametric models, the most popular ones are perhaps
the partially linear additive models. )ey contain both linear
and nonlinear additive components. As they can not only
provide more flexible models than the stringent linear
models but also mitigate the “curse of dimensionality”
phenomenon encountered in nonparametric regression.
)erefore, the partially linear additive models provide a
good balance between the flexibility of the additive models
and the interpretation of the partially linear models. A lot of
authors have developed various methods to analyze such
models: local linear method [34], spline estimation [35–37],
variable selection [38–41], quantile regression [42–45], and
so on. But most of this work has not been applied to analyze
spatial data. It is a distinctive challenge facing analysts of
spatial data to characterize certain flexible functional forms
that try to account for the latent nonlinearity of PLASARM.
Combining the partially linear additive models with the
spatial autoregressive models, we develop a Bayesian
P-splines method and design a Gibbs sampler to explore the
joint posterior distributions, along with a Markov chain
Monte Carlo algorithm, to estimate the unknown param-
eters and approximate the nonparametric functions of
PLASARM.

)e rest of the article proceeds as follows: In Section 2,
we present PLASARM for spatial dependent data and dis-
cuss its identifiability conditions and then obtain the like-
lihood functions by approximating the link function with a
Bayesian P-spline method. In Section 3, we specify the prior
distributions, derive the full conditional posteriors of the
unknown parameters, and describe the detailed sampling
algorithms in order to provide a Bayesian P-splines method
for analysis. )e applicability and practicality of the pro-
posed model and estimation method are demonstrated
through a simulation study and a real dataset in Section 4. In
Section 5, we conclude the paper with a summary.

2. Model and Likelihood

2.1. Model. )e partially linear additive spatial autore-
gressive model is defined as follows:

yi � ρ
n

l�1
wilyl + x

T
i α + 

p

j�1
gj zij  + εi, i � 1, . . . , n, (1)

where yi is the i-th observation of response variable, xi �

(xi1, . . . , xiq)T and zi � (zi1, . . . , zip)T are the i-th obser-
vations of q and p dimensional covariate vectors, respec-
tively, wil is a specified constant spatial weight, gj(·)

(j � 1, . . . , p) are unknown univariate nonparametric
functions, ρ is an unknown spatial parameter reflecting
spatial autocorrelation between neighbors with stability
condition |ρ|< 1, α � (α1, . . . , αq)T is a q × 1 vector of the
unknown parameters, and εi’s are mutually independent and
identically distributed normal random variables with zero
mean and variance σ2. To ensure model identifiability of the
nonparametric functions, it is often assumed that the
condition 

n
i�1 gj(zij) � 0 for j � 1, . . . , p.

2.2. Bayesian P-Splines and Likelihood. In analyzing the
proposed PLASARMs defined by (1), modeling the
smooth nonparametric function is an important issue.
Because of the advantages of the Bayesian approach and
the nice features of Bayesian P-splines [46], we will
concentrate on applying the Bayesian P-splines approach.
We intend to approximate unknown function gj(·) in (1)
by B-splines [47]. For j � 1, . . . , p, the unknown function
gj(·) is a polynomial spline of degree mj with kj order
interior knots ξj � (ξj1, . . . , ξjkj

)T with aj < ξj1
< · · · < ξjkj

< bj, that is,

gj zj  � 

Kj

l�1
Bjl zj βjl � B

T
j zj βj, zj ∈ aj, bj , (2)

where Kj � 1 + mj + kj is the number of splines determined
by the number of knots, Bj(zj) � (Bj1(zj), . . . , BjKj

(zj))
T is

a Kj × 1 vector of spline basis that is determined by the knot
vector ξj, βj � (βj1, . . . , βjKj

)T is a Kj × 1 vector of spline
coefficients, and

aj � min
1⩽i⩽n

zij  and bj � max
1⩽i⩽n

zij . (3)

In practice, a choice of Kj in the range of 10 to 30
provides the flexibility of fitting. To prevent overfitting due
to using a relatively large number of knots, Eilers and Marx
[48] proposed applying a difference penalty on coefficients of
adjacent B-splines. Let 1n � (1, . . . , 1)T and Bj be an n × Kj

matrix with BT
j (zij) as its i-th row. To achieve identification,

we set 
n
i�1 

Kj

l�1 Bjl(zij)βjl � 0, which is equivalent to

1T
nBjβj � 0. Denote Qj � 1T

nBj; then, the constraint becomes

Qjβj � 0.
It follows from (2) that model (1) can be represented as

yi � ρ
n

l�1
wilyl + x

T
i α + 

p

j�1
B

T
j zj βj + εi

� ρ
n

l�1
wilyl + x

T
i α + B

T
zi( β + εi, i � 1, . . . , n,

(4)
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where BT(zi) � (BT
1 (zi1), . . . , BT

p(zip))T and β � (βT
1 , . . . ,

βT
p)T. )en, the matrix form of the model (1) can be written

as

y � ρWy + x
Tα + B

T
(z)β + ε, (5)

where y � (y1, . . . , yn)T, x � (x1, . . . , xn)T,
ε � (ε1, . . . , εn)T, W � (wil) is an n × n specified constant
spatial weight matrix, and BT(z) is an n × (K1 + · · · + Kp)

matrix with BT(zi) as its i-th row.
)e likelihood function corresponding to (5) is as

follows:

L α, β, σ2, ρ|y, x, z 

∝ σ− n
In − ρW


exp −

1
2σ2

y − ρWy − x
Tα − B

T
(z)β 

T
y − ρWy − x

Tα − B
T
(z)β  

� σ− n
|A(ρ)|exp −

1
2σ2

A(ρ)y − x
Tα − B

T
(z)β 

T
A(ρ)y − x

Tα − B
T
(z)β  

≐ σ − n
|A(ρ)|exp −

1
2σ2

[A(ρ)y − B(x, z)θ]
T
[A(ρ)y − B(x, z)θ] ,

(6)

where x � (x1, . . . , xn)T, z � (z1, . . . , zn)T, K � 
p
j�1 Kj,

θ � (αT, βT)T is a (K + q) × 1 vector of the regression co-
efficient,B(x, z) � (x, BT(z)) is an n × (K + q) matrix, In is
an identity matrix of order n, and A(ρ) � In − ρW.

3. Bayesian Estimation

We develop a Bayesian P-splines method with the Gibbs
sampler to estimate the proposed model in this section. We
begin with the specification of the prior distributions, then
the derivations of the full conditional posteriors of all of the
unknown parameters, and the narration of the detailed
sampling scheme.

3.1. Priors. In order to develop a Bayesian P-splines method
to estimate the model and eschew the use of improper to
prevent improper joint posterior, we specify appropriate
prior distributions for all the unknown parameters which
include regression coefficients θ � (αT, βT)T, variance σ2 ,
and spatial parameter ρ.

Firstly, we set a hierarchical prior for α, which consists of
a conjugate normal prior,

π α|σ2, τ0 ∝ 2πτ0σ
2

 
− q/2

exp −
αTα
2τ0σ

2 , (7)

and an inverse-gamma prior,

π τ0( ∝ τ
− rτα0/2− 1
0 exp −

s
2
τα0
2τ0

⎧⎨

⎩

⎫⎬

⎭, (8)

where rτα0 and s2τα0 are prespecified hyperparameters.
Secondly, to identify the unspecified smooth function

gj(·) for j � 1, . . . , p, the identifiability constraint Qjβj � 0
should be imposed on βj. Under this constraint, we choose
the random walk prior,

π βj|σ
2
, τj ∝ 2πτjσ

2
 

− Kj − d( /2 exp −
βT

j Mβj
βj

2τjσ
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
I Qjβj � 0 ,

(9)

for βj, where I ·{ } is the indicator function, d is the order of
the random walk, Mβj

is the penalty matrix that equals
(Dd− 1 × · · · × D0)

T(Dd− 1 × · · · × D0) for d-order random
walk prior, Dl is a (Kj − l − 1) × (Kj − l) matrix of the form

Dl �

− 1 1 0 · · · 0

0 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

0 · · · 0 − 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, l � 0, . . . , d − 1. (10)

To enhance the flexibility and robustness of the method,
we further put an inverse-gamma prior,

π τj ∝ τ
− rτβj0

/2− 1

j exp −
s
2
τβj0

2τj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (11)

on τj, where rτβj0
and s2τβj0

are prespecified hyperparameters.
In addition, the following conjugate prior distribution of σ2
is assigned as

π σ2 ∝ σ2 
− r0/2− 1

exp −
s
2
0

2σ2
 , (12)

where r0 and s20 are prespecified hyperparameters. )roughout
this article, we set r0 � s20 � 1 to obtain a Cauchy distribution of
σ2 and use rτα0 � rτβj0

� 1 and s2τα0 � s2τβj0
� 0.005 to obtain a

highly dispersed inverse-gamma prior for τj, j � 0, 1, . . . , p.
Finally, the spatial autocorrelation coefficient ρ is given a

uniform prior ρ ∼ U(λmin− 1 , λmax− 1), where λmin and λmax are
the minimum and maximum eigenvalues of the standard-
ized spatial weight matrix W, respectively. In other words,

π(ρ)∝ 1. (13)
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)e joint prior of all unknown parameters is given by

π ρ, α, β, σ2, τ  � π(ρ)π σ2 π τ0( π α|σ2, τ0  

p

j�1
π βj|σ

2
, τj π τj , (14)

where τ � (τ0, τ1, . . . , τp). Note that we have treated
hyperparameter τ as a parameter vector for computational
convenience.

3.2. 6e Full Conditional Posterior Distributions of the
Parameters. In this subsection, we present the full condi-
tional posterior distributions of all parameters that are used

in the Gibbs sampler algorithm and describe the detailed
sampling method.

It follows from likelihood function (6) and priors (14)
that, given the remaining unknown quantities, the condi-
tional posterior distribution of spatial autocorrelation co-
efficient ρ is

p ρ|y, x, z, α, β, σ2, τ 

∝ |A(ρ)|exp −
1
2σ2

A(ρ)y − x
Tα − B

T
(z)β 

T
A(ρ)y − x

Tα − B
T

(z)β  .

(15)

Because it is not a standard density function, we cannot
directly do simulations from (15). We prefer the Metro-
polis–Hastings algorithm [49, 50] to overcome the difficulty:
generate a candidate ρ∗ from a truncated Cauchy distri-
bution with location ρ and scale σρ on interval
(λmin− 1 , λmax− 1), where σρ acts as a tuning parameter, and
accept ρ∗ with probability

min 1,
p ρ∗|y, x, z, α, β, σ2, τ 

p ρ|y, x, z, α, β, σ2, τ 
× Cρ

⎧⎨

⎩

⎫⎬

⎭, (16)

given the factor

Cρ �
arctan λ− 1

max − ρ /σρ  − arctan λ− 1
min − ρ /σρ 

arctan λ− 1
max − ρ∗ /σρ  − arctan λ− 1

min − ρ∗ /σρ 
.

(17)

It is easy to see from likelihood function (6) and priors
(14) that, given the spatial autocorrelation coefficient ρ and
the hyperparameter τ, the joint posterior of all the pa-
rameters is proportional to

p θ, σ2|y, x, z, ρ, τ 

∝ σ − n exp −
1
2σ2

A(ρ)y − x
Tα − B

T
(z)β 

T
A(ρ)y − x

Tα − B
T
(z)β  

× σ − r0− 2 exp −
s
2
0

2σ2
  × σ − q exp −

αTα
2τ0σ

2  × 

p

j�1
σ − Kj+d exp −

βT
j Mβj

βj

2τjσ
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
I Qjβj � 0 

∝ exp −
1
2σ2

[A(ρ)y − B(x, z)θ]
T
[A(ρ)y − B(x, z)θ] 

× exp −
1
2σ2

θTdiag τ− 1
 θ I Qβ � 0  × σ − n− r0− q− K+p d− 2 exp −

s
2
0

2σ2
 

∝ σ2 
− n+r0− pd( )/2− 1

exp −
S
2

+ s
2
0

2σ2
 

× 2πσ2 
− (K+q)/2

|Ξ|1/2 exp −
1
2σ2

(θ − θ)
TΞ(θ − θ) I Qβ � 0 ,

(18)
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where Q � (Q1, . . . , Qp), diag τ− 1  � diag τ− 1
0 Iq, τ− 1

1 Mβ1

, . . . , τ− 1
p Mβp

}, Ξ � diag τ− 1  + BT (x, z)B(x, z), θ � Ξ− 1

BT(x, z)A(ρ)y , and S2 � yTA(ρ)T A(ρ)y − θ
T
Ξθ.

We can see from (18) that the method of composition
[51] can be used to draw σ2 from the conditional inverse-
gamma posterior,

p σ2|y, x, z, θ, ρ, τ ∝ σ2 
− n+r0− p d( )/2− 1

exp −
S
2

+ s
2
0

2σ2
 ,

(19)

and to generate θ from the conditional normal posterior,

p θ|y, x, z, ρ, σ2, τ ∝ 2πσ2 
− (K+q)/2

|Ξ|1/2 exp −
1
2σ2

(θ − θ)
TΞ(θ − θ) I Qβ � 0 . (20)

In addition, to achieve identification, the constraint
Qjβj � 0 should be imposed on βj. According to Pan-
agiotelis and Smith [52], sampling βj from (20) is equivalent
to sampling β(new)

j from N(β∗j ,Σ∗j ), where
Σ∗j � (τ− 1

j Mβj
+ BT

j Bj)
− 1, then β(new)

j is transformed to βj by

βj � β(new)
j − Σ∗j Q

T
j QjΣ

∗
j Q

T
j 

− 1
Qjβ

(new)
j , j � 1, . . . , p.

(21)

It is obvious that the hyperparameter τj for
j � 0, 1, . . . , p is mutually independent in the posterior. )e
full conditional posterior of τj is an inverse-gamma dis-
tribution with density

p τ0|α, σ2 ∝ τ
− q+rτα0 /2− 1
0 exp −

s
2
τα0

+ αTα/σ2

2τ0

⎧⎨

⎩

⎫⎬

⎭, (22)

p τj|β, σ2 ∝ τ
− Kj − d+rτβj0
 /2− 1

j exp −
s
2
τβj0

+ βT
j Mβj

βj/σ
2

2τj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, j � 1, . . . , p, (23)

which can be simulated directly from (22) and (23),
respectively.

3.3. Sampling. Let the parameter vectorΘ � ρ, σ2, θ, τ . )e
Bayesian estimate of Θ is obtained by observations drawn
from the full conditional posterior of all parameters with
running some Markov chain Monte Carlo (MCMC) tools
such as the Gibbs sampler and the Metropolis–Hastings
algorithm. )e pseudocode of the MCMC algorithm in our
method is implemented in Algorithm 1.

4. Numerical Illustration

A simulation study demonstrates that the proposed model
and methodology perform satisfactorily in the finite sample.
We apply the proposed model to analyze a real dataset.

4.1. Simulation. Consider the following model:

yi � ρ
n

l�1
wilyl + x

T
i α + 

2

j�1
gj zij  + εi, i � 1, . . . , n,

(24)
where the covariate vector xi � (xi1, xi2)

T follows a bi-
variate normal distribution with mean 0 and covariance

matrix Σ �
1 − 0.5

− 0.5 1 , zi � (zi1, zi2)
T is a bivariate

vector, and both zi1 and zi2 are independent; they follow
uniform distributions on (− 1, 1) and (0, 1), respectively.
)e link functions g1(z) � sin(πz) and
g2(z) � 4z(1 − z2) − 1, εi ∼ N(0, σ2). )e true values of
parameters are assumed as α � (1, − 1)T and σ2 � 0.25,
respectively. For comparison, we consider three different
cases of spatial parameters ρ1 � 0.25, ρ2 � 0.5, and
ρ3 � 0.75, which represent from weak to strong spatial
dependence of the response. Two kinds of spatial weight
matrices W are used: one is Rook weight matrix [2] with n

units, and the other is Case weight matrix [53] with r

districts and m members in each district. )e sample size of
Rook weight matrix and Case weight matrix is
n � 100, 169, 400, 625{ } and (r, m) � (20, 5),{ (20, 8),

(80, 5), (80, 8)}, respectively.
According to the above design, we conduct each sim-

ulation with 500 replications. For j � 1, . . . , p, we applied a
natural cubic spline in which the knots with Kj � 22 are
placed at an equally spaced interval of the predictor vari-
ables, used second-order random walk penalties, and
assigned hyperparameters (r0, s20, rτα0, s2τα0 , rτβj0

, s2τβj0
)

� (1, 1, 1, 0.005, 1, 0.005) in our computation. )e sec-
ond-order random walk penalties are used for the Bayesian

Mathematical Problems in Engineering 5



P-splines to approximate the unknown smooth functions.
)e initial states of the Markov chain are chosen as follows:
the unknown quantities are drawn from the respective
prior distributions. By incrementally increasing or de-
creasing, the tuning parameter σρ is used such that the
resultant acceptable rate for the parameter is around 25%.

We can generate 6000 sampled values and delete the
first 2000 values as a burn-in period for each of the rep-
lications by the proposed Gibbs sampler. In order to check
the convergence of the proposed MCMC algorithm, we run
five times with different starting values by the proposed
Gibbs sampler for an arbitrarily selected replication. )e
sampled traces of parts of the unknown quantities for
replication with (r, m) � (80, 5) and ρ � 0.5 are displayed
in Figure 1, where the unknown quantities include model

parameters and fitted function on grid points. It is evident
that the five parallel sequences mix reasonably well. )e
other cases have similar performance. Based on the five
parallel sequences, we further calculate the “potential scale
reduction factor”

��
R


[54] for each model parameter and

fitted function on 10 selected grid points. All the values of��
R


against the iteration numbers are displayed in Figure 2

(the case of the spatial parameter ρ � 0.5). We observe that
2000 burn-in iterations have converged as all the values of��

R


were less than 1.2. Based on 4000 sampled values, we
then compute the means, the standard errors, and the 2.5th
and 97.5th percentiles of the posterior distributions for all
unknown quantities.

We evaluate the performance of the estimated functions
by the mean absolute deviation errors (MADE):

MADEj �
1
101



101

i�1
gj zji  − gj zji 



 andMADE �
1
p



p

j�1
MADEj, (25)

at 101 fixed grid points zji 
101
i�1 that are equally spaced

chosen from interval [aj, bj]. To assess the accuracy of the
estimates for the remaining parameters, we calculate the
corresponding means across 500 replications for the pos-
terior mean (Mean), bias (Bias), standard error (SE), and
2.5th and 97.5th percentiles of the parameters (the 95%
posterior credible intervals, 95% CI). We also compute the
standard derivations (SD) of the estimated posterior means
to compare them with the means of the estimated posterior
standard errors.

Figure 3(a) displays the boxplots of the MADE values
with sample size n � 100. Based on the Rook weight matrix,
the medians are MADE1 � 0.1023, MADE2 � 0.0898, and
MADE � 0.0975. Based on the Case weight matrix, the
medians are MADE1 � 0.1019, MADE2 � 0.0896, and
MADE � 0.0974. Figure 3(b) shows the boxplots of the
MADE values with sample size n � 400. Based on the Rook
weight matrix, the medians are MADE1 � 0.0507,
MADE2 � 0.0460, and MADE � 0.0488. Based on the Case
weight matrix, the medians are MADE1 � 0.0505,
MADE2 � 0.0461, and MADE � 0.0488. It shows that both

the Rook and Case weight matrices can obtain reasonable
estimations in fitting nonparametric functions.

Table 1 summarizes the estimation results. It is observed
that all of the means of the estimates are very close to the
respective true values, and the average values of the standard
errors are close to the corresponding standard derivations,
which indicate that the parameter estimates and the stan-
dard errors are accurate. )is indicates that the proposed
estimators of the parametric model perform better with
increasing sample size. By comparing the estimates for ρ
under the same sample sizes, we find the estimates of ρ with
the Case weight matrix are much better than those with the
Rook weight matrix. )e possible main reason lies in the fact
that the Rook weight matrix is more complicated than the
Case weight matrix. Finally, the bigger the sample size under
the same spatial complexity, the more accurate the estimates
are. We have also repeated the aforementioned experiences
with different starting values, and the results are similar.)is
indicates that the proposed Gibbs sampler works well.

)e median and SD of MADE values of the link functions
are reported in Table 2. It shows that the median and SD of

Input: Samples: (yi, xi, zi) i�1,...,n.
Initialization: Initialize the MCMC algorithm in iteration t � 0 with Θ(0), where all unknown quantities are drawn from the
respective prior distributions.
MCMC iterations: For t � 1, 2, 3, . . ., given the current state Θ(t− 1) successively, resample Θ(t) from p(Θ|y, x, z). )e detailed
Gibbs sampler cycles are outlined as follows:

(i) Draw ρ(t) from p(ρ|y, x, z, θ(t− 1), σ2(t− 1), τ(t− 1));
(ii) Draw σ2(t) from p(σ2|y, x, z, θ(t− 1), ρ(t− 1), τ(t− 1));
(iii) Draw θ(t) from p(θ|y, x, z, ρ(t− 1), σ2(t− 1), τ(t− 1)), and adjust β(t) according to (21);
(iv) Draw τ(t) from p(τ|θ(t− 1), σ2(t− 1)), which is replaced by the following two steps:
(v) Draw τ(t)

0 from p(τ0|α(t− 1), σ2(t− 1));
(vi) Draw τ(t)

j from p(τj|β
(t− 1), σ2(t− 1)) for j � 1, . . . , p.

Output: An MCMC sample from the joint posterior distribution: Θ(t) 
t�1,2,3,....

.

ALGORITHM 1: )e pseudocode of the MCMC sampling scheme.
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for simulation results. (a) Rook weight matrix (n� 400). (b) Case weight matrix (r� 80,

m� 5).
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Figure 1: Trace plots of five parallel sequences corresponding to different starting values for parts of the unknown quantities. (a) ρ, (b) α1, (c)
α2, (d) σ2, (e) g1(z15), (f ) g1(z35), (g) g1(z55), (h) g1(z75), (i) g2(z15), (j) g2(z35), (k) g2(z55), and (l) g2(z75).
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MADE values of the link functions decrease along with in-
creasing the sample size, which indicates that the estimates of the
unknown functions are convergent. )e spatial correlation
coefficients also have little effect on the nonparametric estimates.

)e estimated functions, together with the 95% point-
wise posterior credible intervals, are depicted in Figure 4
from a typical sample under the spatial dependence ρ � 0.5
when the sample size is n � 100 and n � 400, respectively.
)e typical sample is selected in such a way that its MADE
value is equal to the median in the 500 replications. )is
indicates that the proposed estimators of nonparametric
functions are performed better with increasing sample size.
It took about 30 seconds for n � 100 and 60 seconds for n �

400 to run each replication using a PC with Intel (R) Core
(TM) i7-8750H 2.20GHz, respectively. Computer code is
available upon request from the authors.

4.2. A Real Data Example. As an illustration of our pro-
posed model and method with a real example, we analyze
housing prices data in Chinese cities. )e data are obtained
from the China City Statistical Yearbook 2013 [56] and the
China Statistical Yearbook for Regional Economy 2013
[57]. )ey cover 286 cities at/above the prefecture level
(except for the cities in Taiwan, Hong Kong, andMacau). In
our real data analysis, we consider that the dependent
variable y is each city’s average selling price of residential
houses (denoted by HP). )ere are three covariates: (1)
population density (PD); (2) per capita disposable income
of urban households (INC); and (3) loan-to-GDP ratio
(MON), which indicates the degree of monetary policy
whether ease or tightness.

)is motivates us to consider the following partially
linear additive spatial autoregressive model:

yi � ρ
n

l�1
wilyl + αxi + 

2

j�1
gj zij  + εi, i � 1, . . . , n,

(26)
where the response variable yi � HPi, xi1 � PDi, zi1 � INCi,
zi2 � MONi. With regard to the choice of the weight matrix,
according to the practice in Sun et al. [24], we use the
Euclidean distance in terms of any two houses to calculate
the spatial weight matrix W. We use longitude and latitude
to represent the location, which is denoted as
si � (Loni, Lati). )e spatial weight wil is

wil � exp − si − sl

����
���� /

k≠i
exp − si − sk

����
���� . (27)

We set as

PD �
PD1/3

− min PD1/3
  

max PD1/3
  − min PD1/3

  
, (28)

where the transformation is used for transferring the
asymmetric distribution of PD to nearly uniform distribu-
tion on (0, 1). )e other covariates variables of INC and
MON are transformed so that the marginal distribution is
approximately N(0, 1). )ese do not alter the model but
facilitate implementation. For this dataset, we adopted
natural cubic P-splines, used second-order random walk
penalties, and assigned (λ, r0, s20, rτα0, s2τα0 , rτβj0

, s2τβj0
)

� (2, 1, 1, 1, 0.005, 1, 0.005). )e tuning parameter σρ is used
such that the acceptable rate for updating ρ is around 25%.

We run five times with different initial states by the
proposed Gibbs sampler and generate 10000 sampled
values following a burn-in of 20000 iterations in each
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Figure 3: )e boxplots (a) show the mean absolute deviation errors with sample size n � 100. )e boxplots (b) show the mean absolute
deviation errors with sample size n � 400 (the three panels on the left are based on the Rook weight matrix and the three panels on the right
are based on the Case weight matrix). (a) MADE (ρ� 0.5, n� 100), (b) MADE (ρ� 0.5, n� 400).
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replication. Figure 5 plots the traces of parts of the un-
known quantities. It can be seen that the five parallel
sequences mix very well. Based on the five parallel se-
quences, the “potential scale reduction factor”

��
R


is

calculated and plotted in Figure 6, from which we observe

that the Markov chain has converged within 20000 burn-
in iterations.

)e estimated parameters together with their standard er-
rors and 95% posterior credible intervals are reported in Table 3.
)e estimate of the spatial parameter is ρ � 0.615 with the 0.034

Table 1: Simulation results of parameter estimation.

Parameter n
Rook weight matrix

(r, m)
Case weight matrix

Mean Bias SE SD 95% CI Mean Bias SE SD 95% CI
ρ � 0.250

100

0.246 − 0.004 0.048 0.047 (0.152, 0.340)

(20, 5)

0.245 − 0.005 0.043 0.044 (0.160, 0.329)

α1 � 1.000 0.992 − 0.008 0.062 0.061 (0.870, 1.114) 0.992 − 0.008 0.062 0.060 (0.870, 1.114)

α2 � − 1.000 − 0.999 0.001 0.062 0.063 (− 1.122, − 0.877) − 1.000 0.000 0.062 0.063 (− 1.122, − 0.877)

σ2 � 0.250 0.251 0.001 0.038 0.035 (0.187, 0.335) 0.251 0.001 0.038 0.035 (0.187, 0.335)

ρ � 0.500 0.494 − 0.006 0.041 0.041 (0.412, 0.574) 0.495 − 0.005 0.031 0.031 (0.434, 0.554)

α1 � 1.000 0.993 − 0.007 0.063 0.061 (0.870, 1.115) 0.993 − 0.007 0.063 0.060 (0.870, 1.115)

α2 � − 1.000 − 1.000 0.000 0.062 0.063 (− 1.123, − 0.877) − 1.000 0.000 0.062 0.063 (− 1.123, − 0.878)

σ2 � 0.250 0.251 0.001 0.038 0.035 (0.187, 0.336) 0.251 0.001 0.038 0.035 (0.187, 0.336)

ρ � 0.750 0.744 − 0.006 0.028 0.029 (0.687, 0.799) 0.747 − 0.003 0.016 0.017 (0.715, 0.778)

α1 � 1.000 0.993 − 0.007 0.063 0.062 (0.870, 1.117) 0.994 − 0.006 0.063 0.060 (0.870, 1.117)

α2 � − 1.000 − 1.001 − 0.001 0.063 0.063 (− 1.124, − 0.878) − 1.001 − 0.001 0.063 0.064 (− 1.125, − 0.878)

σ2 � 0.250 0.251 0.001 0.038 0.035 (0.187, 0.337) 0.251 0.001 0.039 0.035 (0.187, 0.337)

ρ � 0.250

169

0.250 0.000 0.036 0.036 (0.180, 0.320)

(20, 8)

0.240 − 0.010 0.043 0.041 (0.157, 0.323)

α1 � 1.000 0.994 − 0.006 0.046 0.046 (0.903, 1.085) 1.001 0.001 0.048 0.049 (0.907, 1.095)

α2 � − 1.000 − 0.998 0.002 0.046 0.046 (− 1.089, − 0.907) − 0.995 0.005 0.048 0.049 (− 1.088, − 0.901)

σ2 � 0.250 0.249 − 0.001 0.028 0.027 (0.200, 0.310) 0.250 0.000 0.029 0.028 (0.199, 0.313)

ρ � 0.500 0.498 0.002 0.030 0.031 (0.438, 0.558) 0.493 0.007 0.029 0.028 (0.435, 0.550)

α1 � 1.000 0.994 − 0.006 0.046 0.046 (0.903, 1.086) 1.001 0.001 0.048 0.049 (0.908, 1.095)

α2 � − 1.000 − 0.998 0.002 0.046 0.046 (− 1.089, − 0.907) − 0.995 0.005 0.048 0.049 (− 1.089, − 0.901)

σ2 � 0.250 0.249 − 0.001 0.028 0.028 (0.200, 0.310) 0.250 0.000 0.029 0.028 (0.199, 0.313)

ρ � 0.750 0.748 − 0.002 0.021 0.021 (0.707, 0.788) 0.746 − 0.004 0.015 0.015 (0.716, 0.775)

α1 � 1.000 0.995 − 0.005 0.047 0.046 (0.904, 1.087) 1.002 0.002 0.048 0.049 (0.908, 1.096)

α2 � − 1.000 − 0.999 0.001 0.047 0.046 (− 1.090, − 0.907) − 0.996 0.004 0.048 0.049 (− 1.090, − 0.902)

σ2 � 0.250 0.249 − 0.001 0.028 0.028 (0.200, 0.311) 0.250 0.000 0.029 0.029 (0.199, 0.314)

ρ � 0.250

400

0.249 − 0.001 0.023 0.023 (0.204, 0.294)

(80, 5)

0.248 − 0.002 0.020 0.020 (0.209, 0.286)

α1 � 1.000 1.001 0.001 0.029 0.028 (0.943, 1.059) 1.001 0.001 0.029 0.028 (0.943, 1.059)

α2 � − 1.000 − 0.997 0.003 0.029 0.030 (− 1.055, − 0.940) − 0.997 0.003 0.029 0.030 (− 1.055, − 0.940)

σ2 � 0.250 0.250 0.000 0.018 0.018 (0.217, 0.288) 0.250 0.000 0.018 0.18 (0.217, 0.288)

ρ � 0.500 0.499 − 0.001 0.020 0.020 (0.460, 0.537) 0.498 − 0.002 0.014 0.014 (0.470, 0.526)

α1 � 1.000 1.001 0.001 0.030 0.030 (0.943, 1.059) 1.001 0.001 0.030 0.030 (0.943, 1.059)

α2 � − 1.000 − 0.997 0.003 0.030 0.030 (− 1.055, − 0.940) − 0.997 0.003 0.030 0.030 (− 1.055, − 0.940)

σ2 � 0.250 0.250 0.000 0.018 0.018 (0.217, 0.288) 0.250 0.000 0.018 0.0018 (0.217, 0.288)

ρ � 0.750 0.749 − 0.001 0.013 0.014 (0.722, 0.775) 0.749 − 0.001 0.007 0.007 (0.734, 0.763)

α1 � 1.000 1.001 0.001 0.030 0.029 (0.943, 1.060) 1.002 0.002 0.030 0.029 (0.943, 1.060)

α2 � − 1.000 − 0.998 0.002 0.030 0.029 (− 1.056, − 0.939) − 0.998 0.002 0.030 0.030 (− 1.056, − 0.940)

σ2 � 0.250 0.250 0.000 0.018 0.018 (0.217, 0.288) 0.250 0.000 0.018 0.018 (0.217, 0.289)

ρ � 0.250

625

0.247 − 0.003 0.018 0.020 (0.211, 0.283)

(80, 8)

0.247 0.003 0.020 0.019 (0.208, 0.287)

α1 � 1.000 1.000 0.000 0.023 0.022 (0.954, 1.046) 0.998 − 0.002 0.023 0.024 (0.953, 1.044)

α2 � − 1.000 − 0.999 0.001 0.023 0.023 (− 1.045, − 0.953) − 1.002 − 0.002 0.023 0.023 (− 1.047, − 0.957)

σ2 � 0.250 0.251 0.001 0.014 0.014 (0.224, 0.280) 0.250 0.000 0.014 0.014 (0.224, 0.279)

ρ � 0.500 0.497 − 0.003 0.016 0.017 (0.467, 0.528) 0.498 − 0.002 0.014 0.013 (0.471, 0.525)

α1 � 1.000 1.001 0.001 0.024 0.023 (0.955, 1.047) 0.999 − 0.001 0.023 0.024 (0.953, 1.044)

α2 � − 1.000 − 0.999 0.001 0.024 0.023 (− 1.045, − 0.953) − 1.002 − 0.002 0.023 0.023 (− 1.047, − 0.957)

σ2 � 0.250 0.251 0.001 0.014 0.014 (0.224, 0.280) 0.250 0.000 0.014 0.014 (0.224, 0.279)

ρ � 0.750 0.748 − 0.002 0.011 0.011 (0.727, 0.769) 0.749 − 0.001 0.007 0.007 (0.735, 0.763)

α1 � 1.000 1.001 0.001 0.024 0.023 (0.955, 1.047) 0.999 − 0.001 0.023 0.024 (0.953, 1.044)

α2 � − 1.000 − 0.999 0.001 0.024 0.023 (− 1.046, − 0.953) − 1.002 − 0.002 0.023 0.023 (− 1.048, − 0.957)

σ2 � 0.250 0.251 0.001 0.014 0.014 (0.224, 0.281) 0.250 0.000 0.014 0.014 (0.224, 0.280)
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standard deviation which indicates there exists a strong and
positive spatial relationship among the response. We observe
that the covariate PD has significant effects on the response.)e
regression coefficient of PD is α � 0.258> 0, in which the
population density has a positive effect on the housing price.

)e estimated functions, together with the 95% point-
wise posterior credible intervals, are depicted in Figure 7,
which look like two nonlinear functions with an upward
trend. )e curves show that g1(z1) and g2(z2) have a local
maximum of 0.764 at around z1 � 3.335 and 0.272 at around

g1(z1)(n = 100)

−1
0
1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
z1

(a)

g1(z1)((r, m) = (20, 5))

−1
0
1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
z1

(b)

g2(z)(n = 100)

−2
0
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
z2

(c)

g2(z2)((r, m) = (20, 5))

−2
0
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
z2

(d)

g1(z1)(n = 400)

−1
0
1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
z1

(e)

g1(z1)((r, m) = (80, 5))

−1
0
1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
z1

(f )

g2(z2)(n = 400)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
z2

−2
0
2

(g)

g2(z2)((r, m) = (80, 5))

−2
0
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
z2

(h)

Figure 4:)e estimated functions (dotted lines) and their 95% pointwise posterior credible intervals (dot-dashed lines) for a typical sample.
)e solid lines represent the true functions (the two panels on the left are based on the Rook weight matrix and the two panels on the right
are based on the Case weight matrix).

Table 2: )e median and SD of MADE values for simulation results.

Para. Rook g1(z) g2(z) Case g1(z) g2(z)

ρ n Median SD Median SD (r, m) Median SD Median SD

0.250
100

0.102 0.034 0.090 0.031
(20, 5)

0.102 0.034 0.090 0.030
0.500 0.102 0.034 0.090 0.031 0.102 0.034 0.090 0.031
0.750 0.102 0.034 0.089 0.031 0.102 0.034 0.089 0.031
0.250

169
0.076 0.026 0.070 0.023

(20, 8)

0.079 0.027 0.073 0.023
0.500 0.076 0.026 0.070 0.023 0.079 0.027 0.073 0.023
0.750 0.076 0.026 0.070 0.023 0.079 0.027 0.073 0.023
0.250

400
0.051 0.016 0.046 0.014

(80, 5)

0.051 0.016 0.046 0.014
0.500 0.051 0.016 0.046 0.014 0.051 0.016 0.046 0.014
0.750 0.051 0.016 0.046 0.014 0.051 0.016 0.046 0.014
0.250

625
0.042 0.013 0.036 0.012

(80, 8)

0.040 0.014 0.037 0.011
0.500 0.042 0.013 0.037 0.013 0.040 0.014 0.037 0.011
0.750 0.042 0.013 0.036 0.013 0.040 0.014 0.037 0.011
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for the housing prices of Chinese cities.
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Figure 5: Trace plots of five parallel sequences corresponding to different starting values for parts of the unknown quantities. (a) α, (b)
g1(z15), (c) g1(z35), (d) g1(z55), (e) g1(z75), (f ) g2(z25), (g) g2(z45), (h) g2(z65), and (i) g2(z85).

Table 3: )e parameter estimation for the housing prices of Chinese cities.

Parameter Mean SE 95% CI
α 0.258 0.073 (0.112, 0.401)

ρ 0.615 0.034 (0.550, 0.680)

σ2 0.0168 0.0015 (0.0141, 0.0199)
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z2 � 2.592, respectively. It provides evidence that the effects
of the covariates INC and MON on the response are sig-
nificant and nonlinear.

5. Summary

Spatial data are often encountered in economics, geography,
and environmental science and can be analyzed by the spatial
autoregressive models. To reduce the high risk of mis-
specification of the traditional spatial autoregressive models
and avoid some serious drawbacks of fully nonparametric
models, we have developed a PLASARM for spatial data,
which combines the partially linear additive model and spatial
autoregressive model. In this paper, we have considered a
Bayesian MCMC approach with P-splines to analyze the
proposed model and designed a Gibbs sampler to explore the
joint posterior distributions based on the Bayesian P-splines
technique. A simulation study demonstrates that the pro-
posed model and methodology perform satisfactorily in the
finite sample.)e results have shown that they are reliable for
recovering the true parameters and nonparametric compo-
nents. We have further applied the proposed model and
methodology to analyze a real dataset.

Various extensions can be considered in the future. We
can pursue the case where the covariates are high dimension
in the model. )e proposed models can be generalized in
several ways. Although we focus on a PLASARM to assess

the effects of the covariates on the response, the other
semiparametric models such as single-index spatial autor-
egressive models and varying-coefficient spatial autore-
gressive models can also be considered. In addition, it is
straightforward to generalize the model and methodology to
handle more complicated data types, for example, mixed
discrete, continuous, and ordinal data [55]. We leave these
topics for future research.

Data Availability

)e data are obtained from the China City Statistical
Yearbook 2013 [56] and the China Statistical Yearbook for
Regional Economy 2013 [57]. )e data can be made
available from the corresponding author or obtained from
the above Yearbook.
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