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Aiming at the problem that stereo matching accuracy is easily affected by noise and amplitude distortion, a stereo matching
algorithm based on HSV color space and improved census transform is proposed. In the cost calculation stage, the color image is
first converted from RGB space to HSV space; moreover, the hue channel is used as the matching primitive to establish the hue
absolute difference (HAD) cost calculation function, which reduces the amount of calculation and enhances the robustness of
matching.*en, to solve the problem of the traditional census transform overrelying on the central pixel and to improve the noise
resistance of the algorithm, an improved census method based on neighborhood weighting is also proposed. Finally, the HAD cost
and the improved census cost are nonlinearly fused as the initial cost. In the aggregation stage, an outlier elimination method
based on confidence interval is proposed. By calculating the confidence interval of the aggregation window, this paper eliminates
the cost value that is not in the confidence interval and subsequently filters as well as aggregates the remaining costs to further
reduce the noise interference and improve the matching accuracy. Experiments show that the proposed method can not only
effectively suppress the influence of noise, but also achieve a more robust matching effect in scenes with changing exposure and
lighting conditions.

1. Introduction

Computer vision studies how to let computers obtain high-
level and abstract information from images and videos.
Feature extraction is one of the key steps. Features generally
include image grayscale features, color features, and texture
features [1]. Research directions of computer vision include
target tracking, superresolution reconstruction [2], and
machine learning [3, 4]. In recent years, the stereo matching
technology has gradually become a research hotspot in the
field of computer vision and has been widely used in un-
manned driving, three-dimensional reconstruction, virtual
reality, target tracking, and other fields [5, 6]. In stereo
matching, researchers find the corresponding points in two
or more images in the same scene and calculate the parallax
to restore the scene depth. Scharstein and Szeliski [7] divided
the stereo matching algorithm into global stereo matching
and local stereo matching. *e global stereo matching

algorithm [8–10] usually uses the minimized energy func-
tion instead of cost aggregation to select the best parallax
value, which can obtain a high-precision disparity map, but
the complicated calculation leads to the limitations in
practical applications. *e local stereo matching algorithm
uses the local information of pixels to construct a supported
window, calculates the cost of all pixels in the window and
aggregates to replace the cost value of a single pixel, and
finally uses the Winner Take All (WTA) [11] algorithm to
obtain the disparity map. Since the local stereo matching
algorithm has fast computing speed and low hardware re-
quirements, its accuracy will be more and more higher with
the continuous development of research, and its application
scenarios are getting much more wider.

Similarity measures of most stereo matching algorithms
are based on pixel brightness or gray level information. In
actual industrial applications, the binocular camera is af-
fected by the external environment and internal
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photosensitive components. *ere may be many problems
in the two images it collects, such as noise interference, light
distortion, or inconsistent exposure, which make the effect
of this type of algorithm greatly reduced. To solve the above
problems, Zabih and Woodfill [12] proposed the census
transform for stereo matching, which can effectively sup-
press the influence of amplitude distortion. Its principle is to
map the size relationship between the neighboring pixels
and the center pixel into a binary string and calculate the
similarity by comparing the Hamming distance. However,
the census algorithm overly relies on the central pixel,
resulting in an unsatisfactory result in a noisy environment.
To overcome that shortcoming, many scholars have pro-
posed many methods on the basis of the census method. Zhu
et al. [13] proposed a three-state census with noise tolerance
to enhance the robustness of the algorithm under noisy
environments. Chen et al. [14] calculated the uniformity of
the star-shaped neighborhood of the center pixel and
replaced the gray value of the center pixel with the mean
value of the minimum uniformity. Chang et al. [15] pro-
posed the MCTalgorithm to perform census transform on 6
fixed pixels. *e above algorithms suppress the amplitude
distortion and the noise interference to a certain extent.
However, the census-based method only relies on the size
relationship between pixels as the basis for similarity
judgment in the cost calculation process, so it loses pixel gray
information and distance information, which affects the
matching accuracy.

Based on the above analysis, this paper proposes an
antinoise matching method based on HSV color space and
improved census transform. In the cost calculation stage, the
original image is converted from RGB color space to HSV
color space, whose hue channel is used as a matching
primitive to establish the HAD cost calculation function and
suppress the impact of amplitude distortions. *en, the
traditional census transform is improved. *e weighted
value of the window is used to compare with the gray value
of the center pixel. When the difference between them is too
large, the weighted value is used to replace the gray value of
the center pixel, thereby reducing noise interferences. Fi-
nally, the cost values of HAD and the improved census
method are mapped to [0, 1] and merged as the initial cost.
In the cost aggregation stage, a confidence interval-based
outlier elimination method is proposed. *e cost values
which are not in the confidence interval will be eliminated; in
addition, the remaining costs will be filtered and aggregated,
so as to further reduce the influence of noise and improve the
matching accuracy in nonideal environments.

2. Algorithm Description

*e proposed method consists of cost calculation, cost ag-
gregation, choice of disparity, etc.*ese parts are introduced
as follows.

2.1. Cost Calculation

2.1.1. HAD Cost. *e traditional RGB color space is com-
posed of three brightness-related color components: R, B,

and G. Once the exposure or lighting conditions changed,
the values of the three components will change significantly.
At this time, it is difficult to use the RGB color space to make
similarity judgments. *e improved cost calculation method
based on census usually loses color information, which
affects thematching accuracy. To solve the above problems, a
cost calculation method of HAD is proposed in this section.
*is method first converts the image from the RGB color
space to the HSV color space. *e H channel is the hue
containing rich color information. S channel and V channel
are the saturation and the brightness, respectively. When
exposure or lighting conditions changed, the value of the H
channel is relatively stable, while the S channel and V
channel are easily affected. *erefore, when calculating the
cost, the value of the H channel is used as the matching
primitive, and subsequently, the values of S channel and V
channel are discarded. In this way, the amount of calcula-
tions can be reduced, and the robustness of the algorithm in
the case of amplitude distortions can be enhanced. *is
paper uses the truncation threshold τH to prevent the ab-
normality of a single pixel from having too much impact on
the overall cost. *e HAD cost calculation function is
expressed as

CH(i, d) � min IH(i) − IH
′ id( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, τH􏽨 􏽩, (1)

where i and id represent the corresponding pixels in the
reference and the target graphs when the disparity is d,
CH(i, d) is the cost of these two pixels in the HSV color
space, which is used to reflect the degree of difference in hue.
*e larger the value, the more the difference. IH(i) and
IH
′(id), respectively, represent the values of these two pixels

in the H channel, and τH represents the hue truncation
threshold. Figure 1 shows the test image of Aloe under
different exposure and lighting conditions. *e exposures of
Figures 1(a) and 1(b) are different. Figures 1(a) and 1(c) have
different light conditions. *e exposure and lighting con-
ditions of Figures 1(b) and 1(c) are different. Furthermore,
the center of the red circle in the three pictures is the same
pixel point. *is paper counts the value of this point in each
channel of RGB and HSV and the gray value. To facilitate
comparison, these values are mapped to the interval of
[0, 255], and the results are shown in Table 1.

It can be seen that, due to the inconsistency of exposure
and lighting conditions, the values of the three channels of
the same pixel in the RGB color space have changed sig-
nificantly. *e same is true for the gray value of the same
pixel. What is more, in the HSV color space, the values of the
S channel and the V channel are also affected by the exposure
and illumination. However, the value of the H channel of the
same pixel has a small change, especially in the two images
Figures 1(a) and 1(b) with different exposures and the
difference is only 2, which is much smaller than that of other
channels. In order to show the degree of change of each
channel value more intuitively, this paper calculated the
standard deviations of the R, G, B, gray, and H channels.*e
results are shown in Table 2.

In Table 2, the standard deviation of the pixel in the
center of the circle of the three images Figures 1(a)–1(c) in
the H channel is 4.78, which is far less than that of the R, G,
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B, and gray channels. It shows that using the image hue
information as a matching primitive can effectively reduce
the impact of exposure and light changes.

2.1.2. Improved Census Method. *e traditional census al-
gorithm can suppress the impact of amplitude distortions to
a certain extent, but it relies too much on the center pixel.
Once the center pixel value is disturbed by noise, the census
encoding will change significantly, leading to mismatches. A
typical method is to take the mean of neighborhood pixels
instead of the center pixel for census transform [15].
However, this method has two obvious shortcomings. One is
that it ignores the particularity of the center pixel, and the
other is that it ignores the distance relationship between the
center pixel and the neighboring pixels. Aiming at the above
shortcomings, an improved census method is proposed.
According to the distance relationship between neighbor-
hood pixels and central pixels, the gray values of pixels in the
rectangular window are weighted and summed to obtain a
new value:

Iω(x, y) � 􏽘

m

u�− m

􏽘

n

v�− n

I(x + u, y + v)ω(u, v). (2)

In formula (2), Iω(x, y) is the weighted result centered
on (x, y), (x + u, y + v) is the neighborhood coordinate of
(x, y), (u, v) can be considered as the position of the window
where the current point is located, and the weighted window
can be regarded as a rectangular region with the size of
(2m + 1) × (2n + 1), and ω(u, v) is a weighting function and
can be expressed as

ω(u, v) � ηe
− u2+v2( ). (3)

Among them, the parameter η is used for normalization
to ensure that the sum of the weights is 1, which is expressed
as

η � 􏽘
m

u�− m

􏽘

n

v�− n

e
− u2+v2( )⎛⎝ ⎞⎠

− 1

. (4)

Using formula (2) for weighting, this section takes into
account the uniqueness of the center pixel, while considering
the distance relationship between the neighboring pixels and
the center pixel. *e closer to the center pixel, the greater its
weight and the more contribution to the weighting result.
Figure 2 shows the weight distribution map with a size of
3 × 3.

*is paper compares Iω(x, y) and I(x, y) and then sets
the error threshold Tmid to determine the value of the center
pixel as follows:

Imid(x, y) �
I(x, y), I(x, y) − Iω(x, y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Tmid,

Iω(x, y), I(x, y) − Iω(x, y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Tmid.

⎧⎨

⎩

(5)

It can be seen from formula (5) that when the value
difference between Iω(x, y) and I(x, y) is greater than Tmid,
Iω(x, y) is used instead of I(x, y); otherwise, I(x, y) is still
used as the central pixel for census encoding.

Finally, this paper performs census transform on the
image to get the census code as follows:

Str(x, y) � ⊗
w

u�− w
⊗
h

v�− h
ξ Imid(x, y), I(x + u, y + v)( 􏼁, (x + u, y + v)≠ (x, y). (6)

(a) (b) (c)

Figure 1: Aloe under different exposure and lighting conditions.

Table 1: Values of different channels.

Image
Channels

R G B H S V Gray
Figure 1(a) 96 142 89 79 95 142 122
Figure 1(b) 31 54 28 81 123 54 44
Figure 1(c) 115 161 121 90 73 161 143

Table 2: Standard deviations of different channels.

σR σG σB σgray σH

35.97 46.61 38.58 20.46 4.78
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where Str(x, y) is the census code corresponding to the
center pixel, (x, y) is the center pixel coordinate, (x + u, y +

v) is the neighborhood pixel coordinate, and
Imid(x, y), I(x + u, y + v) are their gray values, respectively.
*e neighborhood selection range is a rectangular area with
a width of [− w, w] and a height of [− h, h]. ⊕ represents the
bitwise connector. ξ(·) is the mapping function of the census
transform, which is expressed as

ξ Imid(x, y), I(x + u, y + v)( 􏼁 �
0, Imid(x, y)≤ I(x + u, y + v),

1, Imid(x, y)> I(x + u, y + v).
􏼨

(7)

Figure 3 shows the comparison charts of the census
transform. Under the nonnoise condition, the traditional
census code is 00011000, as shown in Figure 3(a). When the
gray value of the center pixel is disturbed by noise from 50 to
70, the transformation process of the traditional census
method and the improvedmethod in this paper are shown in
Figures 3(b) and 3(c), respectively. Because the traditional
census transform overly relies on the central pixel, the
generated code is quite different from the original code.
*ere are 6 bits in Figure 3(b), which are different from the
original code. However, in Figure 3(c), the code obtained by
the weighted summation method is only one bit different
from the original code, which indicates that the proposed
method in this section can effectively suppress the influence
of noise and improve the matching robustness.

2.1.3. Cost Fusion. In Sections 2.1.1 and 2.1.2, the cost
calculation methods of HAD and improved census are,
respectively, proposed. Compared with the original
methods, these two methods can effectively reduce the
amplitude distortion and noise influence. *is section fuses
the two methods to achieve a more robust initial cost.

*e range of pixels of the H channel is [0°, 360°].
However, the value of the Hamming distance in the census
transform is related to the window size. *is paper uses the
9 × 9 transform window, and the values’ range is [0, 80]. It
can be illustrated that the units and the ranges of the two

matching primitives—HAD and census—are different, so
the simple linear superposition cannot be used for fusion. In
addition, nonlinear mapping can suppress the influence of
outliers. *erefore, this section uses a nonlinear function to
map the cost values of HAD and improved census to the
interval of [0, 1], respectively. *e mapping function ex-
pression is

ρ(x) � 1 − e
− (x/λ)

. (8)

In formula (8), the influence on the result will decrease
smoothly as x increases. When x is larger than a certain
value, ρ(x) tends to stabilize and finally converges to 1. In
addition, parameter λ is used to control the rate of con-
vergence and suppress outliers. *e corresponding results of
its different values are shown in Figure 4. *e mapping
results of HAD and improved census are combined to get the
final cost CH− CEN(i, d) as follows:

CH− CEN(i, d) � 2 − e
− CH(i,d)/λH( ) − e

− CCEN(i,d)/λCEN( ), (9)

where CH(i, d) and CCEN(i, d) are the HAD cost and the
improved census cost, respectively, and λH and λCEN are the
control parameters of these two costs.

2.2. Cost Aggregation of Outlier Eliminations. *e cost ag-
gregation can improve the pixel identification and get the
correct disparity more easily. However, when multiple pixels
in the aggregation window are interfered by noise and cause
abnormal cost value, its aggregation result will also be af-
fected. In order to solve the above problems, a cost aggre-
gation method for removing outliers is proposed in this
section. In the cost aggregation stage, the outlier value is
eliminated according to the confidence interval of the pixels
in the window, so that a reliable aggregation area can be
obtained. *e proposed specific method is as follows.

First, this method calculates the means and the standard
deviations of all cost values in the rectangular aggregation
area centered on pixel i. *e formulas for the means and the
standard deviations are
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Figure 2: *e support window weight distribution map with a size of 3 × 3. (a) *e 3D weight distribution map and (b) the 2D coordinate
weight distribution map.
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Figure 3: Comparison charts of census transform. (a) Traditional census method under noise-free environment; (b) traditional census
method under noisy environment; (c) method proposed in this section under noisy environment.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 20 40 60 80 100 120 140 160 180

1 – exp (–x/5)
1 – exp (–x/10)
1 – exp (–x/20)

1 – exp (–x/30)
1 – exp (–x/40)
1 – exp (–x/50)

Figure 4: Different values of λ correspond to different results.
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CH− CEN(i, d) �
1
n

􏽘
j∈N(i)

CH− CEN(j, d),

σ(i, d) �

���������������������������������

1
n

􏽘
j∈N(i)

CH− CEN(j, d) − CH− CEN(i, d)( 􏼁
2

􏽶
􏽴

,

(10)

where j is the pixel in the aggregation window N(i) and n is
the number of pixels. CH− CEN(i, d) and σ(i, d), respectively,
represent the mean and the standard deviation of all cost
values in N(i) when the disparity is d.

Second, it calculates the confidence interval of the ag-
gregation area based on the mean CH− CEN(i, d) and the
standard deviation σ(i, d), which is expressed as

CH− CEN(i, d) −
σ(i, d)

�
n

√ zα/2, CH− CEN(i, d) +
σ(i, d)

�
n

√ zα/2􏼢 􏼣,

(11)

where α represents the significance level, when the confi-
dence level is 95%, the value of α is 0.05, and zα/2 is the
critical value. Furthermore, according to the normal dis-
tribution table, z0.025 � 1.96.

*e specific process of removing outliers is shown in
Figure 5. *e inputs are left and right images of Gaussian
noise with a standard deviation of 10. In the images, a
rectangular aggregation area of size 9 × 9 is selected. And
after the cost calculation, the cost value is calculated
according to the above method to obtain CH− CEN(i, d) �

38.25 and σ(i, d) � 10.62. *e confidence interval is
[35.94, 40.56]. *e outlier value is shown in red in Figure 5.
After removing the outliers, a reliable aggregation area is
obtained.

Finally, the cost values of all pixels in the aggregation area
N(i) are traversed, and then the cost values are marked as
outliers and removed, which are not in the interval shown in
formula (11). *e area after the outliers are removed is denoted
as N′(i), the number of pixels contained in N′(i) is denoted as
n′, and N′(i) is aggregated to obtain the cost as follows:

Cagg(i, d) �
1
n′

􏽘

j∈N′(i)

CH− CEN(j, d)K(i, j), (12)

where Cagg is the aggregation cost of point i when the
disparity is d. Moreover, K(i, j) is the similarity core, which
is used to measure the similarity between pixels i and j. *e
higher the similarity, the smaller the value is. What is more,
the guided filtering is selected as the similar kernel function.

According to the aggregation result, the WTA algorithm
is used for the disparity selection and finally the disparity
map generation.

3. Experiment and Analysis

*e experiment is based on the VS2013 platform, combined
with the OpenCV3.2 open source vision library and com-
piled with C++ language. *e computer hardware envi-
ronment is as follows. CPU: Intel (R) Core i7-4700MQ, main

frequency: 2.4GHz, memory: 8 GB, and software environ-
ment: Windows 8.1 x64 system. *e test set comes from the
KITTI2015 and Middlebury stereo matching test platforms.
According to the Middlebury evaluation standard, the error
threshold is set to 1, which means that once the difference
between the disparity map obtained by the algorithm and the
real disparity is greater than 1, the point of the disparity map
will be considered as a mismatch. In order to verify the
effectiveness of the proposed method more objectively, none
of the experimental results have been subjected to any
disparity refinement processing. In addition, the experi-
mental parameters are shown in Table 3.

3.1. Noise Immunity Test. To verify the performance of the
proposed method in a noisy environment, three cost cal-
culation methods are selected for comparing with it, namely,
the improved census method (MCT) [15], the combined
census and gradient method (CT+Grad) [16], and the AD
combined with gradient method (AD+Grad) [17]. *e
experimental dataset consists of 4 groups of standard test
images provided by Middlebury. Herein, salt and pepper
noise with a density of 1%, 2%, 5%, and 10% and gaussian
noise with a standard deviation of 5, 10, 15, and 20 are added
to the reference images. To ensure the consistency of the
experiment, this thesis uses the same aggregation method. In
addition, the average mismatch rates of the four methods in
the nonoccluded area are compared in Table 4.

According to the experimental results, in the noise-free
environment and the salt and pepper noise environment, the
method in this paper and the AD+Gradmethod can achieve
better matching results. Moreover, the mismatch rates of the
five experiments are all lower than the MCT and CT+Grad
methods. Among them, the AD+Grad method performs
better than the proposed method in the case of no noise.
However, under the condition of 1%, 2%, 5%, and 10% salt
and pepper noise, the proposed method is superior to the
AD+Grad method. Moreover, in the Gaussian noise en-
vironment, the mismatch rate of the AD+Grad method has
increased significantly, which is much higher than the other
three methods. What is more, the mismatch rate of the
method in this paper remains the lowest among the four
methods. Peculiarly under Gaussian noise with a standard
deviation of 20, the mismatch rate of the proposed algorithm
is 2.04% less than the second-ranked method named
CT+Grad. With the increase in noise, the mismatch rate of
the proposed method has always been maintained at a low
level, and the gap with the other three methods has gradually
widened. *erefore, it is obvious that the cost calculation
method based on the HSV color space and improved census
proposed in this paper can effectively suppress noise
interference.

In order to further verify the effect of the improved
census method on noise suppression, the KITTI2015 dataset
is selected for testing. KITTI includes image pairs acquired
in real road scenes. In practical applications, noise will
inevitably be mixed due to the influence of the hardware
used to collect images and the signal transmission. In order
to simulate noise interference, the standard test chart in the
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KITTI test set is selected. In addition, salt and pepper noise
with a noise density of 10% and Gaussian noise with a
standard deviation of 10 in the reference picture is added for
comparison experiments. *e experiment was carried out in
the same color space and the same aggregation method was
used. *e experimental results are shown in Figure 6.
Figures 6(a) and 6(b) are the test images with added salt and
pepper noise and Gaussian noise, respectively. Figures 6(c)
and 6(e) show the algorithm mismatch rates under the salt
and pepper noise before and after the improvement of
census, which can be observed to decrease by 0.54%.
Moreover, Figures 6(d) and 6(f) show the mismatch rates of

the algorithm under the Gaussian noise before and after the
improvement of census, respectively. *e improved algo-
rithm is 9.83% lower than before. *erefore, experiments
show that the improved cost calculation method of census
can effectively suppress noise interference.

To further verify the universality of the proposed outlier
elimination method based on confidence interval in cost
aggregation, pepper and salt noise with density of 5% was
added into four groups of standard test images and three
different similar kernel functions were selected as the cost
aggregation methods, namely, box filter [18], guided filter
[19], and minimum spanning tree (MST) [20]. *e

Table 3: Parameters for the proposed method.

Parameters m n τH Tmid λH λCEN n zα/2

Values 1 1 9 8 21 35 80 1.96

37 69 38

39 37 39

38 36 55

38 36 72

38 35 39

13 37 40

37 38 59

40 37 38

38 37 37

37 39 62

37 38 25

21 36 37

12 38 40

14 38 23

39 36 40

38 39 22

39 63 38

39 77 38

38 40 38

38 40 37

40 38 39

36 38 39

38 37 21

39 36 39

38 40 38 36 40 37 19 38 39

Outlier
eliminations 

37 69 38

39 37 39

38 36 55

38 36 72

38 35 39

13 37 40

37 38 59

40 37 38

38 37 37

37 39 62

37 38 25

21 36 37

12 38 40

14 38 23

39 36 40

38 39 22

39 63 38

39 77 38

38 40 38

38 40 37

40 38 39

36 38 39

38 37 21

39 36 39

38 40 38 36 40 37 19 38 39

Figure 5: Outlier elimination process.

Table 4: Average error matching rates of different cost computation methods in the noise-free environment and the noise environment.

Algorithm Noiseless
Salt and pepper noise Gaussian noise

1% 2% 5% 10% 5 10 15 20
MCT 5.01 5.98 6.53 7.80 10.08 7.63 10.33 13.32 15.96
CT+Grad 4.59 5.30 5.74 6.80 8.47 7.23 9.88 13.01 15.16
AD+Grad 4.04 4.75 5.20 6.12 7.36 11.27 27.06 47.69 63.49
Proposed 4.40 4.63 4.75 5.12 5.87 6.32 8.80 10.88 13.12
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experiments count the mismatch rates of the original
methods and of themethods added in the outlier elimination
step in the nonocclusion area. In addition, the H-CEN cost
calculation method proposed in Section 2.1 is used in all
experiments. *e experimental results are shown in Table 5.

By analyzing the above table, a conclusion could be
drawn that there are great differences between experimental
results of different aggregation methods; also, the mis-
matching rates of the three aggregation methods, namely,
box filtering, guided filtering, and minimum spanning tree,
decrease successively. By comparing the effect before and
after the improvement of the same method, it can be found
that the mismatch rate of the improved aggregation method
in this paper is lower than that of the original method.
Furthermore, in order to show the effect more intuitively,
the histogram corresponding to the experimental results is
shown in Figure 7.

From Figure 7, it can be observed that, under the salt
and pepper noise with the density of 5%, the proposed
outlier elimination method based on the confidence in-
terval can effectively reduce the mismatching rate of the
above three aggregation methods, of which the box fil-
tering effect is the most effective. In addition, the effect of
the minimum spanning tree is the weakest. *e main
reasons are as follows. *e box filter itself has poor noise
resistance, and the generated disparity map of the box
filter has a high mismatch rate. Moreover, the outlier
elimination method can effectively eliminate the abnor-
mal value and improve the matching accuracy. However,
the minimum spanning tree is proposed based on the
overall idea, which can suppress the influence of noise to a
certain extent and its mismatching rate is already at a low

level. *erefore, the effect of outlier elimination is
limited.

Figure 8 presents the disparity maps generated by dif-
ferent aggregation methods of the test image Tsukuba before
and after adopting the outlier elimination method based on
the confidence interval.

Based on the above images, the quality of the disparity
maps generated by the guided filtering and the minimum
spanning tree is significantly higher than that of the box
filtering. Comparing the two images, Figures 8(e) and 8(f),
the area above the lamp in Figure 8(e) is disturbed by noise,
and the generated disparity map has white noise, while noise
in the same area in Figure 8(f ) is significantly reduced. By
comparing the matching effect of the table lamp position in
Figures 8(c)–8(h), it can be found that the disparity map
used the outlier elimination method proposed in this paper
has a clearer outline of the table lamp and the table lamp
bracket is more complete, which fully demonstrates that the
improved method can effectively suppress noise.

3.2. Exposure and Lighting Experiments. Exposure and
lighting experiments are performed on the 7 sets of test
images of Aloe, Art, Baby1, Baby2, Bowling 1, Cloth1, and
Dolls in the Middlebury dataset. In addition, their disparity
search ranges are [0, 71], [0, 75], [0, 46], [0, 52], [0, 77], [0,
58], and [0, 74], respectively. *e scaling factor of disparities
are all 3. *ere are several methods participating in the
comparative experiment: SAD method [21], census and
gradient combined method under guided filtering (CG-GF)
[16], AD and gradient combined method under guided
filtering (AG-GF) [17], census and gradient combined

(a) (b)

Disparity error: 13.13%

(c)

Disparity error: 54.48%

(d)

Disparity error: 12.59%

(e)

Disparity error: 44.65%

(f )

Figure 6: Performance verification of the improved census method in a noisy environment.
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method under MST (CG-MST), and AD and gradient
combined method under MST (AG-MST) [20]. At the
same time, in order to verify the effect of the HSV color
space in the cost calculation method of HAD proposed in
this paper, an ablation control group using RGB color
space under the framework of this paper is added.

Figures 9–14 show a part of experimental results among
them. Figures 9–11 are disparity maps generated by
different algorithms under inconsistent exposure con-
ditions. Figures 12–14 are the disparity maps generated
by different algorithms under inconsistent lighting
conditions, respectively. In these figures, the above five

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 8: Disparity maps generated by different aggregation methods. (a) 5% salt and pepper noise image; (b) ground truth map; (c) box
filter; (d) improved box filter; (e) guided filter; (f ) improved guided filter; (g) MST; (h) improved MST.
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Figure 7: Histograms of experimental results of different cost aggregation methods. (a) Box filter; (b) guided filter; (c) minimum spanning
tree.

Table 5: Error matching rates before and after the improvement.

Stereo pairs
Original method Improved method

Box filter Guided filter MST Box filter Guided filter MST
Tsukuba 10.60 5.40 2.44 7.95 2.90 2.23
Venus 7.85 4.49 3.15 5.40 3.14 3.13
Teddy 13.44 11.38 7.15 11.70 9.80 7.04
Cones 6.18 5.93 4.15 5.65 4.63 4.13
Average 9.52 6.80 4.23 7.68 5.12 4.13
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methods correspond to Figures 9(c)–9(g), respectively.
Furthermore, Figure 9(h) is the experimental result using
RGB color space under the framework of this article and
Figure 9(i) is the experimental result using RGB color
space. In addition, the red pixels in the figures are
mismatched points in the nonoccluded area.

From the above figures, it can be observed that the SAD
method performs poorly when the exposure and lighting
conditions are changed, and there are a large amount of
mismatch points in the images. Based on the experimental
results of the previous section, despite that the methods
based on AD and gradient combination (AG-GF and Ag-
MST) have a high matching accuracy in the ideal envi-
ronment, their matching precisions drop sharply, and the
matching results are not good when faced with the ampli-
tude distortion. Besides, the methods based on the MST
aggregation (CG-MST, AG-MST) perform better under salt
and pepper noise, but there are also many mismatches in the
experiment of this section. However, the method based on
RGB space proposed in this paper has fewer mismatch
points in several comparison algorithms, and the method

based on HSV space proposed in this thesis not only per-
formed outstandingly in the experiment of the previous
section, but also achieved a better matching effect when the
exposure and the illumination were changed. It has the least
number of mismatch points in red. Tables 6 and 7 show the
mismatch rates of Aloe, Art, Baby1, Baby2, Bowling1,
Cloth1, and Dolls in the nonoccluded area under different
exposure and lighting conditions.

When the exposure conditions change, the matching
accuracy of the CG-GF method, proposed RGB (Pro-RGB),
and proposed HSV (Pro-HSV) proposed in this paper are
significantly better than that of other methods. Among
them, the CG-GF method ranks first for the test images of
Aloe, Baby1, Bowling1, and Cloth1. What is more, for Dolls
two sets of test images, the performance of the proposed
RGB is the best. *e proposed HSV method ranked first in
the Art test chart. Moreover, it also has the lowest average
mismatch rate for all test images, indicating that the overall
effect is better than that of the CG-GF method. In addition,
only in the Dolls test chart, the proposed HSV has a slightly
lower accuracy than the proposed RGB. *e results of the

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 9: Art’s disparity maps generated by different algorithms when exposure conditions are not consistent. (a) Left image; (b) right
image; (c) SAD; (d) CG-GF; (e) AG-GF; (f ) CG-MST; (g) AG-MST; (h) proposed RGB; (i) proposed HSV.
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remaining groups of test charts are better than the proposed
RGB, which verifies the superiority of the algorithm using
HSV color space. When the lighting conditions change, the
proposed HSV ranks first in 5 groups of the 6 groups of test
images, which has an absolute advantage. Especially in the
Baby2 figures, its accuracy is 8.18% ahead of AG-GF, which
has a good performance. In addition, from the point of view
of the average mismatch rate, even the excellent method
called CG-GF, its average mismatch rate is still 5.69% higher
than the proposed method, which illustrates that the
matching effect of the proposed method is far better than the
other 5 methods in the condition of the changing lighting
scenes.

Experimental results have proved that the proposed
method can reduce the impact caused by inconsistent
exposure and lighting conditions and improve the
matching accuracy under the amplitude distortion
environment.

3.3. Experiments on Middlebury Stereo Evaluation-Version 3.
In order to verify the performance of the proposed algorithm,
this paper selects Motorcycle, Playroom, Playtable, and
Vintage in Middlebury Stereo Evaluation-Version 3 to con-
duct experimental comparisons. *e comparison results are
shown in Figure 15. Figures 15(i)–15(l) show the performance
of the algorithm before improvement. Figures 15(m)–15(p)
show the performance of the algorithm after improvement. It
can be seen that the algorithm in this paper suppresses the
error rate of pixel matching, which is better than the algo-
rithm before improvement. *is article uses PSNR as the
evaluation index for quantitative analysis, and the PSNR after
the improvement is shown in Table 8. *e PSNR of the
proposed algorithm in Motorcycle, Playroom, and Playtable
has been improved. Among them, the algorithm has im-
proved by 1.35 dB on Playtable. It was only slightly weaker on
Vintage than the algorithm before the improvement, which
reflects the good effect of the algorithm.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 10: Bowling1’s disparity maps generated by different algorithms when exposure conditions are not consistent. (a) Left image; (b)
right image; (c) SAD; (d) CG-GF; (e) AG-GF; (f ) CG-MST; (g) AG-MST; (h) proposed RGB; (i) proposed HSV.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 11: Dolls’ disparity maps generated by different algorithms when exposure conditions are not consistent. (a) Left image; (b) right
image; (c) SAD; (d) CG-GF; (e) AG-GF; (f ) CG-MST; (g) AG-MST; (h) proposed RGB; (i) proposed HSV.

(a) (b) (c)

Figure 12: Continued.
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(a) (b) (c)

(d) (e) (f )

Figure 13: Continued.

(d) (e) (f )

(g) (h) (i)

Figure 12: Aloe’s disparity maps generated by different algorithms when illumination conditions are not consistent. (a) Left image; (b) right
image; (c) SAD; (d) CG-GF; (e) AG-GF; (f ) CG-MST; (g) AG-MST; (h) proposed RGB; (i) proposed HSV.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 14: Dolls’ disparity maps generated by different algorithms when illumination conditions are not consistent. (a) Left image; (b) right
image; (c) SAD; (d) CG-GF; (e) AG-GF; (f ) CG-MST; (g) AG-MST; (h) proposed RGB; (i) proposed HSV.

(g) (h) (i)

Figure 13: Baby2’s disparity maps generated by different algorithms when illumination conditions are not consistent. (a) Left image; (b)
right image; (c) SAD; (d) CG-GF; (e) AG-GF; (f ) CG-MST; (g) AG-MST; (h) proposed RGB; (i) proposed HSV.
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Table 6: Error matching rates in nonoccluded regions of different methods under different exposures.

Algorithm Aloe Art Baby1 Bowling1 Cloth1 Dolls Average
SAD 29.78 41.87 20.17 62.01 31.34 63.64 41.47
CG-GF 6.92 15.51 2.58 7.70 1.54 16.67 8.49
AG-GF 13.05 22.97 10.16 37.23 7.48 41.30 22.03
CG-MST 7.00 17.55 8.32 19.48 1.28 19.95 12.26
AG-MST 22.92 24.06 10.20 36.29 9.47 31.24 22.36
Pro-RGB 7.98 14.63 4.18 8.84 2.52 8.14 7.41
Pro-HSV 7.08 14.07 3.39 8.22 1.83 8.90 7.25

Table 7: Error matching rates in nonoccluded regions of different methods under different illumination conditions.

Algorithm Aloe Art Baby2 Bowling1 Cloth1 Dolls Average
SAD 39.05 58.65 27.95 35.58 13.24 66.71 40.20
CG-GF 15.52 36.82 16.37 20.42 2.23 31.41 20.46
AG-GF 19.98 39.33 13.29 15.66 3.65 46.94 23.14
CG-MST 15.09 36.30 21.01 22.05 1.57 32.96 21.50
AG-MST 28.05 38.10 19.58 22.52 8.98 48.62 27.64
Pro-RGB 17.94 37.69 10.8 15.11 2.62 25.77 18.32
Pro-HSV 13.49 31.10 5.11 10.76 1.95 26.20 14.77

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 15: Performance verification of the improved census method.
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4. Conclusions

*is paper proposes a new stereo matching algorithm based
on HSV color space and improved census transform, which
effectively suppresses the effects of ambient noise and ex-
posure lighting inconsistencies in the stereo matching. First,
the RGB image is converted into HSV color space by
establishing the HAD cost calculation function, and it re-
duces the impact of amplitude distortions. *en, to address
the problem of traditional census transform overrelying on
central pixels, an improved census method for neighbor-
hood weighting is proposed. Last but not the least, the HAD
cost and improved census cost are mapped to the [0, 1] and
further merged. In the stage of cost aggregation, an outlier
culling method based on confidence interval is proposed to
further reduce the effect of noise and improve the matching
accuracy in nonideal situations. Experimental results on
noise and amplitude distortion environment demonstrate
that the proposed method can not only effectively suppress
the influence of noise but also maintain a low mismatch rate
under scenes with changing exposure and lighting condi-
tions. In the follow-up research, the matching accuracy of
the proposed algorithm will be further optimized in the
depth discontinuous area.
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