
Research Article
Visual Odometry for Self-Driving with Multihypothesis and
Network Prediction

Yonggang Chen , Yanghan Mei, and Songfeng Wan

Department of Mechanical and Electrical Engineering, Dongguan Polytechnic, Dongguan 523808, China

Correspondence should be addressed to Yonggang Chen; yonggang44@163.com

Received 8 July 2021; Revised 15 August 2021; Accepted 16 August 2021; Published 26 August 2021

Academic Editor: Yang Li

Copyright © 2021 Yonggang Chen et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Robustness in visual odometry (VO) systems is critical, as it determines reliable performance in various scenarios and
challenging environments. Especially with the development of data-driven technology, such as deep learning, the com-
bination of data-driven VO and traditional model-based VO has achieved accurate tracking performance. However, the
existence of local optimums in the model-based cost function still limits the robustness. In this study, we introduce a novel
framework with a particle filter (PF) in the optimization process, where the PF is constructed by deep neural network (DNN)
prediction. We propose constructing the PF by motion prediction classification and its uncertainty based on the char-
acteristic of on-road driving motion. At the same time, an interval DNN prediction strategy is introduced to improve the
real-time performance. Experimental results show that our framework obtains better tracking accuracy and robustness than
the existing works, while the time consumption is maintained.

1. Introduction

As a fundamental problem of robot navigation, visual
odometry (VO) has been studied for decades. Due to the
mature studies of camera modeling and perception mod-
eling [1], the model-based method has drawn lots of at-
tention in the last twenty years. Some representative studies
have been published [2, 3], and many mile-stone results in
terms of tracking accuracy have been achieved.

With the development of deep learning in the last decades,
especially the development of open image dataset [4] and
graphics processing unit (GPU), being different from the
model-based method, the data-driven approach is gaining
popularity [5, 6]. Particularly, the data-driven end-to-end visual
odometrymethods [7, 8] are more straightforward and simpler
than the model-based methods, while the accuracy and gen-
eralization are still inferior to the model-based methods. To
improve the accuracy and the robustness of VO systems, the
combinations of model-based methods and data-driven
methods have been proposed [9]. Such combinations

incorporate the prior knowledge information provided by a
DNN into a model-based optimization framework [10].

Regarding the application in self-driving, VO plays an
essential role in the navigation tasks for visual localization
and mapping [11]. With the complicated and challenging
situations of city traffic, the combinations of data-driven
methods and model-based methods are the way to handle
these challenges [12]. However, the robustness of the VO
and visual simultaneous localization andmapping (VSLAM)
systems in the various environments of self-driving appli-
cations is still an open problem.

To overcome the robustness problem in the applica-
tion of self-driving, we propose to cooperate the DNN-
based image classification network with a particle filter
(PF) in a model-based pose estimation framework, as
shown in Figure 1. With the generalization from the image
classification network due to its high-level representation
and the multiple hypotheses introduced by the DNN-
enabled PF in pose optimization, the robustness and
accuracy of visual pose estimation are improved. (e

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 1930881, 10 pages
https://doi.org/10.1155/2021/1930881

mailto:yonggang44@163.com
https://orcid.org/0000-0002-0970-6363
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1930881

simulation and experimental results demonstrate the
superiority of our proposed method.

(e contribution of our study is twofold:

(1) We propose a DNN-enabled PF for self-driving pose
estimation, where the DNN-based image classifica-
tion network is used for generalization

(2) A multihypothesis pose estimation of a model-based
framework system is introduced to overcome the
local optimum during optimization

2. Related Work and Motivation

Our proposed work intersects the topics of DNN application
in VO and on-road self-driving. Applying DNN to VO and
VSLAM systems (Figure 2) is popular in recent years due to
the significant progress in image processing and pattern
recognition by DNN. As for the end-to-end estimation of
transformation in VO application, DeepVO [7] and
UndeepVO [8] are the typical examples of supervised and
unsupervised training methods, respectively, which leverage
the DNN for pairwise image processing. Due to the multiple
level perception in DNN, especially the convolution oper-
ation, the obtained information from various layers is rich,
and the tracking robustness can be enhanced. However, the
localization accuracy of those data-driven methods is still
lower than the model-based VO and VSLAM systems, such
as DSO [2], ORB-SLAM [13], and SVO [3].

To improve the accuracy of end-to-end data-driven VO
pose estimation, researchers propose to combine DNN
prediction and model-based pose optimization. In CNN-
SVO [14], the output from DNN is utilized as the prior
knowledge for optimization, which leads to accurate camera

tracking performance due to the feasible DNN prediction.
Similarly, CNN-SLAM [15] incorporates the depth predic-
tion from DNN into a mature model-based VSLAM system
[16], resulting in a dense structure and improved camera
motion estimation. (e study in [9] takes the prediction of
pose transformation from a DNN as the initialization of
localization directly for more robust tracking, while the
advanced performance is only achieved in the environments
similar to the training data. (e study in [17] uses both the
depth and pose DNN prediction for optimization initiali-
zation, where the depth, pose, and uncertainty are generated
from the network simultaneously.

As for the VO and VSLAM system in the application of
self-driving, thanks to the progress being made with deep
learning, visual-based automated driving is advancing
rapidly. (ere are two main paradigms in this area [11]:

(1) (e mediated perception approach, which seman-
tically reasons the scene and determines the driving
decision based on it [18].

(2) (e behavior reflex approach that learns the driving
decision end-to-end [19]. (e reliable and fast
mapping and localization are needed in almost all
driving scenarios. Due to the high resolution of
cameras compared with other sensors like RADAR
and LiDAR, situations that require detailed knowl-
edge about the environment are dedicated to the
applications of VSLAM and VO [20]. (erefore, VO
and VSLAM systems play an essential role in self-
driving. Especially with the development of deep
learning, applying data-driving methods to self-
driving has achieved much progress in recent years
[21, 22]. However, to work in challenging situations,

DNN Enabled
Particle Filter

Model-based Mmethod
Optimization

Motion
Prediction

object point
feature point

Uncertainty of
Pose Estimation

xk ~ N(μ, Σ)

X

XX
X

OR

XRXL

OL [R|t]

X

Figure 1: (e framework of our method. With the prior knowledge from DNN prediction, we leverage the DNN motion classification for
particle filter establishment. With the particle filter, the multihypothesis pose optimization can be performed for robust visual tracking.

2 Mathematical Problems in Engineering

including motion blurry, large perspective-changing,
and illumination-changing, the robustness of the
existing VO and VSLAM systems still cannot well
satisfy the requirements.

To handle the robustness problem, especially the usage of
DNN output in challenging environments and maintaining
the tracking accuracy, we propose a system framework with
DNN-enabled PF in pose estimation optimization.

Instead of estimating the motion from the DNN pre-
diction directly in the existing work [7, 8], we use the image
classification results for more general performance. Due to
the uncertainty representation in image classification, the
generality of the image classification network has been
verified [23, 24]. Also, for the robust pose estimation, instead
of the single hypothesis in the related work [17], a multi-
hypothesis back-end optimization strategy is designed to
overcome the local optimum in optimization, where the
feasibility of the multiple hypotheses is guaranteed by the
DNN motion prediction.

3. Methodology

In our method, the robustness improvement is realized by
the multihypothesis pose optimization with the PF con-
structed by DNN image classification. (ree parts are in-
volved in the methodology: motion prediction by DNN-
based image classification, the PF construction using the
motion prediction, and the pose optimization with PF
multihypothesis.

3.1. Prior Knowledge fromDNN Image Classification. We use
the DNN introduced in [25] to provide the motion label
prediction, which is regarded as the prior knowledge. Since
the motion of the self-driving car is limited, the DNN

classification result of the captured image pair is feasible due
to its limited motion types: planar rotation and translation.
Instead of obtaining the transformation prediction from
DNN directly (which is performed in the end-to-end style),
according to the motion types, the input image is classified
into six types for motion prediction: go-forward, right-side,
left-side, no-rotation, turn-left, and turn-right, as shown in
Figure 3.

With these six labels, the coefficients in the particle filter
of multihypothesis optimization can be determined. Also, it
is worth noting that obtaining the training data with motion
type classification labels is much easier than collecting the
dataset with exact transformation information, because the
requirement of ground truth transformation accuracy, as
well as the dimension of ground truth label data, is relaxed.
(erefore, the cost of the training process is also lower than
the method with exact DNN motion transformation
prediction.

According to the discussion above, we define three
coefficients of the objective function as follows, where rl, rr,
rs, ml, mr, and ms are the prediction from the DNN rep-
resenting the image classification probability, representing
the predicted probability of turning left, turning right, no
turning, left-side, right-side, and go-straight, respectively:

C
r
t �

rl − rr

rl + rr + rs

,

C
z
t �

ms

n
,

C
x
t �

ml − mr

n
,

n �

��������������

m
2
s + ml − mr(􏼁

2
􏽱

.

(1)

Motion Prediction

OROL

XL XR

X

[R|t]

(a)

OR
OR

OL
OL

XL XR

X

H [R|t]

Model-based
Optimization

(b)

Figure 2: Pipeline of the model-based method and data-driven method. Both methods have the same input and output. (e model-based
method involves solving transformation using feature detection, data association, and optimization, whereas the data-driven method uses a
DNN to predict the motion directly. (a) Model-based visual tracking. (b) Data-driven visual tracking.

Mathematical Problems in Engineering 3

Since the sum ofml, mr, and ms is 1, while the nor-
malization of translation in monocular transformation is
conducted by L2-norm, the normalization operation is
executed by n here, wherein ml and mr are in the same
DoF. (e coordinate system is shown in Figure 4. (e on-
road self-driving car is assumed to move in the X-Z plane
and rotate about the Y-axis. With the defined coordinate
system and the planar motion assumption, the motion
prediction transformation matrix vt can be built
according to the obtained Cr

t , Cx
t , and C

y
t as shown in

formula (2), and vt will be utilized in the particle filter
establishment.

vt �

cos Cr · θ(􏼁 0 sin Cr · θ(􏼁 C
x
t · α

0 1 0 0

−sin Cr · θ(􏼁 0 cos Cr · θ(􏼁 C
z
t · α

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where the two unknown variables are the rotation factor θ
and the translation factor α.

In addition to the motion prediction, the corresponding
uncertainty ui predicted by the network is also recorded for
the PF construction, which shows the confidence of motion
prediction results and indicates the uncertainty for covari-
ance matrix constructing in PF.

3.2. DNN-Enabled Particle Filter

3.2.1. Preliminaries of the Particle Filter. (e basic idea of
PF is that the belief is represented by a set of samples (also
called particles), and the samples are drawn according to
the posterior distribution over the prediction. In other
words, rather than approximating posteriors in a para-
metric form, as is in the case for the Kalman filter and the
extended Kalman filter, PF represents the posteriors by
weighted particles which approximate the desired
distribution.

Also, PF algorithm applies a Bayesian iteration to update
particle states involving the prediction and update stages.
(e Bayesian iterative formula is as follows:

pre xt(􏼁 � 􏽚 p xt|ut, xt−1(􏼁 · bel xt−1(􏼁dxt−1, (3)

bel xt(􏼁 � η · p zt|xt(􏼁 · pre xt(􏼁. (4)

As formula (3) shows, bel(xt) is the belief obtained from
prediction pre(xt) by iteration. (e kinematic model
p(xt|ut, xt−1) is set to predict the state, and p(zt|xt) is
denoted as an observation model to update the pose.

Recursively using the prediction and update, the algo-
rithm constantly updates the particle set. (e form of the
nonlinear kinematic model and the observation model in
diversification makes the algorithm extremely robust and
suitable for robot localization in almost any field. Moreover,
the accuracy of the PF depends to a large extent on the size of
the particle set. (e larger the size is set, the higher the
accuracy can be achieved. If and only if the size of the particle
set is huge, the particle distribution is close to the actual
distribution unlimitedly.

3.2.2. DNN-Enabled Particle Filter. Based on the original PF
mentioned above, combining the motion prediction of
DNN, we propose a DNN-enabled PF algorithm, where the
initialization is realized by DNN prediction Cx

t , Cz
t , and Cr,

and uncertainty ui, and the resampling process takes the
observation from DNN into consideration.

(a) (b) (c) (d) (e)

Figure 3: Illustration of the six types of motion labels in the pretrained DNN and the corresponding motion for adjustment shown as the
blue arrow. While go-forward and no-rotation are independent, they are probabilistically correlated, i.e., both go-forward and no-rotation
are very likely to have high probabilities. (a) Label turn-left, (b) label left-side, (c) label go-forward, (d) label right-side, and (e) label turn-
right and no-rotation.

Figure 4: (e coordinate system in our method.

4 Mathematical Problems in Engineering

In the initialization, the mean of particles is set in the
origin, and the initial covariance is obtained by the pre-
diction uncertainty. Given the motion prediction uncer-
tainty ζ, the covariance matrix Σt is defined as

Σt � diag C
x
t · ui, c, C

z
t · ui, c, C

r
t · ui, c(􏼁, (5)

where Cx
t , Cz

t , and Cr
t are the motion prediction results from

network. ui is the corresponding uncertainty of the motion
prediction, which is obtained from the Softmax layer of the
leveraged network, and Υ is a given value for weight balance.

(e mean is given by the last iteration. (erefore, the
initialization distribution of PF can be denoted as

x
i
t ∼ Nt xt,Σt(􏼁, (6)

where xi
t is the i th particle at time t and Nt is the Gaussian

distribution for the particle sampling.
After initialization, in the motion update process, all the

particles are updated according to the motion model and
predicted velocity. (e velocity is predicted by the visual
tracking process with the most weighted particle, which is
realized by visual tracking. After each motion update and
weight calculation, we calculate Neff to evaluate the necessary
for particle resampling, which is defined as

Neff �
1

􏽐i w
i
t􏼐 􏼑

2, (7)

where xi
t is the weight of particle i at time t, which is an

indicator of bel(xt). (e particle weight is obtained from the
residual of optimization Γt by the corresponding pose in
optimization initialization, which is indicated as follows:

w
i
t �

α
Γt

, (8)

where β is a given value for particle weight generation.
In the resample process, the resample distribution is

determined by the motion model and the observation from
DNN. In detail, we adopt the resample distribution in [23]
for weighted sampling, where the DNN prediction is con-
sidered. Given the motion prediction at time t, the most
weighted particle pose at time t − 1 is denoted as Tt−1, which
is assigned to x(t − 1)w. With the transformation estimation
vt generated from Cx

t , Cz
t , and Cr

t , the resample distribution
is written as

x
i
t ∼ N x

w
t ,Σt(􏼁,

s.t. D x
i
t, f Tt−1, vt(􏼁􏼐 􏼑<R,

(9)

where r is a given threshold to limit the sampling within a
range around the network prediction and f(∗) is the
motion model function, which is written as p(xt | ut, x(t −

1)) during the Bayes iteration.
In our proposed PF algorithm, DNN prediction is only

leveraged in the resampling and initialization process. Since
resampling is not required after every motion update, the
DNN prediction can be executed in an interval-style. With
such an interval strategy, the real-time performance can be
improved for online visual tracking.

3.3. Pose-Graph Optimization with the Particle Filter.
With the constructed PF with DNN prediction, the pose
estimation in the optimization is conducted with multi-
hypothesis. We give the initial estimation of optimization
according to the particle pose and execute the optimization
in a parallel way. (e optimization function is written
according to the definition of reprojection error:

T[R|t] � argmin
R,t

􏽘
j

p
i
− π R · P

i
+ t􏼐 􏼑

�����

�����2
, (10)

where pi is the feature point in the image plane and Pi is the
corresponding 3D projected point. T[R|t] ∈ SE(3) is the
result of pose optimization, and π(∗) is the projection
function according to the estimated pose.

During the optimization, the initial estimation T0 is
given by the pose of particle filter mentioned above. After
optimization, the residual is assigned to the corresponding
particle acting as the particle weight. In the optimization,
only the pose-graph is involved, instead of the complete
graph including map points and pose, whose variable di-
mension is much smaller to save time consumption. Also, we
run the pose-graph optimization within a sliding window,
which only considers the neighbor variables that are much
related to the current pose estimation. (e size of the sliding
window is set according to the covisibility graph.

4. Experiments of the VO System

4.1. Experimental Setup. We use the pretrained DNN [26] in
this experiment, which has been trained for motion type
classification of one image input.(e example of the training
dataset is shown in Figure 5. Also, we fine-tune the pre-
trained network on the KITTI dataset, which is in the city
self-driving environment. Both sequence 03 and sequence 04
are utilized, and they are not included in the tests. To
evaluate our proposed method, we use the following eval-
uation metrics: pose estimation accuracy by visual locali-
zation, the number of optimization iterations, and time
consumption in second. (e practicality of our method will
be evaluated by the runtime performance.

For visual tracking and pose optimization, we use ORB-
SLAM3 as the base of our implementation, and the opti-
mization is performed with the DNN-enabled PF algorithm.
We build the vision part of this implementation upon the
OpenCV library. (e Levenberg–Marquardt (LM) solver
[27] in the Eigen library is selected as the optimization
solver, which is effective in solving nonlinear optimization
problems. We run all the experiments on a laptop computer
with an Intel Core i7 (8 cores and 16 threads) CPU, 16GB
RAM memory, and RTX-2060 GPU.

4.2. Experimental Results

4.2.1. Visual Tracking Precision. By using the prediction
from the DNN classification result, we estimate the trajec-
tories on the KITTI dataset, and the accuracy is indicated by
absolutely trajectory Root Mean Square Absolute Trajectory
Error (RMS ATE) [28]. (e results are listed in Table 1,

Mathematical Problems in Engineering 5

where the unit of RMS ATE is m. In terms of our proposed
method, two groups of the experiment are conducted: the
complete proposed method with DNN prediction and the
DNN-enabled PF in pose estimation optimization; the
multihypothesis optimization by PF only without DNN
prediction. (ese two groups are set up to show the advance
of multihypothesis optimization and the DNN prediction in
particle sampling.

Since our system is built based on ORB-SLAM, the
accuracy of the original ORB-SLAM is shown. As the
competitors, some representative work, such as ORB-SLAM
[13], DDVO [9], and DSO [2], are included in the com-
parisons. Note that the loop-closure detection and global
optimization in ORB-SLAM are disabled since most of the
VO systems do not perform the global optimization.

(e comparison results can be seen in Table 1; we
generate the ORB-SLAM and DSO experimental results
ourselves and extract the DDVO results from the paper [9].
ORB-SLAM and DSO are the representative systems of
indirect method and direct method of the model-based style,
and DDVO is the VO system leveraging DNN prediction in
both environment construction and pose estimation. Our
method can obtain better accuracy in most of the sequences.
Some examples of the results are shown in Figures 6 and 7,
including the estimated trajectories compared with the
ground truth, as well as the error curves.

4.2.2. Convergence and Time Consumption. Based on the
results above, the real-time performance of our system
process example is shown in Figure 8.(e time consumption
of multihypothesis pose optimization is verified here. Since

the DNN prediction is executed in an interval-style, we
count the time consumption of DNN prediction during the
whole process. Also, we provide the result of our method
with PF only, whose sampling distribution does not consider
the prediction from the neural network, and the corre-
sponding iteration process is similar to the PF algorithm
introduced in [29].

Also, we provide the real-time performance analysis of
the whole system in Table 2. (ree groups of experiments
are conducted: the traditional optimization with single
initialization, called “single hypothesis”; the optimization
with multiple hypotheses from PF, while the PF is con-
structed from the motion model and random

Figure 5: Examples of the pretrain dataset and fine-tuned training dataset, which show the different illumination and scene. (e upper row
is the examples of pretraining data in the forest environment, while the lower row is the fine-tuned training dataset in the self-driving
scenario. Also, the tests are conducted on the city environment similar to the fine-tune dataset.

Table 1: Comparisons of RMSE (m) between our method, ORB-SLAM, DSO, and DDVO.

System 00 01 02 05 06 07 08 09 10
Ours 62.28 27.05 14.71 51.87 20.49 73.67 52.32 66.11 18.03
Ours-PF only 66.40 31.44 15.78 57.36 21.45 76.49 55.00 71.66 26.32
ORB-SLAM 66.20 51.18 16.02 56.29 57.71 72.85 53.89 60.44 18.41
DSO 126.70 113.57 27.99 120.17 74.29 80.36 71.69 80.80 30.22
DDVO — — 16.70 92.69 21.92 80.59 63.91 62.72 20.31

Higher initial cost without
network prediction

Lower initial cost with
network prediction

Least steps to termination
condition with PF

and network prediction

More steps to
termination

condition with
single hypothesis

Most steps to
termination condition

with PF only

Iteration Step

C
os

t F
un

ct
io

n

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
20000 40000 60000 80000 1000000

Figure 6: Cost and iteration times. With the same termination
condition and step size, the least iteration time is achieved by the
optimization with PF and DNN prediction. (e efficiency of op-
timization convergence is improved by the particle sampling with
DNN prediction.

6 Mathematical Problems in Engineering

Error mapped onto trajectory
-0.459

-0.258

-0.058
30252015

x (m)

1050
–15

–10

–5

0

5

10

z (
m

)

15

20

25

reference

(a)

Error mapped onto trajectory
-0.256

-0.144

-0.032
30252015

x (m)

1050

–10

–5

0

5

10

z (
m

)

15

20

25

reference

(b)

Error mapped onto trajectory
-0.236

-0.124

-0.013
30252015

x (m)

1050

–10

–15

–5

0

5

10

z (
m

)

15

20

25

reference

(c)
Error mapped onto trajectory

-0.744

-0.413

-0.081
15105

x (m)

0–5

0

5

10z (
m

)

15

20

25

reference

(d)

Error mapped onto trajectory
-0.636

-0.347

-0.058

z (
m

)

15105

x (m)

0–5

0

5

10

15

20

25

reference

(e)

reference

Error mapped onto trajectory
-0.636

-0.347

-0.058
15105

x (m)

0–5

0

5

10z (
m

)

15

20

25

(f)
Error mapped onto trajectory

-1.613

-0.875

-0.137
504030

x (m)

20100
–30

–20

–10

0

10

z (
m

)

20

30

reference

(g)

302520

x (m)

10 1550
–20

–15

–10

–5

5

0z (
m

)

15

10

20

Error mapped onto trajectory
-0.991

-0.525

-0.058

reference

(h)

reference

504030

x (m)

20100
–30

–20

–10

0

10

z (
m

)

20

30

Error mapped onto trajectory
-1.344

-0.773

-0.203

(i)

Figure 7: Examples of experimental results on sequences 03, 09, and 10. (e trajectories of original system, our method with PF only, and
the complete proposed method are shown. (e trajectories of (a) the original system on sequence 03, (b) our method with PF only on
sequence 03, (c) the complete proposed method on sequence 03, (d) the original system on sequence 09, (e) our method with PF only on
sequence 09, (f) the complete proposed method on sequence 09, (g) the original system on sequence 10, (h) our method with PF only on
sequence 10, and (i) the complete proposed method on sequence 10.

Mathematical Problems in Engineering 7

0.45

0.40

0.35

0.30

0.25

A
PE

 (m
)

0.20

0.15

0.10

0.05
10 20 40

t (s)

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

60 80

APE (m)
rmse
median

mean
std

(a)

0.25

0.20

0.15

A
PE

 (m
)

0.10

0.05

0 20 40

t (s)

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

60 80

APE (m)
rmse
median

mean
std

(b)

0.20

0.15

A
PE

 (m
)

0.10

0.05

10 20 40

t (s)

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

60 80

APE (m)
rmse
median

mean
std

(c)

0.7

0.6

0.5

0.4

A
PE

 (m
)

0.3

0.2

0.1

0 25 50 75

t (s)

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

125100 150

APE (m)
rmse
median

mean
std

(d)

0.6

0.5

0.3

0.4

A
PE

 (m
)

0.2

0.1

0 5025 75

t (s)

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

125100 150

APE (m)
rmse
median

mean
std

(e)

0.6

0.5

0.3

0.4

A
PE

 (m
)

0.2

0.1

0 5025 75

t (s)

125100 150

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

APE (m)
rmse
median

mean
std

(f)

APE (m)
rmse
median

mean
std

1.6

1.2

1.4

1.0

0.8

A
PE

 (m
)

0.6

0.4

0.2

0 20 40 60

t (s)

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

10080 120

(g)

0 20 40 60

t (s)

10080 120

1.0

0.8

0.6

A
PE

 (m
)

0.4

0.2

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

APE (m)
rmse
median

mean
std

(h)

APE (m)
rmse
median

mean
std

0 20 40 60

t (s)

10080 120

1.4

1.2

1.0

0.8

A
PE

 (m
)

0.6

0.4

0.2

APE w.r.t. translation part (m)
(with Sim(3) Umeyama alignment)

(i)

Figure 8: Error curve of experimental results on sequences 03, 09 and 10. (e error curve of original system, our method with PF only, and
the complete proposed method are shown. (e error curve of (a) the original system on sequence 03, (b) our method with PF only on
sequence 03, (c) the complete proposed method on sequence 03, (d) the original system on sequence 09, (e) our method with PF only on
sequence 09, (f) the complete proposed method on sequence 09, (g) the original system on sequence 10, (h) our method with PF only on
sequence 10, and (i) the complete proposed method on sequence 10.

8 Mathematical Problems in Engineering

initialization, called “multiple hypothesis”; the optimi-
zation with DNN-enabled PF, where the PF is established
with the DNN prediction.

In addition to the time consumption, to show the real-
time performance without the consideration of computer
configuration, we provide the convergence performance of
the DNN-enabled particle filter. Since the time of iteration is
related to the efficiency of particle sampling, the advance of
particle filter sampling considering the DNN observation
can be shown by the convergence performance. Since the
feasibility of the sampled particle is enhanced by the DNN
prediction, our method is able to converge with a smaller
number of iterations than others.

Based on the visual tracking result above, an example of
the convergence performance in the multihypothesis opti-
mization process is shown in Figure 6, in which the times of
particle filter iteration are shown, as well as the value of cost
function. With the same input, the multihypothesis opti-
mization with DNN prediction can satisfy the termination
condition with the less iteration steps. Also, the prediction
fromDNN can provide an appropriate initialization for pose
estimation, which is beneficial to the optimization conver-
gence and achieves the fastest convergence. (e average
framerate of the proposed method on KITTI dataset is
8.1Hz, whose runtime performance is able to meet the
requirement of most applications.

4.3. Discussion. Here we present the analysis according to
the results in Tables 1 and 2. Regarding the comparisons in
terms of tracking accuracy, our proposed method has better
performance than the popular systems and has the smaller
tracking error indicated by RMS ATE; the examples of visual
tracking trajectory are shown in Figures 6 and 7.

Compared with the popular VSLAM systems, such as
ORB-SLAM, DSO, and DDVO, the proposed method with
multihypothesis optimization initialization can converge
to the global optimal solution with a higher probability
and less iteration. As is shown in the tables, the multiple
hypothesis optimization with PF only can obtain better
tracking accuracy than the existing systems, while its error
is still higher than the trajectory estimation with neural
network prediction. Because the prediction from the
neural network gives high efficiency to the sampled
particles, the convergence performance can be improved
by the sampling distribution with appropriate observation
and prediction.

As for the real-time performance of optimization, the
proposed method with neural network prediction is less
time-consuming than the one without network prediction.
Because the neural network prediction provides a feasible
distribution for the particle sampling, the time consumption

for particle convergence is reduced. Also, the optimization
initialization by DNN-enabled PF is able to provide a lower
cost for fast iteration convergence, as is shown in the
convergence analysis shown in Figure 8. (e optimization
with multihypothesis only needs the most iteration steps
because the feasibility of PF samples is not guaranteed. Also,
comparing with the existing methods that consider a single
hypothesis of initialization during optimization, our method
still spends more time. However, regarding the application
of visual tracking, the average frame rate of our proposed
method can still satisfy most of the applications, and the
practicality of our proposed method is verified.

5. Conclusion

In this paper, we propose a method to demonstrate the
robustness and accuracy introduced by the multihypothesis
pose estimation with the proposed DNN-enabled PF. (e
image classification DNN is used in our method, which
provides the motion label prediction for optimization ini-
tialization. Besides, we introduce the DNN-enabled PF for
improving the particle distribution, where both the motion
prediction and prediction uncertainty are considered. In-
stead of estimating the motion from the DNN prediction
directly, we use the high-level representation for more
general performance. Also, for the robust pose estimation, a
multihypothesis back-end optimization strategy is designed
to overcome the local optimum in optimization. (e scal-
ability of our method is guaranteed by the improved gen-
eralization, which can meet the requirement of many
applications.

With the robustness introduced by our method, the
higher accuracy of visual tracking than existing work is
achieved. (e experiment result built based on ORB-SLAM
shows the advance of our proposed multiple hypothesis
optimization and the DNN-enabled particle filter, where the
average accuracy is improved by 13.3%. In the future, the
extension of our work is the application to unman-drones
and other VO or VSLAM systems that require a higher
degree of freedom and more generalized performance. Also,
the given parameters can be tuned by the learning method in
our future work.

Data Availability

Because of the confidentiality of the college, the data cannot
be made public.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Table 2: Comparison of time consumption(s) on KITTI datasets.

Group name 00 01 02 05 06 07 08 09 10
Singe hypothesis 575.76 83.86 697.46 407.94 148.63 106.52 686.82 208.13 140.55
Multiple hypothesis 808.47 83.65 967.51 486.92 147.05 166.02 758.12 268.45 186.68
Multiple hypothesis with DNN 626.33 91.07 788.39 436.19 163.23 148.10 710.93 238.55 176.15

Mathematical Problems in Engineering 9

References

[1] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual
SLAM: why filter?” Image and Vision Computing, vol. 30,
no. 2, pp. 65–77, 2012.

[2] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odom-
etry,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 4, 2017.

[3] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and
D. Scaramuzza, “SVO: semidirect visual odometry for
monocular and multicamera systems,” IEEE Transactions on
Robotics, vol. 33, no. 2, pp. 249–265, 2017.

[4] J. Deng, W. Dong, R. Socher, L. J. Li, and F. F. Li, “Imagenet: a
largescale hierarchical image database,” in Proceedings of the
2009 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2009), Miami, Florida, USA,
June 2009.

[5] C. Cadena, L. Carlone, H. Carrillo et al., “Past, present, and
future of simultaneous localization and mapping: toward the
robust-perception age,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1309–1332, 2016.

[6] M. Zhang, J. Li, Y. Li, and R. Xu, “Deep learning for short-
term voltage stability assessment of power systems,” IEEE
Access, vol. 9, pp. 29711–29718, 2021.

[7] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: towards
end-to-end visual odometry with deep recurrent convolu-
tional neural networks,,” in Proceedings of the 2017 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 2043–2050, IEEE, Singapore, May 2017.

[8] R. Li, S. Wang, Z. Long, and D. Gu, “Undeepvo: monocular
visual odometry through unsupervised deep learning,” in
Proceedings of the 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 7286–7291, IEEE,
Brisbane, Australia, May 2018.

[9] C. Zhao, Y. Tang, and Q. Sun, “Deep direct visual odometry,”
2019, https://arxiv.org/abs/1912.05101.

[10] A. Handa, M. Bloesch, V. P�atr�aucean, S. Stent, J. McCormac,
and A. Davison, “gvnn: neural network library for geometric
computer vision,” in Proceedings of the European Conference
on Computer Vision, pp. 67–82, Springer, Amsterdam, (e
Netherlands, October 2016.

[11] S. Milz, G. Arbeiter, C. Witt, B. Abdallah, and S. Yogamani,
“Visual slam for automated driving: exploring the applica-
tions of deep learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops,
pp. 247–257, Salt Lake City, UT, USA, June 2018.

[12] A. Forechi, T. Oliveira-Santos, C. Badue, and A. F. De Souza,
“Visual global localization with a hybrid WNN-CNN ap-
proach,” in Proceedings of the 2018 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1–9, IEEE, Rio de
Janeiro, Brazil, July 2018.

[13] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-
SLAM: a versatile and accurate monocular SLAM system,”
IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163,
2015.

[14] S. Y. Loo, A. J. Amiri, S. Mashohor, S. H. Tang, and H. Zhang,
“CNN-SVO: improving the mapping in semi-direct visual
odometry using singleimage depth prediction,” in Proceedings
of the 2019 International Conference on Robotics and Auto-
mation (ICRA), pp. 5218–5223, IEEE, Montreal, Canada, May
2019.

[15] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM:
real-time dense monocular slam with learned depth predic-
tion,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 6243–6252, Honolulu, HI,
USA, July 2017.

[16] J. Engel, T. Sch¨ops, and D. Cremers, “LSD-SLAM: large-scale
direct monocular slam,” in Proceedings of the European
Conference on Computer Vision, pp. 834–849, Springer,
Zurich, Switzerland, September 2014.

[17] N. Yang, L. von Stumberg, R. Wang, and D. Cremers, “D3VO:
deep depth, deep pose and deep uncertainty for monocular
visual odometry,” 2020, https://arxiv.org/abs/2003.01060.

[18] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, “3D
traffific scene understanding from movable platforms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 5, pp. 1012–1025, 2013.

[19] F. Codevilla, M. Miiller, A. L´opez, V. Koltun, and
A. Dosovitskiy, “End-to-end driving via conditional imitation
learning,” in Proceedings of the 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1–9,
IEEE, Brisbane, Australia, May 2018.

[20] C. Zhao, L. Sun, Z. Yan, G. Neumann, T. Duckett, and
R. Stolkin, “Learning Kalman network: a deep monocular
visual odometry for on-road driving,” Robotics and Auton-
omous Systems, vol. 121, Article ID 103234, 2019.

[21] M. Bojarski, D. Del Testa, D. Dworakowski et al., “End to end
learning for self-driving cars,” 2016, https://arxiv.org/abs/
1604.07316.

[22] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of
driving models from large-scale video datasets,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2174–2182, Brisbane, Australia, July 2017.

[23] T. Iwata and Z. Ghahramani, “Improving output uncertainty
estimation and generalization in deep learning via neural
network Gaussian pro-cesses,” 2017, http://https//arxiv.org/
abs/1707.05922.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: off-policy maximum entropy deep reinforcement
learning with a stochasticactor,” in Proceedings of the Inter-
national Conference on Machine Learning, pp. 1861–1870,
PMLR, Vienna, Austria, June 2018.

[25] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfifield,
“Toward low-flflying autonomous mav trail navigation using
deep neural networks for environmental awareness,” in
Proceedings of the 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4241–4247, IEEE,
Vancouver, Canada, September 2017.

[26] G. Grisetti, C. Stachniss, and W. Burgard, “Improved tech-
niques for grid mapping with rao-blackwellized particle fil-
ters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34–46,
2007.

[27] A. Ranganathan, “(e levenberg-marquardt algorithm,”
Tutoral on LM algorithm, vol. 11, no. 1, pp. 101–110, 2004.

[28] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and
D. Scaramuzza, “(e event-camera dataset and simulator:
event-based data for pose estimation, visual odometry, and
SLAM,” Ee International Journal of Robotics Research,
vol. 36, no. 2, pp. 142–149, 2017.

[29] F. Dellaert, D. Fox, W. Burgard, and S. (run, “Monte carlo
localization for mobile robots,” in Proceedings of the IEEE
International Conference on Robotics & Automation, Detroit,
MI, USA, May 2002.

10 Mathematical Problems in Engineering

https://arxiv.org/abs/1912.05101
https://arxiv.org/abs/2003.01060
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
http://https//arxiv.org/abs/1707.05922
http://https//arxiv.org/abs/1707.05922

