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Atomic force microscopy (AFM) is a high-resolution scanning technology, and the measured data are a set of force curves, which
can be fitted with a piecewise curve model and be analyzed further. Most methods usually follow a two-step strategy: first, the
discontinuities (or breakpoints) are detected as the boundaries of two consecutive pieces; second, each piece separated by the
discontinuities is fitted with a parametric model, such as the well-known worm-like chain (WLC) model. )e disadvantage of this
method is that the fitting (the second step) accuracy depends largely on the discontinuity detection (the first step) accuracy. In this
study, a sparse representation model is proposed to jointly detect discontinuities and fit curves. )e proposed model fits the curve
with a linear combination of parametric functions, and the estimation of the parameters in the model can be formulated as an
optimization problem with ℓ0-norm constraint. )e performance of the proposed model is demonstrated by the fitting of AFM
retraction force curves with the WLC model. Results shows that the proposed method can segment the force curve and estimate
the parameter jointly with better accuracy, and hence, it is promising for automatic AFM force curve processing.

1. Introduction

)e atomic force microscopy (AFM) is a high-resolution
scanning probe microscopy [1–3], which is widely used in
life science [4], chemistry [5], and nanotechnology [6]. A
typical AFM instrument consists of five components: laser
generator, probe, cantilever, piezoelectric scanner, and
photodiode detector. )e testing sample is mounted above
the piezoelectric scanner, which can move in an
approaching manner toward the probe or a retracting
manner away from the probe. When the sample surface
and the probe are close enough, the interaction force
between them yields the cantilever deflecting toward
(attractive force) or away (repulsive force) from the probe.
)e deflection can be calculated from the output of the
photodiode detector, which measures the laser reflected by
the cantilever. )e characteristics (e.g., the Hooke con-
stant) of the cantilever are usually known in advance, so

the interaction force can be calculated from the deflection
of the cantilever. As a result, the measurement of AFM is
the interaction force f versus piezoelectric scanner in-
dentation z.

)ere are several parametric models describing the re-
lationship between the interaction force and indentation.
For the approaching force curve, there are models such as
the Hertz model, Johnson–Kendall–Roberts model, and
Derjaguin–Müller–Toporov model [3]. For the retracting
force curve, the worm-like chain (WLC) model and freely
jointed chain (FJC) received a wide range of interests [3],
which describe the elastic behavior of polymers. As men-
tioned in the previous study [7], the low-load, moderate-
load, and high-load regions of an approaching force curve
can be modeled as the exponential model, Hertz model, and
Hooke model, respectively; each piece between the two
neighboring jumps of a retracting force curve can be
modeled as either WLC or FJC.
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)e processing of AFM data is a typical curve fitting
problem, which aims to estimate the parameters of the given
models that can best fit the curve.)ose parameters can help
investigators better understand the biochemical and bio-
physical properties of the biochemical samples or nano-
materials. )ere are lots of methods to estimate parameters
specific to different models. When the model is linear with
respect to its parameters, the noisy data can be transformed
into the parametric space, in which the parameters are es-
timated, e.g., the classical Fourier analysis. When the model
is nonlinear with respect to its parameters, one canminimize
the difference between the noisy output and the ideal model,
which is known as regression analysis.

Since the AFM force curves usually consist of piecewise
segments, we focus on the piecewise curve fitting with given
parametric models. One well-known technique is the spline
fitting [8, 9] for piecewise smoothing. However, spline is
constrained to polynomial functions and needs to have the
prior knowledge of discontinuities (or break points, change
points, and knots in spline terminology), which is often
unknown. Polyakov et al. [7] proposed a two-step strategy.
In the first step, discontinuities were detected from noisy
curves. To detect the discontinuities, a set of functions
consisting of piecewise polynomials were used to fit the force
curve. )e piecewise polynomials are the ensemble of
Heaviside step functions, the first, the second, . . ., and the rth

degree integration of Heaviside step functions, where r is the
highest degree of the polynomial. In the second step, the
noisy curve was segmented into pieces by the detected
discontinuities, and then, each piece was fitted with a
parametric model by nonlinear optimization.

Another way of parameter estimation is clustering in the
space of model parameters directly, and hence, curve fitting
can be avoided. A method of such kind was proposed by
Maity et al. [10], in which the contour length of the WLC
model is estimated for each data point on a force curve by
solving a third-order polynomial equation, and then, the
force versus contour length scatter plot is obtained, and the
contour lengths are finally estimated by clustering. Since the
segmentation procedure in the curve fitting is replaced by
clustering, the performance of such method highly depends
on that of clustering, which is still an open question.

)is study is organized as follows: in Section 2, the curve
fitting problem is formulated as a sparse representation
model, and then, propose a systematic method to find the
best fitting. In Section 3, the proposed method is applied to
process a retracting force curve from AFM, which can be
fitted with the WLC model. )e study is concluded in
Section 4.

2. Methodology

2.1. Worm-Like Chain (WLC). In stretching experiments,
several jumps may present in the retracting force curve. )is
phenomenon is caused by the bound between macromol-
ecule and the probe (similar to that of Velcro). Each jump
represents a detachment from the surface.

)ere are several models describing this phenomenon,
among which the WLC and FJC models received wide in-
terests. Since the FJC model was intensively studied [7], this
study only focuses on the WLC model. However, the method
can be applied to the FJC model straightforward. )e WLC
model considers a polymer as an elastic cylinder with a
constant bending elasticity and of constant length. )e rela-
tionship between the interaction forcef and extension z reads

f z; Lc, lp  �
kBT

lp
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−
1
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2
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where kB is the Boltzmann constant, T is the absolute
temperature, Lc is the contour length, and lp is the persis-
tence length. In the stretching experiments, one would like
to estimate the persistence length lp and contour length Lc

from experimental data f and z. Figure 1(a) shows theWLC
model, which shows that the WLC model exhibits an as-
ymptotic behavior, with asymptote z � Lc. Figure 1(b) shows
a typical AFM retracting force curve. Each piece between
two jumps can be fitted with a WLC model. Because of this
asymptotic behavior, two-step methods suffer from mod-
eling error, since the polynomial function set was used to
detect the discontinuities. Instead, in this study, the set of
WLC signals is proposed to detect discontinuities and to fit
curves jointly.

2.2. From 2D to 1D Estimation. It is noticeable that, for a
given Lc, the term in the parenthesis is fixed. So from ex-
perimental data f and z, the coefficient kBT/lp can be easily
estimated by solving a least square problem, yielding esti-
mate lp(Lc). )us, the 2D (two parameters Lc and lp)
problem (1) can be simplified to a 1D function
f(z; Lc,

lp(Lc)). Based on this, the principle of the proposed
method is as follows: first, a signal set (or dictionary) F is
built by sampling contour length Lc within the feasible
region [Lmin

c , Lmax
c ] with high intensity (large n), i.e.,
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is the term in the parenthesis in function (1). )en, the force
curve f(z) can be fitted with a linear combination of
f(z; Li

c): f(z) ≈ 
n
i�1 xif(z; Li

c), where xi is the coefficient
and can be formulated as the problem in equation (5), where
each scalar xi is an entry of the vector x.

Once the estimate of xi, i.e.,xi is known, for those xi who
are nonzeros, the corresponding estimate of contour length
is Li

c, and the corresponding persistence length lp can be
estimated as

lp �
kBT

xi

. (4)
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Figure 1: Continued.
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2.3. Sparse RepresentationModel. In a sparse representation
model, one would like to approximate a given signal f ∈ Rm

using a limited number of functions from a dictionary
F ∈ Rm×n. Here, signal f and dictionary F are the vectorized
version of f and by discretization z. )is approximation
problem is usually formulated as an ℓ − 0 constrained least
square optimization problem:

x
∗
k � argmin

‖x‖0≤k
‖f − Fx‖

2
, (5)

where x ∈ Rn is the vector which gathers the fitting coef-
ficients, and ‖x‖0 denotes the number of nonzero entries in
vector x, i.e., the ℓ−0 norm of x; k is the sparsity level (or
model degree), which controls the tradeoff between the
model complexity and fitting quality. It is easy to see that
larger k yields better fitting quality, while smaller k yields less
complexity of the model (use less columns in matrix F). For
discrete Fourier transform (DFT) and discrete cosine
transform (DCT) [11], the columns of F are complex ex-
ponential and cosinusoids functions with different fre-
quencies, respectively; for deconvolution problems, F is a
Toeplitz matrix formed from the impulse response function
[12]; and in compressed sensing, F is a random sampling
matrix [13, 14]. In our WLC fitting problem mentioned
above, each column in dictionary F is generated by sampling
the parametric model given by equation (2).

2.4.Model Solver. )e optimization problem (5) was proved
to be NP-hard [15], and the optimal solution can only be
found by performing an exhaustive search of all the

combination of the columns in F. )e exhaustive search is
time-consuming even when the dimension of the solution
vector is moderate (in the magnitude of hundreds). In real
applications, the dimension is often more than thousands, so
exhaustive search is unrealistic. Instead, heuristical methods,
such as matching pursuit (MP) [16], orthogonal matching
pursuit (OMP) [17], and orthogonal least square (OLS) [18],
were proposed to get the suboptimal solutions. However,
when the correlation between the columns in the matrix F
(or mutual coherence [19]) is high (1 − 5.5e − 6 for F), the
performance of these methods are not satisfactory.

)erefore, single best replacement (SBR) [12] and
continuation of SBR [20] were developed to tackle the
problem (5). SBR is a forward-backward algorithm. In each
iteration, one column in the matrix F is included into or
excluded from the so-called active set. Only the columns in
the active set are used to fit the signal f by least squares,
yielding nonzero coefficients in x. )e coefficients corre-
sponding to columns excluded from the active set are
assigned to be zeros. )e criterion to determine which
column shall be included into or excluded from the active set
is the deepest-descent of the cost function.

)e highlight of continuation of SBR is an efficient way to
explore the solution set by increasing the model degree k,
which controls the tradeoff between the model complexity and
the fitting quality.)e output of the continuation algorithm is a
set of solutions xk  with respect to model degree k, and each
solution is a tradeoff profile, which obeys ‖xk‖0 � k. For the
WLC fitting problem, k actually represents the number of
segments. For more details of SBR and continuation SBR,
readers are referred to our previous publications.
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Figure 1: (a) )e schematic illustration of the WLC model (only the term in the parenthesis, without the coefficient term). )e green thin
curve represents the whole theoretical WLC model, which exhibits an asymptotic behavior with asymptote z � Lc (the right dotted vertical
line). )e red bold curve represents the truncated version, which constitutes the matrix F. (b) A typical force curve sample from CNGA1
data. (c))e force curve after preprocessing. (d), (e) )e fitting results with five and six WLC pieces, respectively. (f ) )e fitting results with
Maity et al.’s method [10], each blue point is a solution (L∗c , f), and red vertical lines represent centers/means of each cluster.
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Once the solution set xk  is ready, the following issue is
to select a proper solution or to determine the best model
degree k.

2.5. Model Degree Determination. )e choice of the model
degree k, which is usually unknown in advance, is an im-
portant issue. A relative highmodel degree yields overfitting,
while a low model degree yields underfitting. For the curve
fitting problem is this study, k represents the number of
pieces in an AFM force curve.

)ere are several ways to determine k; most notable one
is the information criteria such as Akaike information cri-
terion (AIC) [21], Bayesian/Schwarz information criterion
(SIC) [22] (also known as minimal description length
(MDL)), Hannan and Quinn criterion (HQC) [23], Draper
information criterion (DIC) [24], and others [25]. All these
criteria are essentially penalized logarithm likelihood esti-
mates with the following formulation [26, 27]:

mink ln L(k) + λk, (6)

where ln L(k) is the logarithm likelihood estimate and is
equal to m ln ‖f − fk‖2, and fk � Fxk is the fitted curve. λ is
equal to 2, ln m, and 2 ln lnm, for AIC, BIC, and HQC,
respectively. )e best model degree k is achieved where an
information criterion reaches its minimum. Since the results
of previous subsection is a set of solutions xk , problem (6)
can be solved straightforward.

3. Real Data Processing

AFM is widely used in molecular and cell biology [28]. In
this section, the proposed method described above is shown
to process a real AFM force curve (Figure 1(b)) sampled on
Xenopus laevis oocytes with single-molecule force spec-
troscopy (SMFS) at room temperature (20 ∼ 24°C, so av-
erage T � 295K), which aims to study the cyclic nucleotide-
gated channel subunit alpha 1 (CNGA1) [10, 29]. CNGA1
consists of several secondary structures, and its conforma-
tion changes by the stretching force, yielding several jumps
in the force curve. Each piece between the two neighboring
jumps can be described with the worm-like chain model.

3.1. Raw Data Preprocessing. )e raw data were first pre-
processed with the following steps: (1) reorder the data
points (z, f) with respect to z, such that they arrange in an
ascent manner; (2) resample the force curve at an uniform
grid of z (four samples per nanometer since the raw force
curve’s sample step is 0.24 ± 0.08 nanometer) using linear
interpolation; (3) align the “contact point” Z0 to origin; (4)
remove the baseline by subtracting a linear function, such
that the null interaction force region (right part of the force
curve) is horizontal, and the mean of this region is zero; and
(5) keep only the right part of the force curve whose adjusted
position (z − Z0) is nonnegative. A force curve f of length
m � 1357 after preprocessing is shown in Figure 1(b).

3.2. Worm-Like Chain Dictionary Building. In a real situa-
tion, the force curve cannot reach the asymptote z � Lc,
where f � +∞. In order to avoid numerical instability,
when building the dictionary F, an additional parameter Δz
is introduced, such that function f(z; Lc) in (3) is evaluated
only at the interval [0, Lc − Δz] and linearly declines to zero
at the interval (Lc − Δz, Lc]. In our real data, Δz is 1 ∼ 25 nm
with a step of 1 nm. For contour length Lc, the feasible region
[Lmin

c , Lmax
c ] is 25 ∼ 300 nm and is sampled with a step of

1 nm. Following these settings, for each given Δz and Lc, a
vector of length m is sampled and appended to the matrix F
as a column. Each vector is sampled as follows (Figure 1(a),
the red bold line): at the interval [0, Lc − Δz], function
f(z; Lc) in (3) is sampled; at the interval [Lc, zmax], the
samples are set to be zero; and in between, i.e., at the interval
(Lc − Δz, Lc), the samples are linearly sampled, where zmax is
the maximum of z in the force curves (zmax ≈ 340 nm in our
experiment). All the data points are sampled at the uniform
grid with a step of four points each nanometer, yielding a
vector of length m � 1357. Above all, after exploring all the n

configurations of Lc and Δz, a WLC dictionary F of size
1357 × 6900 is built.

3.3. Curve Fitting and Parameter Estimation. Once the force
curve f and the dictionary F are given, the continuation of
SBR [12, 20] was used to solve the sparse representation
problem (5), yielding a set of solutions xk . For each so-
lution xk, the fitted curve can be calculated as fk � Fxk.
Note that the sparsity level k equals to the number of dis-
continuities in the fitted force curve fk in our WLC fitting
problem. Since each column in F contains a discontinuity,
the total number of discontinuities in fk equals to the
number of selected columns in F, i.e.,‖xk‖0, or k. Infor-
mation criteria aforementioned were employed, but neither
provide ameaningful fitting results; hence, λ � 200 was used;
equivalently, k � 6. Figures 1(d) and 1(e) show the fitted
curves with k � 5 and 6, respectively.

)e contour length Lc of each piece can be retrieved from
the corresponding column in F, and the persistence length lp
can be estimated following equation (4). Table 1 provides the
estimates of contour length and persistence length of six
WLC pieces in Figure 1(e).

)e fitting results show that the proposed method
successfully detects the discontinuities with good fitting
quality. Comparing Figures 1(d) and 1(e), one can see that
with the increase of k, one more discontinuity was detected,
yielding an improved fitting which consists of six WLC
pieces.

)e proposed method was also compared with the
method proposed by Maity et al. [10], which is introduced
briefly in the Appendix, and whose result is shown in
Figure 1(f). In this panel, six clusters are shown, indicating
the six WLC pieces with contour lengths as the red vertical
lines. A t-test shows that the estimates of contour length with
both methods are consistent. However, Maity et al.’s method
cannot estimate persistence length, and hence, it assumes a
constant.
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4. Conclusion and Discussion

)is study proposed a method to fit a piecewise curve with
parametric models. Different frommany existing methods, a
linear combination of several model functions (with pa-
rameters to be determined) from the dictionary was used to
fit the curve, which was formulated as a sparse represen-
tation problem. By employing the continuation of the SBR
algorithm, a set of solutions with different sparsity levels was
obtained. )e proposed method was applied to process the
retracting force curve from AFM and was compared with a
state-of-art method.

One advantage of the proposed method is that it can
perform both the discontinuity detection and curve fitting at
the same time. Most common methods use two separate
steps, i.e., discontinuity detecting followed by curve fitting,
and hence, the fitting result largely depends on the detection
of discontinuities. For example, when using the piecewise
polynomial functions to detect the discontinuities in a
retracting force curve (which could be fitted with the WLC
model), false detection of discontinuity is inevitable because
of the presence of modeling error. However, this problem is
solved by our proposed method.

Another advantage of our proposed method is its flex-
ibility. If one wants to use other parametric models, e.g.,
freely jointed chain (FJC), which reads [3, 7]

z f; Lc, lk(  � Lc coth
flk
kbT

  −
kbT

flk
 , (7)

where lk is the Kuhn length; other notations are the same as
in the WLC model (equation (2)). By comparing the FJC
with WLC model and following the method in Section 3.2,
one can simply build a dictionary F with FJC functions. And
by replacing the dictionary in optimization problem (5), one
can finally fit the data with the FJC model. Figure 2 dem-
onstrates both WLC and FJC models.

)e disadvantage of the proposed method is the large
storage space of the matrix F and the corresponding com-
putational cost introduced by fine sampling of model pa-
rameters. In our experiment, Lc is sampled 25 ∼ 300 nmwith
a step of 1 nm (276 configurations), and Δz is sampled
1 ∼ 25 nm with a step of 1 nm (25 configurations). So the
total number of columns in F is 276 × 25 � 6900. f is of size
1357. )en, the size of F is 1357 × 6900. If one would like to
improve the resolution, e.g., Lc, the step has to be reduced,
e.g., 0.5 nm, which doubles the size of F. Hopefully, with the
rapid developing of computing resources in recent years,
better performance is expected.

)e fitting at the boundary region of the force curve can
be further improved. Note that there seems a WLC segment
between 20 and 40 nm, but neither Maity’s method nor ours
discovered it. )e reason might be that the right slope is not
steep, which is the characteristic of the WLC model, and
hence, this segment was treated as inference.

As a perspective, at the beginning of the force curve, it
can be modeled as a truncated linear function, while at the
end of the force curve, it can be modeled as a step function.
By appending more columns to matrix F and each newly
added column representing the model at the boundary re-
gion, better fitting results can be expected to achieve.

Appendix

Maity et al.’s Method

Maity et al. [10] proposed a method to estimate contour
length Lc of the WLC model by solving equations. However,
their description has a minor error (ω should not depend on
Lc), so here is a short summary of their method with
correction.

For each data point on a force curve (z, f), a third order
polynomial equation of λ is solved, which reads

4λ3 + ωλ2 − 1 � 0, (A.1)

where ω � (4f/α) − 3, α � (kBT/lp), and lp � 0.4 nm.
)is equation has three roots, and the real one is denoted

as λ∗, which is between 0 and 1. Finally, the estimate of
contour length reads L∗c � (z/1 − λ∗).

For all the data points on a curve, force versus contour
length (L∗c , f) scatter plot is obtained, and the contour
lengths are estimated as the means of scatters, which is
shown in Figure 1(f ) as red vertical lines.

Table 1:)e estimate of contour length Lc and persistence length lp
of six WLC pieces in Figure 1(f ).

Piece 1 2 3 4 5 6
Lc(nm) 39 77 125 142 197 249
lp(nm) 0.12 3.94 0.42 15.36 2.06 0.73
L∗c (nm) 22 84 118 170 211 254
)e six WLC pieces are located left of the six discontinuities. L∗c is the
estimate with Maity et al.’s method.

z

f

Lc0

WLC
FJC

Figure 2: Demonstration of WLC and FJC models.
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