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*is study presented the transverse vibration of an axially moving beam with an intermediate nonlinear viscoelastic foundation.
Hamilton’s principle was used to derive the nonlinear equations of motion. *e finite difference and state-space methods
transform the partial differential equations into a system of coupled first-order regular differential equations. *e numerical
modeling procedures are utilized for evaluating the effects of parameters, such as axial translation velocity, flexure rigidities of the
beam, damping, and stiffness of the support on the transverse response amplitude and frequencies. It is observed that the
dimensionless fundamental frequency and magnitude of axial speed had an inverse correlation. Furthermore, increasing the
flexure rigidity of the beam reduced the transverse displacement, but at the same instant, fundamental frequency rises. Vibration
amplitude is found to be significantly reduced with higher damping of support. It is also observed that an increase in the
foundation damping leads to lower fundamental frequencies, whereas increasing the foundation stiffness results in
higher frequencies.

1. Introduction

Axially moving beams have numerous applications in var-
ious branches of engineering, such as manufacturing, civil,
mechanical, chemical, and aerospace engineering [1–4].
Typical applications explored in previous studies include
conveyor belts, medical nanorobots, power saw, band saw,
and magnetic tape [5–9]. At the nano/micron level, the
motion of the substrate is significant, and small fluctuations
can result in a low-quality product [10–13]. Transverse vi-
brations triggered by external disturbances during a

particular process may be lowered by providing end sup-
ports beneath the moving beam in the form of rotating rolls
[14]. *ough end supports are beneficial, they are not suf-
ficient to stabilize the motion of moving substrate. End
support controller was used to stabilize the transverse vi-
bration of an axially moving Kirchhoff beam [15]. Additional
intermediate support in the moving span is often required
[16]. Intermediate support between the rolls offers superior
web processing quality in comparison to the traditional end
support. Vibration of an axially moving beam with an in-
termediate foundation has become a burning research topic

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 2218832, 14 pages
https://doi.org/10.1155/2021/2218832

mailto:kennedychibuzor@kiu.ac.ug
https://orcid.org/0000-0003-3451-1047
https://orcid.org/0000-0002-5631-8312
https://orcid.org/0000-0001-7284-7348
https://orcid.org/0000-0001-6365-3664
https://orcid.org/0000-0002-4317-3978
https://orcid.org/0000-0001-5218-820X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2218832


since the last decade. Several studies have attempted to
analyze axially moving beams with elastic foundations.
Dynamic analysis of coupled moving beams through a
Winkler elastic support was investigated by Gaith andMüftü
[17]. Yang et al. [18] studied the free vibration of axially
moving elastic beams resting on an elastic foundation. In
their study, they utilized the Galerkin method to discretize
the equation of motion. Fundamental frequencies of
transverse fluctuations in a moving beam were studied by
utilizing different numerical methods [19]. Liu et al. [20]
explored the dynamics and instability of the Euler–Bernoulli
beam as a function of several variables such as axially moving
speed, position, and weight of the lumped mass. *e study
results revealed that any increase in lumpedmass is inversely
associated with resulting systems’ fundamental frequencies.
Dynamics of axially moving beam attached with energy sink
and a piezoelectric device was studied in [21, 22]. A sig-
nificant effect of the attachment on the response was ob-
served. Norouzi and Younesian [23] investigated the chaotic
behavior of an axially moving beam supported by a stiff
foundation. Cosine-cosine function was used to obtain the
approximate solution of the equation of motion. Chaos
indication was obtained by setting Lyapunov exponent as a
criterion. Mohammadzadeh and Mosayebi [24] investigated
the vibration in rail supports and joints by considering it as
an axially moving beam resting on an elastic foundation.*e
effect of rail support and joints in the locality of a bridge in
railway track was investigated.

Kural and Ozkaya [25] investigated the performance of a
microbeam fluid-carrying media by utilizing the modified
couple stress theory. In another study, Yan et al. [26]
employed the theoretical model to examine the stability and
dynamics of a thin cantilever beam. *e beam was attached
with a moving station submerged in a fluid. Calim [27]
explored the patterns of free and forced fluctuation in a
functionally graded beam assembly supported with an in-
termediate elastic foundation. Tang et al. [28] explored the
transverse vibration of an axially accelerating beam having
time-dependent axial tension. Analysis revealed that vari-
ation in axial speed and axial tension has a direct influence
on the resonance. Mirzabeigy and Madoliat [29] studied the
large amplitude-free vibration of beams resting on the
supporting foundation. *e Winkler model and
Euler–Bernoulli method were used to study the induced
vibrations in elastic foundation and beam, respectively.
Ghannadiasl [30] proposed the application of dynamic
Green function (DGF) to investigate the dynamic response
of railways under varying loading conditions. *e load was
varying in nature with different speeds and accelerations.
Variation in moving load, as well as the elastic parameters of
the foundation, was investigated. It was shown by the
modeling results that the maximum deflection depends on
the increasing or decreasing acceleration of the moving load.

Similarly, Zhang et al. [31] utilized the complex modal
analysis to investigate the dynamic response of a moving
beam resting on intermediate support. Ding et al. [32] in-
vestigated the axially moving beam traveling with super-
critical speed. *e impact of rotary inertia and shear de-
formation on the transverse fluctuations was investigated.

Zhao et al. [33] analytically investigated an axially moving
microbeam. Coupled thermoelastic vibration and heat
transfer process was presented. Mohamed et al. [34] pre-
sented a novel numerical procedure to forecast the forced
steady-state and nonlinear free response of curved beam
under clamped-clamped boundary conditions. An and Su
[35] presented the generalized integral transform technique
as a numerical approach for the dynamic analysis of Tim-
oshenko beam. Esen [36] considered functionally graded
Timoshenko beam to investigate the dynamic response using
the modified finite element method (FEM). *e beam under
consideration was resting on elastic support and was ex-
posed to a mass moving with a variable speed. For the first
time, Ding et al. [37] proposed a generalized boundary
conditions approach for axially moving beams supported by
vertical and torsional springs at both ends. Shao et al. [38]
investigated the nonlinear dynamic behavior of a moving
membrane with fluctuating speed. It was concluded that the
nonlinear vibration characteristics of a membrane are
sensitive to the initial motion conditions.

A thorough review of the literature reveals a significant
lack of comprehensive investigations on the problem of an
axially moving beam with nonlinear viscoelastic interme-
diate support. To the best of author’s knowledge, problem of
transverse vibration in an axially moving beam is tackled by
providing supports at the ends of the moving beam. In
authors’ opinion, end supports are likely to result in lower
quality process. *erefore, intermediate viscoelastic sup-
ports are presented here as a possible solution to mitigate the
vibration in moving beams. Also, in view of the nature of
involved equations of motion, authors also feel the need to
investigate the application of the finite difference method
(FDM) on the nonlinear dynamics of beams under con-
sideration. In this study, transverse vibrations in axially
traveling beams with a roll-to-roll configuration supported
by the viscoelastic intermediate foundation were studied.
Nonlinear equations of motion for transverse vibrations
were derived using Hamilton’s principle. A model based on
the finite difference method coupled with the state-space
approach was presented. *e effect of parameters, such as
axial translation velocity, flexure rigidities of the beam,
damping, and stiffness of the support on the transverse
response amplitude and frequencies of the system in the
subcritical region, were investigated.

2. Problem Formulation

An axially moving beam on a viscoelastic foundation for
analyzing the vibrations characteristics is presented in
Figure 1. *is model mainly includes stiffness, damping,
length, and end supports. *e beam has flexural rigidity EI
and axial tension T and moves with an axial velocity (v).
Transverse displacement of the beam is w (x, t).

Free body diagram of an infinitesimal element of the
considered beam is shown in Figure 2. Here, S is the shear
force and Mb is the bending moment. Viscous damping
force, spring force, and inertial force are represented by Fd,
Fs, and FI, respectively. First, the total kinetic energy and
potential energy of the moving beam were calculated by
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considering ρ as the density and A as the cross-sectional area
of the beam. Hamilton’s principle was then applied to derive

the equation of motion. Transverse vibration of the beam is
described by
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where E is the modulus off elasticity, ρ is the density of the
beam material, A is the cross-sectional area, and I is the
moment inertia of the beam. Axial speed and axial tension in
the beam are represented by v and T, respectively. *e linear
stiffness, nonlinear stiffness, and damping of the foundation
are represented by k1, k2, and ξ, respectively. Introducing the
following dimensionless variables transforms the equation
of motion into a normalized equation:
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where v∗ represents the dimensionless transport speed (a
ratio between physical and wave velocity in the beam), while
parameter α is the dimensionless flexural rigidity.

2.1. Finite Difference Formulation. Transverse vibrations of
the moving beam on a nonlinear viscoelastic foundation are
numerically solved, and essential mathematical formulation is
presented in equation (2). An analysis approach based on the
finite difference method is used to obtain second-order ordi-
nary differential equations (ODEs) by transforming the fourth-
order HPDE. Discretization of the equation is then achieved by
the central difference scheme given by the following equations:

Mb

T

S
FI Fs

S + dS

Mb + dMb
Fd

Figure 2: Free body diagram of the infinitesimal beam element.

L
v

z

x

Figure 1: Schematic of an axially moving beam with intermediate support.
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*e following second-order ordinary differential equa-
tions are produced:
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where the total number of spatial points is represented by n
and step size is represented by dx∗. *e subsequent matrix
form of equation (6) is given by
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where M, G, K1, and K2 are (n − 1)∗ (n − 1) matrices,
which have the following structure:
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System of second-order ordinary differential equations
was then transformed into a system of first-order ordinary
differential equations by applying state-space approach:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (8)
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where

w∗1 � y1, w∗2 � y3, w∗3 � y5, . . . . . . . . . , w∗(n− 1) � y2∗(n− 1)− 1.

(9)

*e initial conditions used in the system of ODE’s (8) are

y1(0) � y3(0) � y5(0) � · · · � y2∗(n− 1)− 1(0) � a x∗( ,

(10)

y2(0) � y4(0) � y4(0) � · · · � y2∗(n− 1)(0) � b x∗( ,

(11)

where a(x∗) is the initial transverse deflection and b(x∗)

represents the initial transverse speed.

3. Numerical Illustrations and Discussion

Numerical simulations were performed to investigate the
effect of different factors such as flexural rigidity of the beam,
axial speed of the beam, damping of the foundation, and
stiffness of the foundation on the vibration characteristics of
the axially traveling beam. Values of the parameters used in
the simulations are given in Table 1. Simulations were
performed for the initial transverse displacement of
“a(x∗) � 0.01 sin(x∗)” and initial transverse speed condi-
tion of “b(x∗) � 0”. An in-house matlab code was used for
the simulations.

First of all, the solution method used in the current
analysis (Method 1) was verified by comparing it with the
method (Method 2) presented by An and Su [35]. Com-
parison of the midspan transverse displacement for the case
of an axially moving beam having nondimensional speed of
“v∗ � 0.1” and nondimensional flexure rigidity of “α � 0.2”
is shown in Figure 3.

Response obtained from both solution methods was
found to be in good agreement. It was also observed that
the solution method used in this study is an efficient
approach having long-term stability and excellent
convergence.

Figures 4 and 5 show the comparison of transverse
vibration as a function of axial speed in an axially moving
beam. Transverse displacement at different locations
(x∗ � 0.3, 0.5, and 0.7) of the beam at different axial
speeds, v∗ � 0.1, 0.3, and 0.5, (equals to 3m/s, 9 m/s, and
15m/s, respectively) is presented in Figure 4. Figure 5
plots the trend of the fundamental frequency at different
axial speeds. It may be noted from Figure 5 that an in-
creased value of axial speed is accompanied by an ex-
ponential decrease in dimensionless fundamental
frequency. For the stationary beam, it has a positive value
of 7.3, which ultimately reaches zero for an axial speed
approaching a value of 1.18 (equals to 35m/s). *e critical
speed of the beam can also be interpreted as the speed at
which the frequency of the vibration becomes zero;
therefore, the critical speed of an axially moving beam
under the abovementioned conditions is 35m/s. Although
the fundamental frequency of the vibration is experi-
encing a downward trend, the amplitude of vibration is

unaffected, as evident from Figure 4. *erefore, it is
concluded that the critical speed at flexure rigidity of “0.2”
is 1.18. Similarly, Figures 6 and 7 show the impact of
flexure rigidity on the transverse fluctuations of moving
beams resting on the viscoelastic foundation.

Figure 6 shows the effect of flexural rigidity, α, on the
midspan transverse displacement of axially moving beam.
Based on Figure 6, increasing the flexure rigidity of the beam
reduces the transverse displacement (24% decrease in dis-
placement magnitude by increasing α from 0.2 to 0.3, and
47% decrease in magnitude by increasing α from 0.3 to 0.5)
but at the same time will increase the nondimensional
fundamental frequency from 7.3 to 9.8, as shown in Figure 7.
Flexure rigidity also increases the critical speed of the axially
moving beam (from 1.18 to 1.65).*e higher value of flexure
rigidity will somehow increase the internal damping (in
terms of lower vibration amplitude) but at the cost of higher
fundamental frequency.

Figures 8 and 9 represent the effect of damping of vis-
coelastic support on the vibration of the beam. Transverse
displacement of beam at different locations
(x∗ � 0.3, 0.5, and 0.5) for different values of the damping
factor is given in Figure 9. A sharp decline in the response is
observed throughout the beam length with an increase in the
damping of the viscoelastic support.

Transverse displacement of midpoint (x∗ � 0.5) of the
beam is plotted for different axial speeds
(v∗ � 0.1, 0.3, and 0.5) at increasing values of damping
factor (ξ∗ � 0.005, 2.0, and 3.5) (Figure 9). As shown in
Figure 9, with an increase in damping of the support, there is
a quite visible reduction in the vibration amplitude. Inter-
estingly, the vibration amplitude reduction is more visible
when beam is moving with higher axial speed. A rapid
reduction in the vibration magnitude for the case of ξ∗ � 3.5
is observed when the axial speed is v∗ � 0.5.

*e effect of the support damping on the nondimen-
sional fundamental frequency of the beam is presented in
Figure 10. Nondimensional frequency and the critical speed
of the beam decrease with an increase in the damping.
Nondimensional frequency decreases from 7.3 to 6.4, and
critical speed decreases from 1.18 to 1.15 when the damping
is increased from 0.05 to 3.5.

Figure 11 presents the variation of nondimensional
fundamental frequency as a function of nondimensional
axial speed at various magnitudes of support stiffness. An

Table 1: Values of parameters used in simulations.

S. No. Parameters Value
1 Length of the beam (L) 1m
2 Density (ρ) 2710 kg/m3

3 Axial tension (T) 2.5 kN
4 Width of the beam 0.1m
5 *ickness of the beam 0.01m
6 Modulus of elasticity (E) 6.9 ∗ 1010 Pa
7 Axial speed of the beam (v) 3m/s
8 Foundation stiffness (linear, k1) 800N/m
9 Foundation stiffness (non-linear, k2) 200N/m
10 Foundation damping (ξ) 4Ns/m2
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opposite effect to damping on the nondimensional fre-
quency and critical speed is observed in the case of
stiffness of the foundation. *e frequency of the beam
increases from 7.3 to 8.8, and the critical speed increases
from 1.18 to 1.43 when the linear stiffness of the beam
increases from 0.6 to 1.5 (corresponding to 800 N/m and
6000 N/m, respectively).

A case of a forced vibration was also considered with
external excitation force f(x∗, t∗) � F sin(Ωt∗). *e mag-
nitude of the excitation force is “F,” and the frequency of the
excitation is Ω. Frequency and displacement of the axially

moving beam were measured under various excitation
frequencies and are presented in Figure 12.

Figures 12(a)–12(c) show the frequency domain re-
sponse of the axially moving beam. Starting with lower
excitation frequency (Ω�1.0), frequency domain response,
Figure 12(a) indicates that the fundamental frequency of the
beam is higher than the excitation frequency (ω2 >ω1). As
the excitation frequency is increased, fundamental frequency
of the beam and the external excitation frequency match at
“Ω� 7.4,” and as a result, the response increases exponen-
tially (Figure 12(d)).
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4. Conclusions

In this study, transverse vibrations in axially traveling beam,
supported by the viscoelastic intermediate foundation, was
studied. Nonlinear equations of motion were derived using
Hamilton’s principle. *e finite difference method coupled
with the state-space approach was presented as an efficient
solution technique. *e effect of parameters, such as axial
translation velocity, flexure rigidities of the beam, damping,
and stiffness of the support on the transverse response
amplitude and frequencies of the system in subcritical re-
gion, was investigated. *e major findings of this study may
be summarized as follows:

(i) In the absence of effective damping, the dimen-
sionless fundamental frequency was observed to
decrease with the increasing value of axial speed.
Having the positive value of 7.3 for the case of
stationary beam ultimately reaches to zero for an
axial speed approaching a value of 1.18. Although,
the fundamental frequency of the vibration is de-
creasing, the amplitude of vibration is unaffected.

(ii) Higher value of flexure rigidity increases the internal
damping (in terms of lower vibration amplitude) but
at the cost of higher fundamental frequency. A de-
crease of 24% in the peak magnitude of transverse
displacement is observed with increasing α from 0.2 to
0.3 and 47% decrease in the peak magnitude by in-
creasing α from 0.3 to 0.5. In contrast, increasing the
flexural rigidity, nondimensional frequency, and
critical speed of the beam increases from 7.3 to 9.8 and
1.18 to 1.65, respectively.

(iii) With an increase in the damping of support, there is
a visible reduction in the vibration amplitude. In-
terestingly, the vibration amplitude reduction is
found to be more significant when the beam is
moving with a higher axial speed. A significant
reduction in the peak vibration magnitude is ob-
served for the case of beam having ξ∗ � 3.5 and axial
speed of v∗ � 0.5. Nondimensional frequency de-
creases from 7.3 to 6.4, and critical speed decreases
from 1.18 to 1.15 when the damping is increased
from 0.05 to 3.5.
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(iv) Higher value of the foundation stiffness results in
the increase of both nondimensional frequencies as
well as the critical speed of the beam. Critical speed
increases from 1.18 to 1.43, whereas the nondi-
mensional frequency of the beam increases from 7.3
to 8.8 when the linear stiffness of the beam is in-
creased from 0.6 to 1.5.

Abbreviations

A: Cross-sectional area of the beam
v∗: Dimensionless axial speed
E: Modulus of elasticity of beam
b(x∗): Initial transverse speed
T: Tension in beam
ρ: Density of the beam
v: Axial speed of beam
L: Beam length
ξ: Foundation damping
w: Transverse displacement
k1: Linear stiffness of foundation
α: Dimensionless flexural rigidity
k2: Nonlinear stiffness of foundation
a(x∗): Initial transverse deflection.
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