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Electrical capacitance tomography (ECT) has been used to measure flow by applying gas-solid flow in coal gasification,
pharmaceutical, and other industries. ECT is also used for creating images of physically confined objects. *e data collected by
the acquisition system to produce images undergo blurring because of ambient conditions and the electronic circuitry used.
*is research includes the principle of ECT techniques for deblurring images that were created during measurement. *e data
recorded by the said acquisition system ascends a large number of linear equations. *is system of equations is sparse and ill-
conditioned and hence is ill-posed in nature. A variety of reconstruction algorithms with many pros and cons are available to
deal with ill-posed problems. Large-scale systems of linear equations resulting during image deblurring problems are solved
using iterative regularization algorithms. *e conjugate gradient algorithm for least-squares problems (CGLS), least-squares
QR factorization (LSQR), and the modified residual norm steepest descent (MRNSD) algorithm are the famous variations of
iterative algorithms.*ese algorithms exhibit a semiconvergence behavior; that is, the computed solution quality first improves
and then reduces as the error norm decreases and later increases with each iteration. In this work, soft thresholding has been
used for image deblurring problems to tackle the semiconvergence issues. Numerical test problems were executed to indicate
the efficacy of the suggested algorithms with criteria for optimal stopping iterations. Results show marginal improvement
compared to the traditional iterative algorithms (CGLS, LSQR, and MRNSD) for resolving semiconvergence behavior and
image restoration.

1. Introduction

Industrial tomography offers a prospect to measure and
visualize the physically constrained industry operations [1].
Industrial tomography is divided into two categories: (i)
hard field and (ii) soft field. *is categorization of tomog-
raphy is according to the measurement principles. X-ray,
positron emission particle tracking (PEPT), c-ray tomog-
raphy, and so forth fall under the group of hard-field to-
mography. *e latter group, named soft field, comprises
microwave tomography (MWT), electrical impedance

tomography (EIT), and electrical capacitance tomography
(ECT) [2, 3]. ECT hasmany benefits when used in a gas-solid
flow, such as being less prone to signal loss and being easier
to automate. As coal combustion processes typically use
nonconductive materials, such as powdered coal, the cir-
culating fluidized bed (CFB) [4] processes use ECT because
it is the most acceptable option for these processes. ECT is
applicable in rough ambient conditions where its tolerance
to high temperature and pressure is required. It is less priced,
fast, safe, and easy to use. In particular, ECT can offer extra
data on the gas-solid flow hydrodynamics [5], for example,
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flow transition from bubbling to slowing flux for scaling the
CFB process from the laboratory scale to the production
scale with diverse riser structures and cyclones. ECT is
commonly used in many other imaging modalities for vi-
sualization besides magnetic resonance imaging (MRI) [6]
and X-ray tomography [7].

Since the invention of tomographic systems, the foremost
goal of the system has been to detect/sense the complex data
followed by its meaningful interpretation. *is interpretation
helps estimate qualitative and quantitative information about
the behavior of fluids moving within the process [8]. *ese
measurements may be taken across pipes, vessels, storage
tanks, or reactors. *e origin of this extension of science is
attached to medical science, where different tomographic
techniques are applied to get the data of static parts from the
human body [9]. Later, the static values of measurand using
these tomographic techniques were applied.

Semiconvergence is the main problem in iterative al-
gorithms, like any other algorithm. *is work spotlights the
deblurring of image restored from the received data in in-
dustrial tomography effectively to handle semiconvergence
[10]. *e iterative technique enhances image quality with
minimal error and converges at the optimal point by
implementing proposed algorithms using Krylov solvers for
linear systems [11].

*e measurement from ECT (or any tomography) leads
towards a system of large sparse linear equations [12]. Since
these systems are ill-posed in nature, this means that they can
converge to more than one solution. In order to come across a
unique solution, a variety of algorithms have been deployed.
*e iterative algorithms are the foremost choice in such
scenarios [13]. Furthermore, the reconstructed image is subject
to blurring [14] and speckling [15] because of the environment
and electric circuitry used. *is work emphasized the removal
of such noise during and after measurement.

When images are taken, it is normal for them to be
blurred. Image deblurring is the method of restoring an
approximate image by modeling it as the solution of the
linear operator equation [16, 17].

Ux � Y, UεRMxN
, xεRN

, (1)

where x is a vector of the actual image we aim to deblur. *e
matrix U is ill-determined, referred to as the ill-posed
problem, and Y matrix is vector values at the receiving end
[18]. *is value of the right-hand side is generally obtained
through measurement.

􏽢Y is an error-free matrix, whereas Yn represents random
noise added during measurement. Similarly, x � 􏽢x + xn; in
this expression, xn is the error that deblurs the image, and we
try to eliminate it.

Problems like these are cropped up in astronomy, imaging
for themedical field, and geophysics. In general, discretization
of an ill-posed continuous model produces equation (1). For
example, discretization means that matrix U could be ill-
conditioned [12], or its data could be distorted, which could
lead to inaccuracies in the approximate solution. Directly
solving equation (1) without error results in an inaccurate and
unstable approximate solution, so the equation must be

regularized first. Many regularization technologies such as the
Tikhonov regularization [19], truncated iterative algorithms
[20] (e.g., steepest descent and conjugate gradient (CG) it-
erations), decomposition of truncated singular value (TSVD)
[21], and hybridmethods [22] have been regularly studied and
discussed in the literature.

It is critical to set the regularization parameter to an ap-
propriate value while incorporating it with a regularization
method. *e fixed-point algorithm, generalized cross-valida-
tion (GCV), the weighted-GCV (W-GCV) [23], L-curve [24],
and discrepancy principle [25] are suitable for Tikhonov reg-
ularization [19] as a technique for parameter choice. *ere are
some advantages and disadvantages in the parameter selection
methods [26]. Choosing an optimal regularization parameter is
a complex task. Tikhonov regularization may not be a suitable
alternative to iterative algorithms like CG and steepest descent,
which use iterations to speed up convergence. Only through
matrix-vector multiplication with U or UT do they have access
to the coefficient matrix U. *e iterative regularization algo-
rithms can be tricky to apply to solve the linear system Ux � Y

due to the semiconvergence behavior [10]. *e phenomenon
under discussion is that the initial iterations of the algorithm
lead to regularization solutions, and, after a small number of
iterations, the estimated results converge to some further
undesirable vector referred to as the first-order regularization.
*is unwanted vector is corrupted by errors and thus an in-
accurate representation. Another way of saying this is that, in
essence, an erroneous calculation of the stopping iteration
would yield a suboptimal solution, which necessitates choosing
a stopping point for the iterations. Techniques such as the
difference theory and the L-curve may be used for the selection
of such an appropriate termination [24]. Still, as with the
Tikhonov regularization, it is also nontrivial [19].

Reducing the complexity of finding the termination it-
eration number of iterative regularization algorithms is partly
achieved by hybrid approaches. Combining an iterative
Lanczos bidiagonalization algorithm [11, 27] with a regula-
rization algorithm such as Tikhonov regularization and TSVD
allows for a hybrid approach that uses an iterative Lanczos
algorithm tandem with a regularization algorithm such as
Tikhonov regularization and TSVD at each iteration.
*erefore, regularization is accomplished by filtering Lanczos
bidiagonalization and by choosing a parameter for regula-
rization on each iteration [27]. W-GCV has recently been
researched in the sense of the Lanczos-Tikhonov hybrid
method. *is Lanczos-Tikhonov hybrid method will reduce
the iteration number’s impact on the solution. But the
semiconvergence property is characterized by its proceeding
iteration. In combination with Tikhonov regularization in the
generated Krylov subspace the GKB algorithm’s regulariza-
tion parameters for the partial Golub–Kahan iteration are
selected [11]. GKB solutions, in some cases, are more accurate
than W–Lanczos–Tikhonov GCV’s. *e two strategies are
nevertheless comparatively successful in some situations.

*ree iterative algorithms that are built on the iterative
regularization are proposed in this work and are acted as
image deblurring algorithms and soft thresholding. Note that
􏽢Y is noise in right-hand and this noise propagates with each
iteration. *e propagation of the noise causes
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semi-convergence behavior in iterative algorithms such as
CGLS, LSQR, and MRNSD [10, 28]. Combining iterative
regularization algorithms and a noise lessening method like
soft thresholding at every iteration will allow us to overcome
the semiconvergence behavior of iterative regularization. A
new algorithm has one part where soft thresholding is used in
conjunction with CGLS and LSQR and another part where
soft thresholding is used in conjunction with MRNSD. Be-
cause of these algorithms, the resulting models are robust and
highly efficient in practical applications. Our analysis shows
that MRNSD and soft thresholding are both convergent al-
gorithms. *e computational tests demonstrate that the
suggested algorithms resolve semiconvergence and restora-
tion behaviors. *e results of CGLS, LSQR, and MRNSD are
only marginally better than their optimal iterations [29].

Tomographic technology is done by collecting data on
the boundary of an area like a process vessel or pipeline of
sensor signals. *is process reveals information on com-
ponent characteristics and distribution within the sensing
field [3, 30]. Most tomography techniques concern the
creation of a cross-sectional image by abstracting details. For
example, a parallel set of sensors (Figure 1) can be used to
analyze the projections of suitable radiation in the subject as
expected to be a circular cross section in their sensing area
[31, 32]. To analyze the whole cross section, other projec-
tions must be obtained by rotating the object to the direction
of the sensor field or, ideally, by rotating the sensors around
the subject. Such a technique may not always be suitable
because it may be impractical to rotate the subject or the
sensors physically. It may take too long for the assembly to
rotate relative to changes in the subject under review [6].

ECT has a basic principle: Capacitance measurement by a
sensor having several electrodes surrounding a nonconduc-
tive industrial procedure, such as a gas-solid flow, is per-
formed to measure the process’s impedance. *e region that
measures the capacitance of different materials has been
partitioned into a higher number of virtual pixels, which
yields the visualization of the cross-sectional distribution of
object(s) under study. Image reconstruction algorithms are
then used to recreate the image from the calculated capaci-
tance data and the result. An ECTsystem is made up of three
different parts: sensors, data acquisition boxes, and computers
work the image restoration algorithms as shown in Figure 2.

Generally, an ECT sensor is typically fitted with the var-
iable number of electrodes uniformly arranged around a
pipeline or vessel, for example, in a gas-solid CFB. *e
electrode and a grounded screen have an isolating sheet
among them. A picture of the setup used is shown in Figure 3.
*e specification and data acquisition are provided in [33].

Reconstruction of an image in ECT is usually an ill-posed
inverse problem, meaning that inverse problems can converge
to more than one solution. Hence unique solution needs
vigorous calculations to find. Some years ago, image recon-
struction algorithms for ECTwere tested [34].*ere have since
been several new or updated image reconstruction algorithms
designed to overcome the ill-posed and ill-conditioned
problem. Categories usually involve three classes.*e first class
of algorithms is the noniterative, and the second class is the
iterative. Lastly, there is a third class that implements direct

mapping.*e iterative image reconstruction technique aims to
lessen the capacitance error while also enhancing image quality.

*ere are several popular algorithms for solid distri-
bution reconstruction in a fluidized bed. Among these, the
Landweber iteration and the linear back projection (LBP) are
the most famous [20, 35]. LBP is fast and reliable.

Rotation
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Figure 1: Use of projections to generate an image.
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Figure 2: Layout of our ECT system used.

Figure 3: ECT sensor used for data acquisition.
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Nevertheless, it does abysmally for complex distribution,
that is, fluidized bed crown-like solids distribution. It is
possible to apply Landweber iteration to improve the image
quality. All reconstruction algorithms are transform-based
or iterative. Abel inversion is for spherical or axial symmetry
[21]. In case of filter back projection algorithm (FBPA),
intensive projections are needed for desired measurements.
However, maximum likelihood expectation maximization
(ML-EM) has multiple maxima with no guarantee of global
maxima [23]. Algebraic Reconstruction Techniques (ART) is
good as it has few projections required for squared problems
but low resolution. *e steepest Descent problems used here
deal with nonsquare problems. *is noise data, being cor-
related. *ere exist various algorithms to dispense these
spots. Some of the PDE methods are quick but lose sig-
nificant picture data during despeckling. Song et al. [36]
investigated the effects of the projected angle and number of
rays on the temperature reconstruction, and the results were
computed for both fan beam and parallel beam perspective.
It was observed that poor reconstruction usually appears on
the corner and the center of the reconstruction area.
However, no software technique was used to enhance the
image.

One of the assignments is to device an ECTsensor. In the
ECTsensor design, the different factors include temperature,
strain, being nonintrusive and noninvasive, and a diverse
potent range [8]. To obtain gas-solid fluidized beds of
various dimensions and structures and to investigate gas-
solid fluidized beds of various dimensions and structures,
ECTsensors have to be specially built and calibrated to attain
better-quality images. In the commercial implementation of
ECT in CFBs, effective sensor construction and optimized
design are key factors. *e image quality is defined by the
signal-to-noise ratio (SNR) for ECT. SNR is a feature of both
the acquisition system used and the sensor layout [31]. *e
second problem is the AC-based ECT system’s operation
parameter configuration.

Additionally, it will be discussed later regarding the SNR
evaluation for various structures and diverse measurements
of ECT sensors. Additionally, as the sensitivity in the center
of an ECT sensor decreases with the rise in the diameter of
the ECT sensor, poor image quality is obtained with a large-
scale visualization problem [37]. *e capacitive measure-
ment by the ECT system of Figure 3 induction of Gaussian
noise is used as input data.

2. Methodology

*e data for noise applied during the analysis is correlated,
making it easier to delete. Many different approaches are
used to remove the speckles. Some of the PDE methods are
quick but lose significant picture data during despeckling
proceedings. For this work, the variation of iterative algo-
rithms from CGLS, LSQR, and MRNSD was used to
eliminate blurring, hence visualizing a pattern of objects
confined within the area under study [10]. *e measured
data were collected with the help of electrical capacitance
tomographic system. Clear and blurred images were con-
volued to carry out the deblur process. By doing this, a

system of ill-posed linear equations was evolved, as repre-
sented in equation (1). Finally, equation (2) represents the
matrix of equation (1).

U12 U13 · · · · · · U1N

U21 U21 · · · · · · U2N

⋮ ⋮ ⋮ ⋮ ⋮
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. (2)

In each iteration, there is the propagation of noise on the
right side of Y because of Yn. Because matrix U is ill-con-
ditioned and propagates noise with iteration, the quality of
the image first improves and then declines. *e outcome
results in iterative algorithms like CGLS, LSQR, and
MRNSD being moderately convergent. *is work was for-
mulated on the base of iterative algorithm with a blend of
image deblurring soft-thresholding. Additionally, an ap-
propriate stopping criterion for the algorithm is developed
to halt the convergence at optimal iteration. According to
[10], the soft-thresholding operator Sμ is represented in
equation (3) and k has variable values up to grid point N.

Sμ xk( 􏼁􏼐 􏼑
k

� sgn xk( 􏼁 · max xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −

μ
2
, 0􏼚 􏼛, k � 1, 2, . . . , N, xεRN

.

(3)

*e product of the sparsity of the large matrix U and the
diagonal is a measure of the proportion of nonzero elements
in most of the problems. *ere is more than one solution to
ill-posed issues to keep the solution of matrix x with the
minimum Ux − Y; it is an element of the error to equation
(4). By using rank, the error solution is taken to the lowest
possible value. Parabolic-shaped quadratic equation (5) is
assumed, and the gradient is determined as shown in
equation (6).

U
T
Ux � U

T
Y, (4)

f(x) � x
T

U
T
U􏼐 􏼑 − 2 U

T
Y􏼐 􏼑

T
x, (5)

f′(x) � 2U
T
Ux − 2U

T
Y. (6)

To determine the solution of an ill-posed matrix,
equation (4) is sufficient. Generally, the preferred method is
to describe a point x0 and then find the solution as the
function approaches zero [38]. *e next iteration is set to be
at the next stage, xi+1, that function reached xi. Once the
function gradient is equal or approximately equal to zero,
the function will converge.

*e residual error in equation (1) is (estimated)
explained as ei � Y − Uxi. What you have discovered ex-
plains how close Uxi and Y are to each other. Similarly, qi �

UTY − UTUxi shows residual equation error (4). Further-
more, UTY and UTUxi are at a distance from each other.
*is separation is defined by the following equation:

xi+1 � xi + ηiqi. (7)
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As per requirement, qi and qi+1 are made orthogonal to
each other.*is pattern of recurrence for the steepest descent is
described by equation (9), while ηi is shown by equation (8).

ηi �
q

T
i qi

q
T
i U

T
Uqi

, (8)

ei+1 � ei − ηiUqi. (9)

*e steepest descent algorithm terminates at optimal
iteration to prevent the semi-convergence behavior, equa-
tion (10) and equation (11) [10] were used. Equation (10)
computes maxima of Y, and (11) is a search to ensure that ei

is small or less than zero.

k(Y) �
σmax(Y)

σmin(Y)
, (10)

ei

����
����≤

k U
T
U􏼐 􏼑 − 1

k U
T
U􏼐 􏼑 + 1

⎛⎝ ⎞⎠. (11)

2.1. >e Method of Conjugate Gradients for Least Squares
(CGLS). For this CGLS, there is only one change to steepest
descent, and it pursuits in the direction of the specified user-
defined pointpi instead of qi [29].*ispi relies on variable c. ci

will be given for soft thresholding, and the equation is given as
follows:

ci � S
T
Si. (12)

*e following is the algorithm for CGLS [10]. Algorithm
1

2.2. >e Method of the Minimal Residual Norm of Steepest
Descent (MRNSD). *e CGLS algorithm [10] is fast, and the
Krylov solver is un restricted. *e unconstrained system
aims to protect unaltered positivity [39]. Another way to do
this is to add a constraint to the equation, if we are going to
regularize the least-square functions [21].

J(x) �
1
2

Ux − Y
2
2

����
����. (13)

Now, parametrizing x � kz and taking the transform, we
get

J(x) �
1
2

Ux − Y
2
2

����
����. (14)

Applying the chain rule, it is concluded that

gradzJ(z) � XgradxJ(f) � XU
T
(Ux − Y),

X � diag(x).
(15)

Equation (14) is taken into account for the MRNSD
algorithm [10] that differs from CGLS.

*e following is the algorithm for MRNSD [10].
Algorithm 2

2.3.>eMethod forLeast Square forQR-Factorization (LSQR).
LSQR is based on Lanczoss bidiagonalization algorithm [11].
*e trajectories of both LSQR and MRNSD are similar as

they follow similar trajectories in kind. *e LSQR derivation
is nevertheless not as simple as MRNSD [28].

UVi � Wi+1Yi,

U
T
Wi+1 � ViY

T
i + ηi+1vi+1g

T
i+1.

(16)

gi+1 � (0, . . . , 0, 1)TεRi+1, Vi � (v1, v2, . . . , vi), and
Wi+1 � (u1, u2, . . . , ui+1) are orthonormal columns. *e (i +

1) × i lower bidiagonal matrix is denoted as

W
T
i+1UVi � Yi �

η1
c2 η2

c3 ⋱
⋱ ηi

ci+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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∈ R
(i+1)×i

. (17)

*e following is the algorithm for LSQR [40].
Algorithm 3

3. Results and Discussion

Simulations were performed in MATLAB for 100 iterations
to show image reconstruction implementation. Iterations
used CGLS, LSQR, and MRNSD iterative deblurring algo-
rithms to fulfill the objectives.

MRNSD applies only to least-square weighted problems.
*e only difference between CGLS and MRNSD is that
CGLS does not require being nonnegative [7]. CGLS, LQR,
and MRNSD are algorithms for solving least-squares
problems. *e first two solvers are unconstrained, while the
third is constrained. *erefore, the truth value is not pre-
served by the first solver. Given the problem in Figure 4, the
algorithms were run on a computer with 10th Generation
Intel® Core™ i7-10510U (8MB Cache, four-core, 1.8GHz to
4.9GHz) and 32GB, 2×16GB, DDR4 RAM. A 32-bit index
image was generated by adding 6% Gaussian noise to a
512× 512 image, as can be seen in Figure 5.

*e 6% Gaussian white noise is used to blur the original
256× 256 image shown in Figure 4. *e blurred images and
the restored images using three algorithms are seen in
Figure 6. Figures 5 and 6 show that the images restored by
the MRNSD algorithm have less noise and are smoother
than CGLS and LSQR images. MRNSD is robust but not as
robust as the other two algorithms and converges at a higher
number of iterations.

Figure 7 shows the error graph for the CGLS norm
versus the iterations on the x-axis. *e semiconvergence
behavior is very evident. *e error decreases till the 12th
iteration, and, after that, it shoots up. *e iteration is
marked with a red circle to represent where the algorithms
stopped.

Similarly, Figure 8 represents the LSQR error-norm
graph. *e iteration with the lowest error for this algorithm
is the 29th iteration, and, as expected, the error started to
rise. *is section may be divided into subheadings. It should
provide a concise and precise description of the experi-
mental results and their interpretation, as well as the ex-
perimental conclusions that can be drawn.
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*e MRNSD graph that is shown in Figure 9 shows
semiconvergence. But the semiconvergence in MRNSD is
not as vibrant as those in the other two algorithms, and the
error line is a bit smooth.

Table 1 provides convergence error histories of all al-
gorithms. For the test image, CGLS again displays a clear

semiconvergence behavior. *e symbol “∗” is used with the
error to represent the stopping iteration. For CGLS, it was
the 12th iteration with an error of 0.186189, whereas, for
LSQR, it was 0.185546, and it was 0.167680 for MRNSD. For
CGLS and LSQR, these error values increase rapidly, but
they are fractionally stable in the case of MRNSD.

Given: Matrix U, initial guess x0, Right-hand side Y and soft-thresholding parameter μ> 0.
e0 � Y − Ux0
q0 � UTe0
p0 � q0
for i � 1, 2, 3, . . . , do
pi � Uqi

ηi � ci/pTp

Uold � U

U � Uold + ηipi

ei+1 � Sμ(ei − ηiUpi)

Si � UTei

ci � STSi

end

ALGORITHM 1: Algorithm for CGLS.

Given: Ill-posed Matrix U, initial guess x0, Right-hand side Y

xi � x0
S0 � UT(Y − Ux0)

X0 � diag(x0)

c0 � STX0S0
for i � 1, 2, 3, . . . , do
qi � Xisi

pi � Uqi

ηi � min((c/pTp),minqi
< 0(− (Yi/qi)))

Yi � Yi− 1 + ηiqi

Xi � diag(xi)

zi � UTpi

Si � Si− 1 + ηizi

ci � STXiSi

end

ALGORITHM 2: Algorithm for MRNSD.

Select unit length vector w1εRM, c1v0 � 0, and ηn+1vn+1 � 0
for j � 1, 2, 3, . . . , i, do
p � UTwj − cjvj − 1
ηj � ‖p‖; vj � (p/ηj)

e � Uvj − η1wj

cj+1 � ‖e‖; wj+1 � (e/cj+1)

end

ALGORITHM 3: Algorithm for LSQR.
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Figure 4: True image to be constructed.

Figure 5: *e image with induced noise.

(a) (b)

Figure 6: Continued.
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Figure 8: LSQR error norm versus the 50 first iterations.

(c)

Figure 6: Reconstructed image. (a) CGLS at the 12th iteration. (b) LSQR at the 29th iteration. (c) MRNSD at the 39th iteration.
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Figure 7: CGLS error norm versus the 50 first iterations.

8 Mathematical Problems in Engineering



4. Conclusions

*e least-squares method can be used to determine ac-
curate, unbiased estimations of the parameters for a linear
regression model. *e conjugate gradient method is an
efficient way of solving the related normal equations
scheme [41]. In this article, when applying normal
equations of least-quadratic problems to calculate the
output of the estimators related to a linear pattern, we
concentrate on reliable stopping criteria for a conjugate
gradient algorithm. But, for other Krylov processes [11],
such as LSQR, identical stop requirements can be for-
mulated. In order to create stopping criteria, which, given
an a priori probability, stop the conjugate gradient pro-
cess, we will use the stochastic qualities of the linear
regression pattern if stochastic variables can be consid-
ered with lesser probability of iteration running algorithm
termination [42, 43].

If the conjugate gradient methods were used to solve the
test problem, it would be very natural to apply stopping
criteria that would take advantage of the minimization

property of this type of method and also the stochastic
properties of the underlying problem [11].*is is focused on
the recent successful research in this area. *e stopping
criteria in this work are essential because of semi-
convergence nature of the algorithms [10].

*ree iterative approaches, CGLS, LSQR, and MRNSD
algorithms, have been suggested in this paper. *e proposed
algorithms will filter the residual vector iteratively at each
iteration to resolve the semiconvergence in CGLS, LSQR,
and MRNSD. *e problem tested in this work was a non-
square problem. Furthermore, these algorithms can be
problem tests on square problems for the future.
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Figure 9: MRNSD error norm versus the 50 first iterations.

Table 1: History of error norm on various iterations.

Iteration no.
Error norm

CGLS LSQR MRNSD
10 0.189991 0.479320 0.597240
11 0.187661 0.465973 0.577751
12 0.186189∗ 0.446252 0.555261
13 0.187713 0.422392 0.529772
14 0.189511 0.392066 0.509283
27 0.510406 0.198770 0.274235
28 0.573722 0.192086 0.255434
29 0.624306 0.185546∗ 0.244295
30 0.657604 0.193015 0.237046
31 0.693474 0.196067 0.229797
37 0.908695 0.294121 0.178303
38 0.980268 0.345960 0.171797
39 1.075620 0.385787 0.167680∗
40 1.119747 0.408994 0.169063
41 1.168762 0.440049 0.169395
∗*e optimal termination iteration for the given algorithm.
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[31] J. Kryszyn, P. Wróblewski, M. Stosio, D. Wanta, T. Olszewski,
and W. T. Smolik, “Architecture of EVT4 data acquisition
system for electrical capacitance tomography,” Measurement,
vol. 101, pp. 28–39, 2017.

[32] D. Barron, “Basic science: computed tomography,” Current
Orthopaedics, vol. 19, no. 1, pp. 20–26, 2005.

[33] U. Abrar, L. Shi, N. R. Jaffri, M. Short, and K. Hasham,
“Electrical and mechanical sensor-based mass flow rate
measurement system: a comparative approach,” in Proceed-
ings of the 2020 4th International Conference on Robotics and
Automation Sciences, ICRAS, Wuhan, China, June 2020.

[34] W. Zhang, C. Wang, W. Yang, and C. H. Wang, “Application
of electrical capacitance tomography in particulate process
measurement—a review,” Advanced Powder Technology,
vol. 25, no. 1, pp. 174–188, 2014.

[35] Y. Jia, V. Chernyshev, and M. Skliar, “Ultrasound measure-
ments of segmental temperature distribution in solids:
method and its high-temperature validation,” Ultrasonics,
vol. 66, pp. 91–102, 2016.

[36] J. Song, Y. Hong, G. Wang, and H. Pan, “Algebraic tomo-
graphic reconstruction of two-dimensional gas temperature
based on tunable diode laser absorption spectroscopy,” Ap-
plied Physics B, vol. 112, no. 4, pp. 529–537, 2013.

[37] T. Wondrak, J. Pal, F. Stefani, V. Galindo, and S. Eckert,
“Visualization of the global flow structure in a modified
Rayleigh-bénard setup using contactless inductive flow to-
mography,” Flow Measurement and Instrumentation, vol. 62,
pp. 269–280, 2018.

[38] S. Borgwardt and C. Viss, “An implementation of steepest-
descent augmentation for linear programs,” Operations Re-
search Letters, vol. 48, no. 3, pp. 323–328, 2020.

[39] A. E. Kostopoulos and T. N. Grapsa, “Self-scaled conjugate
gradient training algorithms,” Neurocomputing, vol. 72,
no. 13-15, pp. 3000–3019, 2009.

[40] N. R. Jaffri, L. Shi, and U. Abrar, “Solving least square problem
in tomography,” in Proceedings of the Proceedings of the 2020
>e 4th International Conference on Graphics and Signal
Processing, pp. 56–60, ACM, New York, NY, USA, June 2020.

[41] P. Xiong, J. Deng, T. Lu, Q. Lu, Y. Liu, and Y. Zhang, “A
sequential conjugate gradient method to estimate heat flux for
nonlinear inverse heat conduction problem,” Annals of Nu-
clear Energy, vol. 149, Article ID 107798, 2020.

[42] G. Landi, E. Loli Piccolomini, and I. Tomba, “A stopping
criterion for iterative regularization methods,” Applied Nu-
merical Mathematics, vol. 106, pp. 53–68, 2016.

[43] M. Hanke and J. Nagy, “Inverse toeplitz preconditioners for
ill-posed problems,” Linear Algebra and its Applications,
vol. 284, no. 1-3, pp. 137–156, 1998.

Mathematical Problems in Engineering 11


