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1is paper presents a control scheme that allows height position regulation and stabilization for an unmanned planar vertical
takeoff and landing aircraft system with an inverted pendular load. 1e proposed controller consists of nested saturations and a
generalized proportional integral (GPI). 1e GPI controls the aircraft height and the roll attitude; the latter is used as the fictitious
input control. Next, the system is reduced through linear transformations, expressing it as an integrator chain with a nonlinear
perturbation. Finally, the nested saturation function-based controller stabilizes the aircraft’s horizontal position and the pen-
dulum’s angle. Obtaining the control approach was a challenging task due to the underactuated nature of the aircraft, particularly
ensuring the pendulum’s upright position. 1e stability analysis was based on the second method of Lyapunov using a simple
candidate function. 1e numerical simulation confirmed the control strategy’s effectiveness and performance. Additionally, the
numerical simulation included a comparison against a PD controller, where its corresponding performance indexes were es-
timated, revealing that our controller had a better response in the presence of unknown disturbances.

1. Introduction

1e control of underactuated mechanical systems is a widely
studied field and continuously increases knowledge, mainly
because controlling this kind of system is challenging since it
has fewer controllers than degrees of freedom. 1e inverted
pendulum system is a classic example of an underactuated
system. It consists of a freely spinning load around an axis and
attached to a base that freely moves forward and back-
ward—multiple authors have proposed control laws to stabilize
this kind of system in its inverted position. Block and Spong [1]
proposed the partial feedback collocated and noncollocated
control law for the stabilization around the origin of the
acrobot and the pendubot. Fantoni and Lozano [2] proposed a
nested saturation control for the wheeled inverted pendulum
that enables stabilization around the origin. Ibañez and Frias
[3] proposed a nested saturation control for the nonlinear

perturbed wheeled inverted pendulum, expressed it as a chain
of integrators. 1e proposed control demonstrates asymptot-
ical stability around the origin through the Lyapunov method
when the pendulum angle is in the upper half-plane. 1e
Furuta pendulum is another challenging system that has
attracted the attention of several researchers, who have pre-
sented many interesting approaches to control this kind of
pendulum. For instance, in [4], the authors proposed a Lya-
punov-based control method for the stabilization around the
origin, Furuta pendulum stabilization around the origin, while
in [5], the authors introduced an active disturbance rejection-
based control and its stability analysis. Another exciting ex-
ample of underactuated systems is the unmanned aerial vehicle
(UAV) such that this kind of system has been of high interest in
the present century because of wide applications for different
fields such as farming, photography, exploration, and military
[6–8]. A typical example of a UAV is the planar vertical takeoff
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and landing (PVTOL) aircraft, a simplified model of the actual
vertical takeoff and landing aircraft [9], which encompasses
almost all the dynamics found in real UAVs. 1e PVTOL has
been used as a suitable benchmark to test new and existing
controllers because it behaves like the well-known quadrotor in
a two-dimensional plane.1ere existmanyworks that tackle the
PVTOL stabilization problem. For instance, Aguilar-Ibanez
et al. [10] proposed a control scheme using controlled La-
grangian for PVTOL stabilization. Fantoni et al. [11] introduced
a control scheme using the PVTOL attitude as fictitious control
and nested saturation technique for the stabilization at the
origin. In [12], Lozano et al. showed that once controlling the
PVTOL aircraft height, the system resembles an inverted
pendulum, and using a change of coordinates, it can be seen as
an integrator chain with nonlinear disturbance. Also, in this
study, the authors present a nested saturation-based control and
demonstrated asymptotic stabilization at the origin. In [13],
based on the image-based visual servoing method and the
backstepping technique, the authors presented a novel control
strategy to force a vertical takeoff and landing (VTOL) aircraft.
Works [14, 15] can be valuable sources for the readers interested
in this problem.

Combining the inverted pendulum and UAV systems
adds a degree of freedom, obtaining a system noneasy to
stabilize. Hehn et al. [16] proposed this problem in 2011 and
named it the flying inverted pendulum, consisting of an
inverted pendulum attached to a quadcopter. 1e control
goals of this study are stabilization at the origin and tracking
a circular trajectory for the quadcopter, using linear qua-
dratic regulator (LQR) control in both cases.1e fact that the
pendulum weights less than 5% of the UAV weight allows us
to separate its corresponding dynamics. Some works found
in the specialized literature deal with the control of the flying
inverted pendulum using different control ideas [17–20],
and some others consider the control of UAVs carrying
loads (commonly known as the flying crane).1is problem is
closely related and relevant to the central control problem in
this study. For instance, Nicotra et al. [21] showed that the
linearized model of a quadcopter with a suspended load
could be stabilized at the origin using nested saturation
functions. Pizetta et al. in [22] proposed a total feedback
control with an auxiliary controller to accomplish tracking
trajectory; almost all the references therein were developed to
test the PVTOL system indoors, mainly to avoid counteracting
the undesirable effect of the wind, which is not an easy task.
However, techniques for nonlinear systems can be applied to
obtain robust controllers, as the controller developed in this
study. Of these techniques, perhaps the most used are back-
stepping control [23, 24], fuzzy control [25–27], active dis-
turbance rejection control approach [28], and others [29]. To
the authors’ knowledge, a general solution for stabilizing this
type of system has not yet been reported in the literature.

In this context, we propose a control scheme for a
PVTOL aircraft system with an inverted pendular load
(PVTOL-ASIPL). 1is scheme mainly consists of a gener-
alized proportional integral (GPI) controller and a nested
saturation-based control. 1e GPI controller accomplishes
height and roll attitude control, using the roll attitude angle
as fictitious input control. 1en, proposing a set of

convenient linear transformations and reducing the system
can be expressed as a chain of integrators with a nonlinear
perturbation. Finally, we design a nested saturation func-
tion-based controller to stabilize the horizontal position and
the pendulum angle. Applying the second method of Lya-
punov assures boundedness of the whole state and as-
ymptotic convergence to the origin.

1e main contributions of this study are as follows:

(i) An algorithm control that uses a fictitious control,
and we propose a combination of a GPI controller
and a controller-based saturation for the takeoff and
landing maneuvers

(ii) A set of convenient transformations, in which a
high-order system can be expressed as a various
low-order system

(iii) A control strategy for the PVTOL aircraft system
with an inverted pendular load controls the height,
roll attitude, horizontal position, and roll angle
simultaneously, even in the presence of exogenous
disturbance

1e organization of the rest of this study is as follows.
Section 2 introduces the model of PVTOL-ASIPL externally
perturbed, obtained from the Euler–Lagrange formalism.
Section 3 develops the control scheme design, while Section
4 presents the results of the numerical simulations. Finally,
Section 5 is devoted to the concluding remarks and future
work.

2. Dynamic Model

1is section presents the dynamic model of the PVTOL
aircraft system with an inverted pendular load (see Figure 1).
1e dynamic equations were obtained by the
Euler–Lagrange formalism as follows:

L � Ek − Ep, (1)

where Ek and Ep are, respectively, the system kinetic and
potential energies. Besides, the inverted pendular load base is
in the PVTOL aircraft center of mass, Pv � (xv, yv), α is
defined as the angle between the PVTOL aircraft and the
horizontal axis, and θ is the angle between the inverted
pendular load and the vertical axis. Finally, the inverted
pendular load center of mass (PP � (xp, yp)) is defined as

xp � xv − lp sin θ,

yp � yv + lp cos θ.
(2)

1erefore, Lagrangian of the system can be expressed as

L �
mv

_Pv
_P
⊺
v

2
+

mp
_Pp

_P
⊺
p

2
+
α2iv
2

+
θ2ip
2

− mvgyv − mpgyp, (3)

where mv is the PVTOL aircraft mass, mp is the pendular
load mass, g is the gravity force, iv is the PVTOL aircraft
inertia, and ip is the inverted pendular load inertia.

1e Euler–Lagrange equations of motion for the
PVTOL-ASIPL system are in the form of
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d

dt

zL

z _q
−

zL

zq
� τ + D, (4)

where q � (xv, yv, α, θ) is the generalized coordinate vector,
τ is the input control vector, and D is the external distur-
bance vector; without loss of generality, iv � 1 and ip � 0.

Developing Euler–Lagrange equation (4) leads to

lpmp sin(θ) _θ
2

+ mv + mp􏼐 􏼑 €xv
− lpmp cos(θ)€θ � −u1 sin(α) + Dx, (5a)

−lpmp cos(θ) _θ
2

+ mv + mp􏼐 􏼑 g + €yv − lpmp􏼐 sin(θ)€θ � u1 cos(α) + Dy, (5b)

iv _α � u2 + Dα, (5c)

−lpmp cos(θ) €xv − lpmp􏼐 sin(θ) g + €yv( 􏼁( + ip + l
2
pmp􏼐 􏼑€θ � 0. (5d)

1en, the equations in (5a) represent the PVTOL-ASIPL,
and they can be expressed in a compact form as

M€q + C(q, _q) _q + G � U + D, (6)

with

M �

mv + mp 0 0 −lpmp cos(θ)

0 mv + mp􏼐 􏼑 0 −lpmp sin(θ)

0 0 i 0
−lpmp cos(θ) −lpmp sin(θ) 0 ip + l

2
pmp􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C �

0 0 0 lpmp sin(θ) _θ

0 0 0 −lpmp cos(θ) _θ
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G �

0
mv + mp

0
−lpmp sin(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

U �
−u1 sin(α) u1 cos(α) u2 0􏼔 􏼕

⊺
,

D � Dx Dy Dα Dθ􏽨 􏽩
⊺
,

(7)

where M is a positive semidefinite matrix, C is the Coriolis
matrix, G is the gravity matrix, U is the input control matrix,
and D is the external disturbance matrix. 1e terms Dx, Dy,

and Dα are assumed to be unmodelled owing to the external
disturbances and are defined as follows [30, 31]:

Dx � ax _xv, (8a)

Dy � ay _yv, (8b)

Dα � aα _α, (8c)

Dθ � 0. (8d)

Finally, because M is not a singular matrix, it is possible
to represent the dynamical model of the PVTOL aircraft
system with an inverted pendular load as

€xv �
ex1 + ex2

2mv mv + mp􏼐 􏼑
, (9a)

€yv �
ey1 + ey2

2mv mv + mp􏼐 􏼑
, (9b)

€α � u2 + aα _α, (9c)

€θ �
−u1 sin(α − θ) + ax cos(θ) _xv + ay sin(θ) _yv

lpm
, (9d)

f1

f2
u2

u1

g mv

g mp

xv

yv

α

θ

Figure 1: 1e PVTOL aircraft system with an inverted pendular load.
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where

ex1 � −u1 2mv + mp􏼐 􏼑sin(α) + mp sin(α − 2θ)􏼐 􏼑,

ex2 � ax 2mv + mp + mp cos(2θ)􏼐 􏼑 _xv + aymp sin(2θ) _yv − 2lpmvmp sin(θ) _θ
2
,

ey1 � −2gmv mv + mp􏼐 􏼑 + 2mv + mp􏼐 􏼑u1 cos(α) − mpu1 cos(α − 2θ),

ey2 � axmp sin(2θ) _xv + ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _yv + 2lpmvmp cos(θ) _θ
2
.

(10)

2.1. Problem Statement. 1e control goal consists in pro-
posing an algorithm to accomplish stabilization at the origin
of the PVTOL aircraft system with an inverted pendular
load.1emaneuvers are trajectory tracking tasks involving a
step-by-step procedure, consisting of (1) the stabilization of
the coordinate α; (2) the stabilization of the coordinate yv;
and (3) further stabilization of coordinates xv and θ, even in
the presence of disturbances due to the aerodynamic effects.

We have expressed the system in its minimal repre-
sentation form, which will allow us to decouple it and
simplify it. Instead of working with a complex system, we
work with a few simple systems that embody the dynamics of
the original one. We are now in a position to design and
propose the control scheme in the following section.

3. Control Scheme

1is section establishes the framework to solve the main
control problem. To this end, please consider that the input
control u2 acts over α plus disturbance Dα. So, it is possible
to design a control law for α using a fictitious controller for
the PVTOL aircraft with an inverted pendular load [9, 11].
1en, through linear transformations, a GPI law is used for
the PVTOL takeoff and landing maneuvers. Once the GPI
law stabilized the PVTOL aircraft height, a change of co-
ordinates allows expressing the system as a chain of inte-
grators nonlinearly perturbed, allowing to propose the
nested saturation function-based stabilizing controller.
Figure 2 presents the schematic diagram of the closed-loop
system.

3.1. Controlling the PVTOL Aircraft Attitude (α). It is clear
that the third equation (9c) consists of a double-chain in-
tegrator with nonlinear disturbance Dα and control input u2.
1en, a control law for tracking trajectory is searched for α.

3.1.1. Control Statement. 1e dynamical equation for the
roll attitude angle (α) can be expressed as

€α � u2 + ξ(t), (11)

where ξ(t) is a lumped generalized disturbance input.
Also, according to Lozano Hernández et al. and Fliess

et al. [31, 32], to overcome the lack of available mea-
surements of _α, an integral reconstructor (􏽢_α � 􏽒

t

0 u(τ)dτ)

can be proposed, and using the local approximation of the
disturbance input, it is possible to propose the control
input u2 as

u2 � €αd − kα4 _eα − kα3eα − kα2 􏽚
t

τ1�0
eαdτ1 − kα1 􏽚

t

τ1�0
􏽚
τ1

τ2�0
eαdτ2dτ1

− kα0 􏽚
t

τ1�0
􏽚
τ1

τ2�0
􏽚
τ2

τ3�0
eαdτ3dτ2dτ1,

(12)

where αd is a smooth reference signal for the state α, which is
twice differentiable. Also, _eα � 􏽢_α − _αd and eα � α − αd, and
the relation between the actual value of _α and 􏽢_α is expressed
by

_α � 􏽢_α + 􏽚
t

0
ξ(τ)dτ + _α(0). (13)

Substituting (12) into (11) and expressing the resulting
dynamics in terms of the tracking error, the following dy-
namics are obtained:

e
(5)
α + kα4e

(4)
α + kα3e

(3)
α + kα2€eα + kα1 _eα + kα0eα � 0, (14)

where kαi
, with i � 0, . . . , 4, are selected such that charac-

teristic polynomial s5 + kα4s
4 + kα3s

3 + kα2s
2 + kα1s + kα0 � 0

is Hurwitz, reducing the undesirable effects of the non-
linear disturbances [33, 34]. So, the dynamic error is ex-
ponentially asymptotically stable at the origin. 1is fact
allows using αd as a fictitious control for subsystems (9a),
(9b), and (9d). 1is proposal was previously used in other
works dealing with the stabilization of PVTOL aircrafts
[9, 12].

3.2. Simplified PVTOL Aircraft System with an Inverted
Pendular Load. After α⟶ αd and applying the controller
u2, the following system of equations represents the PVTOL
aircraft system with an inverted pendular load:

€xv �
ex1 + ex2

2mv mv + mp􏼐 􏼑
, (15a)

€yv �
ey1 + ey2

2mv mv + mp􏼐 􏼑
, (15b)

4 Mathematical Problems in Engineering



€θ �
−u1 sin αd − θ( 􏼁 + ax cos(θ) _xv + ay sin(θ) _yv

lpm
, (15c)

with

ex1 � −u1 2mv + mp􏼐 􏼑sin αd( 􏼁 + mp sin αd − 2θ( 􏼁􏼐 􏼑,

ex2 � ax 2mv + mp + mp cos(2θ)􏼐 􏼑 _xv + aymp sin(2θ) _yv − 2lpmvmp sin(θ) _θ
2
,

ey1 � −2gmv mv + mp􏼐 􏼑 + 2mv + mp􏼐 􏼑u1 cos αd( 􏼁 − mpu1 cos αd − 2θ( 􏼁,

ey2 � axmp sin(2θ) _xv + ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _yv + 2lpmvmp cos(θ) _θ
2
,

(16)

where αd and u1 are the input controls.
1us, we propose the following control laws [12]:

u1 �

������

r
2
1 + r

2
2

􏽱

, (17a)

αd � arctan
r2

r1
􏼠 􏼡, (17b)

where r1 > 0 and r2 > 0 are auxiliary control inputs.
To obtain the dynamic model, the following change of

coordinates is applied to model (15a)–(15c):

xv �
􏽢xv

2mv mv + mp􏼐 􏼑
, (18a)

yv �
􏽢yv

2mv mv + mp􏼐 􏼑
, (18b)

θ �
􏽢θ

lpmv

. (18c)

1erefore, models (15a)–(15c) transform into the fol-
lowing system:

€􏽢xv � − 2mv + mp􏼐 􏼑 r2 − ax _xv( 􏼁 + mp cos(2θ) −r2 + ax
_􏽢xv􏼐 􏼑

+ mp sin(2θ) r1 + ay
_􏽢yv􏼐 􏼑 − 2lpmvmp sin(θ) _θ

2
,

€􏽢yv � −2gmv mv + mp􏼐 􏼑 + 2mv + mp􏼐 􏼑r1 − mp r1 cos(2θ) + r2 sin(2θ)( 􏼁,

(19)

+ axmp sin(2θ) _􏽢xv + ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _􏽢yv + 2lpmvmp cos(θ) _θ
2

€̂θ � cos(θ) −r2 + ax
_􏽢xv􏼐 􏼑 + sin(θ) r1 + ay

_􏽢yv􏼐 􏼑.
(20)

Stabilization
of height yv

Control for
(xv, θ)

auxiliary
controls

attitude
control α

αd

PVTOL aircraft
system with an

inverted pendularu1

v1

v2

u2

u1u2 x

y
(x· v, xv)

(α·, α)
α

θ

(y·v, yv)

(θ·, θ)

Figure 2: Control scheme of the PVTOL aircraft system with an inverted pendular load.
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Hence, system (19) takes the compact form
€􏽢xv

€􏽢yv

⎡⎣ ⎤⎦ � M2
r1

r2
􏼢 􏼣 + C2, (21)

with

M2 �
mp sin(2θ) − 2mv + mp + mp cos(2θ)􏼐 􏼑

2mv + mp􏼐 􏼑 − mp(cos(2θ)) − mp(sin(2θ))

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

C2 �
− 2lpmvmp sin(θ) _θ

2

− 2gmv mv + mp􏼐 􏼑 + 2lpmvmp cos(θ) _θ
2

− 2gmv mv + mp( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(22)

1en, given system (19) and ignoring the effect of the
disturbances, the following partial feedback control can be
proposed [1, 9]:

r1

r2
􏼢 􏼣 � M

−1
2 −C2 +

v1

v2
􏼢 􏼣􏼠 􏼡, (23)

where v1 and v2 are new auxiliary control inputs. 1us, the
system defined by equation (19), in a closed loop with
control model (23), leads us to obtain the following system:

€􏽢xv � v1 + ax 2mv + mp + mp cos(2θ)􏼐 􏼑 _􏽢xv + aymp sin(2θ) _􏽢yv, (24a)

€􏽢yv � v2 + axmp sin(2θ) _􏽢xv + ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _􏽢yv, (24b)

€θ �
cos(θ) v1 + 2ax mv + mp􏼐 􏼑 _􏽢x􏼐 􏼑 + sin(θ) 2gmv mv + mp􏼐 􏼑 + v2 + 2ay mv + mp􏼐 􏼑 _􏽢y􏼐 􏼑

2 mv + mp􏼐 􏼑
. (24c)

Notice that the above system is the reducedmodel for the
PVTOL aircraft system with an inverted pendular load, with
v1 and v2 as the control inputs.

3.3. Stabilization of Height yv. A GPI controller with a
saturation function is applied to obtain the height position
control, allowing the tracking control to accomplish the

takeoff and landing of the PVTOL aircraft system with an
inverted pendular load.

3.3.1. Control Statement. Consider the vertical displacement
yv described by (25), and let v2 be the control input defined
as (26):

v2 � σa €yd − ky4
_ey − ky3

ey − ky2
􏽚

t

τ1�0
eydτ1 − ky1

􏽚
t

τ1�0
􏽚
τ1

τ2�0
eydτ2dτ1􏼠

−ky0
􏽚

t

τ1�0
􏽚
τ1

τ2�0
􏽚
τ2

τ3�0
eydτ3dτ2dτ1􏼡 � σa ugpi􏼐 􏼑,

(25)
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where yd is a smooth reference signal twice derivable and
ey � yd − 􏽢yv.

Also, σL(q) is a saturation function defined as

σa(q) �

if q> a, a,

if q< − a, −a,

if − a< q< a, q.

⎧⎪⎪⎨

⎪⎪⎩
(26)

1us, the tracking trajectory error ey is exponentially
asymptotically stable.

Proof. 1e proof is split into two parts. First, it is proven
that a saturation function in finite time bounds the error
dynamics ey. 1en, we demonstrate exponentially asymp-
totic stability. □

3.3.2. Error Bounded. 1e tracking trajectory error is de-
fined as

ey � yd − 􏽢yv, (27)

where yd is the desired height position.
Let us define the following state variables as

e1 � ey; e2 � _ey. (28)

1erefore, the dynamic error is transformed into the
following system:

_e1 � e2, (29a)

_e2 � yd − v2 − axmp sin(2θ) _􏽢xv

− ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _􏽢yv,
(29b)

where v2 is the control input.
Now, to use the second method of Lyapunov, consider

the following candidate function:

Vy �
e
2
1
2

+
e
2
2
2

, (30)

which is positive definite, with time derivative

_Vy � e1e2 + e2 _e2 � e1e2 + e2 €yd − σa ugpi􏼐 􏼑 − axmp sin(2θ) _􏽢xv − ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _􏽢yv􏼐 􏼑. (31)

1us, the first and second time derivatives of yd are
known and bounded as |Myd

|. Besides, in a close neigh-
bourhood where e1 and e2 are such that |e1|≤ δe1

and
|e2|≤ δe2

, the saturation function fulfills sσa(s)⩽0. So, pa-
rameters were designed as kyi

in ugpi such that e2 is dom-
inant, and e2σa(ugpi)> 0. Finally, the last terms of equation
(31) satisfy the following:

axmp sin(2θ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δx, (32)

ay 2mv + mp − mp cos(2θ)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δy. (33)

1erefore, computing the time derivative of the candi-
date Lyapunov function leads to

_Vy � δe1
δe2

+ δe2
Myd

− e2σa ugpi􏼐 􏼑 − δe2
δx

_􏽢xv − δe2
δy

_􏽢yv,

(34)

and if _􏽢xv and _􏽢yv are small enough such that
e2σa(ugpi)> δe1

δe2
+ δe2

Myd
− δe2

δx
_􏽢xv − δe2

δy
_􏽢yv, then _Vy < 0

and 􏽢yv are bounded in finite time. 1us, after time T, when
this condition is satisfied, control law (26) takes the fol-
lowing structure:

v2 � yd − ky4
_ey − ky3

ey − ky2
􏽚

t

τ1�0
eydτ1 − ky1

􏽚
t

τ1�0
􏽚
τ1

τ2�0
eydτ2dτ1

− ky0
􏽚

t

τ1�0
􏽚
τ1

τ2�0
􏽚
τ2

τ3�0
eydτ3dτ2dτ1.

(35)

From the above, equation (24b) is expressed as
€􏽢yv � v2 + ξ1(t), (36)

where ξ1(t) is a lumped generalized disturbance input.
1en, to overcome the lack of available measurements of

_􏽢yv, the following integral reconstructor is introduced [31]:

_􏽢yv
� 􏽚

t

0
v2(τ)dτ. (37)

Using the local approximation of the disturbance input,
the relation between the actual value of _􏽢yv and _􏽢yv is
expressed by

_􏽢yv � _􏽢yv
+ 􏽚

t

0
ξ(τ)dτ + _􏽢yv(0). (38)

Now, differentiating equation (38) and substituting into
(36), the control law v2 takes the form
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v2 � €yd − ky4
_ey − ky3

ey − ky2
􏽚

t

τ1�0
eydτ1 − ky1

􏽚
t

τ1�0
􏽚
τ1

τ2�0
eydτ2dτ1

− ky0
􏽚

t

τ1�0
􏽚
τ1

τ2�0
􏽚
τ2

τ3�0
eydτ3dτ2dτ1,

(39)

with ey � yv − yd and _ey � _􏽢yv − _yd.
Substituting (39) into (36) is possible to express the

dynamic error ey as follows:

e
(5)
y + ky4

e
(4)
y + ky3

e
(3)
y + ky2

€ey + ky1
_ey + ky0

ey � 0. (40)

1e coefficients ky4
, ky3

, ky2
, ky1

, and ky0
are selected

such that the polynomial
S(5) + ky4

S(4) + ky3
S(3) + ky2

S2 + ky1
S + ky0

is Hurwitz,
eliminating the nonlinear disturbances [33]. 1en, tracking
trajectory error ey is exponentially asymptotically stable to
zero.

3.4. Control for (xv, θ). 1is section proposes a nested sat-
uration-based controller strategy to stabilize the PVTOL-
ASIPL horizontal position and roll angle. Notice that the
nested saturation-based controller strategy allows stabilizing
nonlinear systems that can be approximately expressed as a
chain of integrators [35–37]. 1us, our stability problem will
be solved as follows. First, we introduce a linear transfor-
mation for the stabilizing controller. 1en, we demonstrate
that the proposed controller guarantees boundedness and
converges to zero, in finite time, of the whole state.

3.5. Expressing the PVTOL-ASIPL as a Chain of Integrators.
After the application of the controller v2, system (25) can be
reduced to the subsystem (􏽢xv, θ) as follows:

€􏽢xv � v1 + ax 2mv + mp + mp cos(2θ)􏼐 􏼑 _􏽢xv,

€θ �
2gmv mv + mp( 􏼁sin(θ) + cos(θ) v1 + 2ax mv + mp􏼐 􏼑 _􏽢xv􏼐 􏼑

2 mv + mp􏼐 􏼑
.

(41)

1en, introduce the following coordinates’ change:

􏽢xv � xv −2gmv mv + mp􏼐 􏼑􏼐 􏼑,

􏽢θ � θ gmv( 􏼁,

v1 � 2 mv + mp􏼐 􏼑 gmv(v sec(θ) − tan(θ)) − ax _xv( 􏼁.

(42)

System (42) takes the following form:

€xv � v sec(θ) − tan(θ) − ϵx sin (θ)
2

_xv,

€θ � v,
(43)

where ϵx sin (θ)2 _xv is considered as a nonlinear disturbance
and ϵx is an unknown constant that depends on variables
mv, mp, g, and ax (Note that ϵx � (mp/g∗mv ∗ (mv+

mp))ax.). Notice that subsystem (43) is similar to the cart-
pole system plus a nonlinear disturbance [38].

3.5.1. Control Statement. Based on work [3], we define the
following state variables x1 � xv, x2 � _xv, θ1 � θ, and θ2 � θ

.

.
1en, we express the dynamic system as

_x1 � x2,

_x2 � −v sec θ1( 􏼁 + tan θ1( 􏼁 + ϵx sin θ1( 􏼁
2
x2,

_θ1 � θ2,
_θ1 � v.

(44)

To express system (44) as a chain of integrators with a
nonlinear perturbation and propose a controller for the
stabilization of the subsystem (xv, θ), applying the decou-
pling theorem [3, 39], the following global nonlinear
transformation is introduced:

z1 �
1 + tan θ1/2( 􏼁

1 − tan θ1/2( 􏼁
+ x1, (45a)

z2 �
θ2

cos θ1( 􏼁 + x2
, (45b)

ω1 � tan θ1( 􏼁, (45c)

ω2 � θ2sec
2 θ1( 􏼁, (45d)

vf � sec2 θ1( 􏼁v + 2θ22 tan θ1( 􏼁sec2 θ1( 􏼁. (45e)

Hence, the transformed system into a chain of inte-
grators is given by

_z1 � z2,

_z2 � ω1 +
ω1ω

2
1

1 + ω2
1􏼐 􏼑

+
ϵxω2ω

2
1

1 + ω2
1􏼐 􏼑

3/2 −
ϵxz2ω

2
1

1 + ω2
1

,

_ω1 � ω2,

_ω2 � vf.

(46)

3.6. Nested Saturation Function-Based Controller.
Inspired by Teel [40], a linear transformation is proposed to
obtain the stabilizing controller for system (46) as follows:

q1

q2

q3

q4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 3 3 1

0 1 2 1

0 0 1 1

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z1

z2

ω1

ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

Applying transformation (47) to system (46) leads to
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_q1 � vf + q2 + q3 + q4 + 3G1 q3 − q4( 􏼁q
2
4

+ 3G2 q3 − q4( 􏼁q4ϵx + 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx,

_q2 � vf + q3 + q4 + G1 q3 − q4( 􏼁q
2
4

+ G2 q3 − q4( 􏼁q4ϵx + G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx,

_q3 � vf + q4,

_q4 � vf,

(48)

for which the following nested saturation function-based
stabilizing controller is proposed:

vf � −σc1
q4 + σc2

q3 + σc3
q2 + σc4

q1( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑, (49)

where σci
is defined by equation (26), and Gi with i � 1, 2, 3 is

given by

G1(s) �
s

1 + s
2

􏼐 􏼑
3/2, (50a)

G2(s) �
s
2

1 + s
2

􏼐 􏼑
3/2, (50b)

G3(s) �
s
2

1 + s
2.

(50c)

Remark 1. Note that max(G1(s)) � K1 � 2/(3
�
3

√
)when s �

1/
�
2

√
and min(G1(s)) � −2/(3

�
3

√
) when s � −1/

�
2

√
and

lims⟶infG1(s) � 0. Besides, max(G2(s)) � K2 � 2/(3
�
3

√
)

when s � ±
�
2

√
and min(G1(s)) � 0 when s � 0 and

lims⟶infG2(s) � 0. Additionally, min(G3(s)) � 0 when s �

0 and lims⟶infG3(s) � K3 � 1.

3.7. Whole State Boundedness. Now, we prove that the
proposed controller (49) ensures whole state boundedness.
Moreover, the bound of each state directly depends on the
designed parameters of the controller.

Step 1. A positive definite function is defined as

V4 �
q
2
4
2

. (51)

1e time derivative of V4 is expressed by
_V4 � q4 _q4 � q4vf � −q4σc1

q4 + σc2
q3 + σc3

q2 + σc4
q1( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑,

(52)

where c1 and c2 are selected such that c1 > 2c2. It is clear that
_V4 < 0 when ∣q4 ∣ ≥ c2; therefore, there exists a finite time

T1 > 0 such that

q4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c2, ∀t>T1. (53)

1us, when this condition is satisfied, the control law
(49) takes the following structure:

vf � −q4 − σc2
q3 + σc3

q2 + σc4
q1( 􏼁􏼐 􏼑􏼐 􏼑. (54)

Step 2. Behaviour analysis of q3: let us consider the following
positive definite function:

V3 �
q
2
3
2

. (55)

Differentiating it with respect to time and after
substituting (54) into _q3, the following expression is
obtained:

_V3 � q3 _q3 � q3 vf + q4􏼐 􏼑 � −q3σc2
q3 + σc3

q2 + σc4
q1( 􏼁􏼐 􏼑􏼐 􏼑.

(56)

To ensure that _V3 < 0 is achieved, the following condi-
tions must be satisfied:

c2 > 2c3, q3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ c3. (57)

1en, there exists a finite time T2 >T1 after which

q3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c3, ∀t>T2. (58)

1erefore, q3 is bounded, and the control law takes the
following form:

vf � −q4 − q3 − σc3
q2 + σc4

q1( 􏼁􏼐 􏼑. (59)

Step 3. 1e following positive definite function is
introduced:

V2 �
q
2
2
2

. (60)

Differentiating V2 and after substituting (60) into the
second equation of (48), the following is obtained:

_V2 � q2 _q2 � −q2 σc3
q2 + σc4

q1( 􏼁􏼐 􏼑 − G1 q3 − q4( 􏼁q
2
4􏽨

−G2 q3 − q4( 􏼁q4ϵx − G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁􏼃,

(61)

where c3 and c2 must satisfy the relation
c3 > 2c4 + G1(q3 − q4)

2
4 + G2(q3 − q4)q4ϵx + G3(q3 −

q4)(q2 − 2q3 + q4). It is easy to observe that if
|q2|> c4 + G2(q3 − q4)q4ϵx + G3(q3 − q4)(q2 − 2q3 + q4),
_V2 < 0. Hence, there exists a finite time T3 >T2 after which

q2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c4 + G2 q3 − q4( 􏼁q4ϵx
+ G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁; ∀t>T3.

(62)

1erefore, q2 is bounded, and the control vf is revealed
to be

vf � −q4 − q3 − q2 − σc4
q1( 􏼁. (63)

Step 4. Substituting (63) into the first equation of (48), we
obtain
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_q1 � −σc4
q1( 􏼁 + 3G1 q3 − q4( 􏼁q

2
4 + 3G2 q3 − q4( 􏼁q4ϵx

+3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx.
(64)

To demonstrate that q1 is bounded, a positive definite
function is defined as follows:

V1 �
q
2
1
2

. (65)

Differentiating V1 along the trajectories of (66) leads to

_V1 � q1 _q1 � −q1 σc4
q1( 􏼁 − 3G1 q3 − q4( 􏼁q

2
4􏼐

− 3G2 q3 − q4( 􏼁q4ϵx − 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁􏼁,

(66)

where c4 must be selected so that c4 > 3G1(q3 − q4)q
2
4 +

3G2(q3 − q4)q4ϵx + 3G3(q3 − q4)(q2 − 2q3 + q4) and
|q1|> 3G1(q3 − q4)q

2
4 + 3G2(q3 − q4) q4ϵx + 3G3(q3 − q4)

(q2 − 2q3 + q4) to achieve V1 < 0. 1erefore, there exists a
finite time T4 >T3 such that

q1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 3G1 q3 − q4( 􏼁q
2
4 + 3G2 q3 − q4( 􏼁q4ϵx + 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁, ∀t>T4. (67)

Consequently, q1 is also bounded. Finally, the values of
parameters c1, c2, c3, and c4 can be determined by the fol-
lowing inequalities:

c1 > 2c2,

c2 > 2c3,

c3 > 2c4 + G1 q3 − q4( 􏼁q
2
4 + G2 q3 − q4( 􏼁q4ϵx + G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁,

c4 > 3G1 q3 − q4( 􏼁q
2
4 + 3G2 q3 − q4( 􏼁q4ϵx + 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁.

(68)

From the above conditions, the set of control parameters
can be selected as

c1 � 28r,

c2 � 14r,

c3 � 7r,

c4 � 3r,

(69)

where r is directly related to the magnitude of the system
disturbances.

3.8.WholeStateConvergence toZero. Here, we prove that the
closed-loop system, provided by (48) and (49) and satisfying
(70), is asymptotically stable.

Notice that, after t>T4, the control law (49) is no longer
saturated; that is,

vf � −q4 − q3 − q2 − q1, (70)

and the closed-loop system turns out to be

_q1 � −q1 + 3G1 q3 − q4( 􏼁q
2
4

+ 3G2 q3 − q4( 􏼁q4ϵx + 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx,

_q2 � −q1 − q2 + G1 q3 − q4( 􏼁q
2
4

+ G2 q3 − q4( 􏼁q4ϵx + G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx,

_q3 � −q1 − q2 − q3,

_q4 � −q1 − q2 − q3 − q4.

(71)

To demonstrate whole state convergence to zero, the
following Lyapunov function is used:

V �
1
2
q
⊺
q, (72)

where q � [q1, q2, . . . , q3, q2]
⊺, and differentiating V along

the trajectories of equation (72), it is obtained that

_V � −q
⊺
Mq + 3q1 + q2( 􏼁 G1 q3 − q4( 􏼁q

2
4􏼐

+G2 q3 − q4( 􏼁q4ϵx + G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx􏼁,

(73)

and
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M �

1
1
2

1
2

1
2

1
2

1
1
2

1
2

1
2

1
2

1
1
2

1
2

1
2

1
2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (74)

with M being positive definite with λmin(M)1/2.
From Remark 1, it is shown that the following relations

are satisfied:

3q1 + q2( 􏼁G1 q3 − q4( 􏼁q
2
4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<

K1

2
3q1 + q2( 􏼁q

2
4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<

K1

2
3q1 + q2( 􏼁

2
+ q

4
4􏼐 􏼑,

3q1 + q2( 􏼁G2 q3 − q4( 􏼁q4ϵx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K2ϵx
2

3q1 + q2( 􏼁q4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K2ϵx
2

3q1 + q2( 􏼁
2

+ q
2
4􏼐 􏼑,

3q1 + q2( 􏼁G3 q3 − q4( 􏼁q2ϵx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K3ϵx
2

3q1 + q2( 􏼁q2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K3ϵx
2

3q1 + q2( 􏼁
2

+ q
2
2􏼐 􏼑,

3q1 + q2( 􏼁G3 q3 − q4( 􏼁q4ϵx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K3ϵx
2

3q1 + q2( 􏼁q4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K3ϵx
2

3q1 + q2( 􏼁
2

+ q
2
4􏼐 􏼑.

(75)

So, _V fulfills

_V< −
1
2

q
2
1 − K1 3q1 + q2( 􏼁

2
− K2ϵx 3q1 + q2( 􏼁

2
− 2K3ϵx 3q1 + q2( 􏼁

2
􏽨 􏽩

−
1
2
q
2
4 1 − K1q

2
4 − K3ϵx􏽨 􏽩 −

1
2
q
2
2 1 − K2ϵx􏼂 􏼃.

(76)

Hence, the previous inequality is strictly negative defi-
nite, and the following constraints are obtained:

q
2
1 − K1 3q1 + q2( 􏼁

2
− K2ϵx 3q1 + q2( 􏼁

2
− 2K3ϵx 3q1 + q2( 􏼁

2 > 0,

1 − K1q
2
4 − K3ϵx > 0,

1 − K2ϵx > 0.

(77)

1erefore, if the restrictions of (77) are fulfilled, _V is
strictly negative, and the state vector q exponentially con-
verges to zero after t>T4.

1e following proposition summarizes the previous
discussion, which is the main result of our study.

Proposition 1. Consider the PVTOL aircraft system with an
inverted pendular load as described in (9) and in a closed loop
with controllers (12), (17a) and (17b), (23), (25), and (49).
Cen, the closed-loop system is exponentially asymptotically
stable provided that the control parameters c1, c2, c3, and c4
satisfy inequalities (69), and kαi

and kyi
are selected such that

the characteristic polynomial is Hurwitz.

Finally, in Figure 3, the steps’ sequence is shown, obtained
from the control laws u1 and u2.

Having designed the control scheme for the PVTOL
aircraft system with an inverted pendular load and carried
out its convergence analysis, we test its effectiveness through
numerical simulations in the following section. It is worth
mentioning that it would be ideal for testing the scheme by
conducting actual experiments—unfortunately, the con-
struction of the needed prototype is still in progress.

4. Numerical Simulations

To test the controllers’ performance, we carried out some
numerical simulations using the MATLAB-Simulink pro-
gram, and the results were obtained based on the numerical
method of Runge–Kutta of the fourth order with a fixed step
of 0.01 s. 1e physical parameters of the system are
mp � 0.2 kg, mv � 0.8 kg, lp � 0.2m, and g � 9.8m/s2. Also,
the tuning parameters proposed for each controller are listed
in Table 1. Notice that the controller parameter values u2 and
v2 were selected such that the error dynamics is equal to the
desired closed-loop polynomial (s2 + 2ζωns + ω2

n)(s + β).
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Besides, the parameters of vf were chosen such that
ci < 1/2ci+1 [40]. Finally, the initial conditions were set as
follows: xv(0) � 0.2m,yv(0) � 0m,α � 0 rad, θ � 0.1 rad,
_xv � 0.15m/s, _yv � 0m/s, _α � 0 rad/s, and θ

.

� 0.05 rad/s.
In the first experiment, the control strategy simulta-

neously carries out height position by performing trajectory
regulation, stabilizing the horizontal position and roll angle
for the PVTOL and the pendulum angle. In this case, the
desired trajectory, yd, was proposed as

yd �
1

1 + e
20− 2t

􏼐 􏼑 1 + e
− 60+2t

􏼐 􏼑
. (78)

To test the effectiveness of the control strategy intro-
duced in this study, we carried out a comparison test against
the classical PD controller, with gains tuned as kp � 1 and
kd � 4. Figure 4 shows the outcome of this experiment,
where we can observe that both strategies successfully
achieve the height position regulation through the trajectory
tracking task and the stabilization of the horizontal position,
the roll angle, and the pendulum angle. Also, the plot in this
figure shows that our controller converges to the desired
values faster than the PD controller does. Figure 5 shows the
behaviours of the angular velocities, and Figure 6 shows the
tracking error between α and αd and the control inputs u1
and u2.

Using the same setup as before, we run a second ex-
periment, but in this case, the system is affected by external
disturbances with parameters fixed as ax � 1.4, ay � 0.8, and
aθ � 2. Figure 7 shows the corresponding plots, where we
can see that our controller is capable of accomplishing height
tracking and position regulation and, simultaneously, sta-
bilizing the horizontal position, roll angle, and pendulum
angle. Also, it can be seen that the PD controller used in the
first experiment regulates the system slower than our con-
troller does and exhibits undesirable oscillations. 1erefore,
our controller has better performance, maneuverability, and
whole stabilization, even when the system is affected by
external disturbances. Figure 8 shows the system angular
velocities, and Figure 9 shows the tracking error behaviour
between α and αd and the control inputs u1 and u2. Please
notice that the proposed control has adequate energy
management, according to the obtained performance index
􏽒 u2

i shown in Figure 10.

Measurement of position
and orientation

yd yv

v2=σa(ugpi)
z1=x1+log ((1+tan(θ1))/(1-tan (θ1)))
z2=x2+θ2/cos (θ1)
w1=tan (θ1)
w2=θ2 sec2 (θ1)

q1=z1+3z2+3w1+w2
q2=z2+2w1+w2
q3=w1+w2
q4=w2

v2 v1

[r1 r2]t=M2
-1 (-C2+[v1 v2]t)

u1=√(r1
2+r2

2)
αd=arctan (r2/r1)

αd

r1 r2

u1 u2

u2=ugpi

vf=-σc1 (q4+σc2 (q3+σc3 (q2+σc4(q1))))
v=vf cos2(θ1)-2θ2

2tan (θ1)
v1=-2 (mv+mp) (g mv (v sec (θ1)-tan (θ1))-axxp)

θ1 θ2x1 x2yv
·

Figure 3: Control strategy sequence.

Table 1: Tuning parameters for controllers.

Controller Control parameter Gain

u2

L 3
kα0 167
kα1 299
kα2 183
kα3 62
kα4 11
a 1.45

ky0
167

ky1
299

v2

ky2
183

ky3
62

ky4
1

c1 0.11

vf

c2 0.24
c3 0.49
c4 0.99
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Figure 4: Comparison between the position closed-loop responses of the proposed controller and PD controller. (a) Behaviour of state xv.
(b) Behaviour of state yv. (c) Behaviour of state α. (d) Behaviour of state θ.
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Figure 5: Continued.
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Figure 5: Angular velocities’ closed-loop response of the proposed controller. (a) Behaviour of state _xv. (b) Behaviour of state _yv. (c)
Behaviour of state _α. (d) Behaviour of state _θ.
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Figure 6: Tracking error of the state α and behavior of controllers u1 and u2. (a) Error tracking dynamics for α. (b) Control action u1. (c)
Control action u2.
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Figure 7: Position closed-loop response of the proposed controller in the presence of external disturbances. (a) Behaviour of state _xv. (b)
Behaviour of state _yv. (c) Behaviour of state _α. (d) Behaviour of state _θ.
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Figure 8: Continued.
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Figure 8: Angular velocities’ closed-loop responses of the proposed controller in the presence of external disturbances. (a) Behaviour of
state _xv. (b) Behaviour of state _yv. (c) Behaviour of state _α. (d) Behaviour of state _θ.

eα with disturbances

15 20 25 30100 5
time (s)

-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

e α
 (r

ad
)

eα GPI controller
eα PD controller

(a)

u1 with disturbances

201510 25 300 5
time (s)

9

9.5

10

10.5
u 1

 (N
)

u1 GPI controller
u1 PD controller

(b)

u2 with disturbances

15 20 2510 300 5
time (s)

-5

0

5

u 2
 (N

-m
)

u2 GPI controller
u2 PD controller

(c)

Figure 9: 1e behaviour of the error tracking of the state α and controllers u1 and u2, respectively, owing to external disturbances. (a) Error
tracking dynamics for α. (b) Control action u1. (c) Control action u2.
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5. Conclusions

1is work presents a nested saturation function-based
controller, combined with a GPI controller, to stabilize the
PVTOL aircraft system with an inverted pendular load. 1e
model of this system was derived using Euler–Lagrange
formalism. 1e main contribution consists of using a fic-
titious control, and then a GPI controller is proposed for the
aircraft angle (α). Several linear transformations and co-
ordinate changes were introduced to express the original
system to a minimal representation. To accomplish the
takeoff and landing maneuvers, we propose a GPI controller
to track the desired trajectory. After stabilizing the PVTOL
height, the system was represented as a chain of integrators
plus nonlinear disturbance, allowing us to use nested sat-
uration functions to design a controller to stabilize the
horizontal position and pendulum angle. 1e stability
analysis was carried out using the second method of Lya-
punov, using a simple candidate function. Designing the
control scheme was not an easy task because the PVTOL
system with an inverted pendular load is underactuated, and
ensuring the pendulum’s upright position makes this
problem even harder to solve. We ran numerical simulations
to assess the performance of our control scheme, having
obtained convincing results. 1ese simulations included a
comparison against the well-established PD control strategy.
1e performance index of both controllers was computed to
compare them, and the outcome revealed that our strategy
has a better performance than the PD controller. It is im-
portant to note that the performance indexes were estimated
in the presence of nonlinear perturbations, whichmeans that
the proposed controller behaves well even in this undesirable
yet unavoidable realistic scenario. It is important to note that
the controller, based on a GPI controller and nested satu-
ration functions, allows us to perform takeoff maneuvers in
the presence of exogenous disturbances.

In future work, we will explore a design to estimate the
disturbance due to wind or robust techniques for parametric
uncertainties of the system. In addition, it is worth men-
tioning that an experimental platform that allows config-
uring the PVTOL with an inverted pendular load system has
been designed, whose construction is in process, 1us,

experimental implementation of the control scheme pro-
posed herein is considered.
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