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In the current era of technological development, human actions can be recorded in public places like airports, shopping malls, and
educational institutes, etc., to monitor suspicious activities like terrorism, fighting, theft, and vandalism. Surveillance videos
contain adequate visual and motion information for events that occur within a camera’s view. Our study focuses on the concept
that actions are a sequence of moving body parts. In this paper, a new descriptor is proposed that formulates human poses and
tracks the relative motion of human body parts along with the video frames, and extracts the position and orientation of body
parts. We used Part Affinity Fields (PAFs) to acquire the associated body parts of the people present in the frame.,e architecture
jointly learns the body parts and their associations with other body parts in a sequential process, such that a pose can be formulated
step by step. We can obtain the complete pose with a limited number of points as it moves along the video and we can conclude
with a defined action. Later, these feature points are classified with a Support Vector Machine (SVM). ,e proposed work was
evaluated on the benchmark datasets, namely, UT-interaction, UCF11, CASIA, and HCA datasets. Our proposed scheme was
evaluated on the aforementioned datasets, which contained criminal/suspicious actions, such as kick, punch, push, gun shooting,
and sword-fighting, and achieved an accuracy of 96.4% on UT-interaction, 99% on UCF11, 98% on CASIA and 88.72% on HCA.

1. Introduction

Government and security institutions install surveillance
cameras in homes, markets, hospitals, shopping malls, and
public places to capture real-time events to ensure the safety
of people. In the threat-laden context of vandalism, ter-
rorism, or suspicious activities, the surveillance videos are of
the utmost necessity for any incident investigation. ,ese
threatening situations highlight the critical need to develop a
suspicious action recognition system to aid forensic experts
in capturing criminals and resolving their criminal inves-
tigations. ,e concept of action recognition encompasses
around detection, understanding, and classification of a
simple action like clapping, walking, meetings, etc. In recent
years, scholars started an investigation of actions in a
complex environment like sports. Now, for criminal actions,

crime can be defined as an action harmful to any individual,
community, or society. ,ey can be differentiated into many
forms like homicide, robbery, burglary, and cybercrime, etc.
Criminal actions are less studied and we can hardly find any
dataset which provides substantial criminal actions. ,e
interaction of potential victim and offender makes a criminal
action. ,e motivation of the offender decreases when he is
conscious of being watched [1]. Criminal actions are com-
paratively different from a person’s regular activities. Crim-
inal actions are generally those actions where an individual
may harm other individuals, society, or the public. Criminal
actions are unique, as threatening human gestures, poses, and
activities are very different compared to other normal actions,
which makes them difficult to recognize.

Human motion analysis is the most active research area
in computer vision. Motion analysis can be divided into two
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different tasks. ,e first task is to describe the physical
movements of the body parts, e.g., the raising of a hand or
the turning of the head. Pose estimations and tracking of
body parts are useful methods of identification. ,e second
task is to describe the semantics of the movements, such as
picking up an object or shaking hands.

Action recognition approaches require a large amount
of data to process the actions, which requires computa-
tional power. For this reason, action recognition is re-
ceiving immense focus from the research society due to its
considerable application. ,e action recognition process
can generally be subdivided into preprocessing, feature
extraction, feature encoding, and classification. For the
feature extraction and encoding processes, there is a
substantial area to explore, but the classification process is
very mature. Currently, feature extraction is done either by
a handcrafted process or by a learned features (deep)
process. ,e most widespread feature extraction process in
the category of handcrafted processes is the Histogram of
Oriented Gradients (HOG) [2], the Histogram of Optical
Flow (HOF) [3], the Motion Boundary Histograms (MBH)
[4], and the Scale Invariant Feature Transform [5], etc.
,ese descriptors use different methods for feature ex-
traction from the various regions of video. ,eir methods
include extracting features, such as interest points, dense
samplings [6], and motion trajectories [7]. Recently,
extracting features using deep neural networks has inspired
new directions in the field and is achieving impressive
results [8–10]. Feature encoding allows the translation of
features into a feature space. Fisher Vectors [11] and Vector
of Locally Aggregated Descriptors (VLAD) [12] are com-
monly used; such methodologies provide good perfor-
mance for many solutions [8, 10, 13]. However, these
encoding schemes lack spatiotemporal data, which is vital
while dealing with videos. Another popular method [14],
known as the “Bag of Expression (BOE)” model, provides
an encoding solution by maintaining the spatiotemporal
information. With the advancements in deep neural net-
works, the features of neural networks achieve better results
compared to the result of handcrafted methods. ,e main
advantage of deep features is that they provide higher
discriminative powers on the top layers of the networks
that are learned from low-level features. ,ese features are
transformed with deep neural layers, where handcrafted
solutions mostly contain low-level information, such as
edges and corners [9, 15–17]. Currently, three-dimensional
poses can be extracted from monocular images or videos,
where the human body is represented as a stick skeleton
surrounded by surface-based (using polygons) or volu-
metric (using spheres or cylinders) flesh [18].

In the last few years, the researchers also explored the
variants of action recognition with the help of suitable
sensors [19]. Sensor based recognition is based on time series
data collected from accelerometers either in mobile phones
[20, 21] or wrist-worn [22, 23], magnetometers, and gyro-
scopes [24]. In these approaches, the raw data is acquired
from the sensors, which are preprocessed and normalized.
,e features are extracted either using manual [25] or using

CNN [26]. ,e time series data is segmented sequentially
into smaller segments. Each segment is labeled based on the
feature response in that segment. To analyze the time series,
there are many parameters like Moving average (MA)/
sliding window, autoregression (AR), Autoregressive
Moving Average (ARMA) [27], etc. In our work, we have
used Moving Averaging, as it models the next step in the
sequence as a linear function. In our case, we only link the
interest points present in the first frame with the next frames.

In recent years, pose estimation methods have become
more complex and accurate. Many studies on pose esti-
mation problems were concentrated on finding the body
parts of a single actor in the image [28]. One approach to
solving this problem, which is named a top-down approach
[29], is to reduce themultiperson pose estimation to a single-
person case. ,erefore, a person detector is applied to the
image, and then a single-person pose estimation is per-
formed for images inside the bounding boxes of each de-
tection. Examples of the systems that use a top-down
approach include the work in [29–31]. However, this ap-
proach introduces several additional problems; the main
problem is when a nonactor is detected as an actor. ,is
increases errors in pose estimations of nonactors. Second,
regions with detected persons may overlap and the body
parts of different individuals, making it difficult for pose
estimation algorithms to associate detected body parts with
the corresponding actor.

Several multipeople bottom-up pose estimation systems
were developed [28, 32] which used deep neural networks to
achieve better performance of the pose estimation. Pose
Estimation and action recognition can be done together as
they are related to each other. Reference [33] used action
recognition methods to build a pose estimation algorithm.
Our approach utilizes the preprocessing steps employed in
[28], as the idea is to extract the motion information of the
human body parts. In our work, we have used pose estimation
as a baseline for feature extraction. Our approach, convert the
extracted frames from the video into a feature map. ,ese
feature maps are fed to the CNN network to provides the
location of actor’s body part in the frame.,e location of each
part is stored as a feature representation and used to track the
respective motion in the video frames. ,e performance of
our approach depends on how accurately the human poses
are estimated and linked with the associated body parts. In
this study, the main research contributions are as follows:

(i) We have used the CNN network [28] for limbs
extraction in a frame and used that information to
further extract the limbs localization.

(ii) Additionally, the pose or skeleton is modified and
restructured to get extra importance from the head
and neck area, as, in suspicious actions, the head
plays a vital role.

(iii) ,e extracted features from the previous and cur-
rent frames are stored and served as guidance to
temporally relate the motion. ,is will also help the
descriptor to cope with situations where body parts
are missing or occluded.
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,e rest of the paper is arranged as follows: in Section 2,
we describe the proposed algorithm. In Section 3, we discuss
the experiments and their results. ,e conclusions are
summarized in Section 4.

2. Proposed Approach

Our approach is based on the pose estimations of actors in
video clips.,e proposed approach is given in Figure 1. Each
step is elaborated in the sections below.

2.1. Feature Extraction. For feature extraction, the network
[28] is used in such a way to extract the body parts and their
association with each other to constitute a full skeleton
(pose). ,e videos are decomposed into image frames and
reshaped to 368× 654× 3 to fit the GPU memory. Each
frame is first analyzed through CNN (VGG-19, first 10 layers
and fine-tuned), it generates feature maps (F) which are
input to the network. ,e network is divided into two parts
withmultiple stages. At stage 1, 6 convolutions layers of 3× 3
and 2 Conv layers of 1× 1 and max-pooling layer at the end
of each stage. ,e feature maps from preprocessing stage
(VGG-19 layers) are used as an input to both parts. ,e first
part works as a feedforward network calculates a 2D confi-
dence map (S) and the second stage calculates the set of part
affinities vectors (L). At the end of each stage, the output of
both the branches is concatenated along with the image
feature maps. ,is process is iterative and successfully refines
the predictions of the previous stage. ,is will provide the
degree of relativity between the parts of one actor to another.
S � S1, S2, . . . Sj􏽮 􏽯 has J confidence maps, one for each limb,
and L � L1, L2, . . . Lc􏼈 􏼉 will have a C vector for each limb.
Here, we have lowered down the matrices and extracted only
18 key points for one actor comprising 17 joints, which help
us in achieving the lower dimension of feature vectors.
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Equations (1) and (2) represent the resultant confidence
maps and affinity vector fields, respectively.

To fine-tune the network for precise detection of the
body parts, loss functions are incorporated between the
estimated predictions and ground truth. ,e loss functions
[28] are as follows:
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where (S∗) and (L∗) represent the ground-truth confidence
map and relative affinity field, respectively. W (P) is the
window function that gives zero output in the case where the
annotation is missing in the image location P. ,is whole
process is pictorially represented in Figure 2. (a) ,e net-
work takes images as input, (b) calculates the confidence

maps for each limb, (c) the second stage periodically find the
part affinity field, (d) information from b and c is used to join
the relative body parts for each candidate, and (e) assemble
them into the full-body pose.

2.2. Formulation of FeatureVector. ,e extracted features are
the combination of body parts in the form of affinity vectors
and the confidence maps as discussed above. We calculated
the body parts which can work together to perform the
motion. ,e movement or orientation of joints can also help
in forming the action. We decomposed the body parts with
the help of affinity vectors and encoded them in a set of 18 key
points associated with “joints” and 17 lines connecting the
joints are associated with “limbs” of the body. Ourmain aim is
to capture the motion of each limb and joint as a vector of
coordinates location and its orientation. ,e coordinates
provide the location of each limb in each frame/image and the
orientation encapsulates the direction of motion.

We encode each limb with its x and y locations for the
position and orientation of limbs in each frame with 34
points (17 for both x and y coordinates). We make a set of 68
points that is successive points in the two consecutive
frames. To track the movement of each limb separately, the
formed skeleton and the calculated coordinates are shown in
Figure 3. Our approach is robust because of the very low
count of interest points per frame as compared to recent
approaches [8, 13, 33–35]. ,is representation allows
encoding both position and orientation of the body parts. To
take into account possible differences in the frame sizes, we
use coordinates related to the center instead of the usual
image coordinates (the center of the frame is 0). An example
of the visual representation from a single frame is shown in
Figure 4. It is also important to note that the pose estimation
approach sometimes will not be able to extract full pose from
the frame and there might be different numbers of extracted
poses on different frames, mainly due to occlusion.

2.3. Action Formulation with Time Series. ,e next task is to
combine the information at each frame with the help of
joints and limbs to form an action. We get results only for
each frame individually. It is important to connect them to
get continuous movement individually. For each actor, we
compute a centroid of all computed points as a point for
comparison. For consecutive frames, estimations are con-
nected if their centroids are closer to the frames. For the
formulation of actions, few things might happen, like:

(i) Partial occlusion or self-occlusion of the body parts:
In this case, pose estimation cannot produce all the
key points and only partial information about the
pose can be obtained.

(ii) Disappearing from the frame: Detected actors may
disappear from the camera view during the video
segment.

(iii) Incorrect pose estimation: ,e pose can be incor-
rectly detected, and it does not belong to any actor
in the video segment. An example of such mis-
detection is shown in Figure 5.
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To construct a time series [36] to track the motion of the
actors in the video, we start with the first frame and compute
the number of interest points present in the frame. If there is
only one actor, then we will have 17 points and their co-
ordinate values, which will be used in the next frame to track
the motion of an actor. Similarly, in the next frames, we will
use the previous coordinates and current location of our
interest points (joints) which makes the total of 68 points in
the consecutive frames. ,is process will continue until all
the frames are completed. Now, after the completion of
actions, they are evaluated by comparing them with the
original input videos.We first checked the average motion in

the video of the original video and then performed the same
operation on our time series-based feature extracted video as
shown in Figure 6. ,e upper part depicts the average
motion of three videos comprising different actions, and the
lower part of the figure contains the average motion of the
same video but with the help of feature extracted points.
Here, we can predict the action by looking at the lower
portion of the figure and the environmental noise is removed
as our descriptor is only dependant on the body parts and
their relative motion.

,e descriptor is further evaluated by calculating the
Motion History Image (MHI) [37], it represents the motion

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

Figure 2: Overall Process of feature extraction in steps.
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Figure 1: Block diagram of the proposed approach.
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or movement in the single static template. It highlights the
location and path of the motion along with the frames and
represents the motion history at a particular location. ,e
brighter values signify the most current motion. MHI is
widely used in video processing, where video sequence is
decomposed into a single image. It contains the motion flow
and moving parts of the action video. ,e MHI of the
original video and feature extracted video can be depicted in

Figure 7. ,e upper portion of the figure represents the
original videos of different actions and the lower portion
shows the MHI of the feature extracted video. ,e features
only contained the motion of moving body parts and did not
contain any other information. ,e MHI of extracted video
only contains the relative information of actions happening
in the video.

Next, we calculate a gradient of the values in the time
series. ,e segments with the high magnitude of the gradient
will indicate that an actor performed a lot of movements at
this point. On the other hand, the segments with the gradient
close to zero will indicate a part of the video when an actor
remained still. It will allow us to remove the part of the video
at the beginning and the end of the video segments when
actors did not perform any actions leaving only the localized
part of the video. It helps in more accurate action seg-
mentation in the video. ,e average gradient can be visu-
alized in Figure 8 and the following equation:

Dn � 􏽘
n

1
t

􏼒 􏼓∗ 􏽘
t
∇ St, Lt( 􏼁⎛⎝ ⎞⎠, (4)

(a) (b) (c)

Figure 4: Visualisation of the results of the pose estimation algorithm on a single frame of the video. (a) Shaking of hands of actors.
(b) Kicking action. (c) Punching.

Figure 5: Example of False detection.
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Figure 3: Stick figure model of a human body with points and lines representing joints and limbs.
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where t is the total number of interest points present in
frames and D signifies the ensemble of interest point co-
ordinates and orientations along n (no. of frames). ,e
frame with very low average gradients depicts either no
motion or very small motion. We can exclude a couple of

frames, which not only improves the classification but also
reduces computation time.

,e resultant Vector D � D1, D2, . . . , Dn􏼈 􏼉 represents
the motion or actions in the video. We combined the de-
scriptor along the temporal axis to make a time series to
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Figure 6: Depiction of AverageMotion.,emotion-captured from the original videos (a). Motion Captured after the feature extraction (b).
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Figure 7: Motion History Image (MHI). MHI computed from the original dataset videos (a). MHI taken with the help of extracted
features (b).
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analyze the action more discreetly. In case of any missing
frames or key points occluded by objects, we check if the part
of the body is not visible all the time. It is removed from the
consideration. For the rest, we fill small gaps with the closest
previous or future value. We apply the Savitsky-Golay filter
[38] to exclude random spikes and get smooth time series for
the movement. ,is filter increased the precision without
altering any interest points and as a result, we have the vector
of 68 gradients of interest points with the total number of
frames in the video.

2.4. Action Classification with Proposed Descriptor. We have
calculated feature vectors from each video, as shown in
Figure 9; the extracted features showing the human
movement along the frames. We trained a classifier that will
distinguish between different actions in the video. We used a
set of SVM classifiers [39] for each class of actions with
varying sigmoid kernel functions to best fit our featured
data. ,e performance of the SVM classifier for the best
kernel function can be seen from Figure 10. ,e graph
clearly represents the kernel function with a 0.5 value gives
better results for the UT-interaction dataset. Each classifier
will estimate the probability that the action performed in the
analyzed video belongs to the specific category.

Classifiers for the first class of actions are trained on the
entire training set with two labels, “first action” and “not
first action,” assigned to the video segments. ,en, the
video segments are excluded from the dataset, and the
classifier for the second class is trained on the remaining
data with labels, “second action,” and “not second action”
and so on. In the case of the N class of actions, there will be
N − 1 classifiers, and the last classifier will distinguish
between actions “N − 1” and “N.” Additionally, we use a
sequential feature selection technique for each classifier to
reduce the number of predictors used in the classification.
,is will allow us to use only information about the
movements of the body parts that are the most relevant for
this class of actions.

3. Experiments and Discussion

We evaluated the proposed method using a leave-one-out
cross-validation technique and a k-fold (10-fold) validation.
A classifier, as described above, is trained using the training
set and used to predict action in the video from the pre-
diction set. ,e procedure is repeated for each of “N” videos
in the dataset, and the results of all the predictions are
collected and represented in the form of a confusion matrix.

3.1. Datasets. ,e algorithm was assessed on four action
datasets: the UT-Interaction dataset [40], the YouTube ac-
tion dataset [41], the CASIA dataset [42], and HCA [43].

,e UT-Interaction dataset has been considered a
standard for human interaction. ,e dataset contains six
classes of two-actor interactions, which include hand-
shaking, hug, kick, point, punch, and push.

,e YouTube action dataset (also known as UCF11)
contains 11 action categories with about a hundred video
segments in each category and a total of 1595 videos. Most of
these videos are extracted from YouTube and contain
camera motion, cluttered backgrounds, different appear-
ances of the actors, different illumination conditions, and
viewpoints of the camera.

,e CASIA action database contains various activities
captured in an outdoor environment with different angles of
view. ,e database contains various types of human actions
(walking, running, bending, etc.). ,ere are seven types of
interaction involving two actors (robbing, fighting, follow-
always, follow-together, meeting-apart, meeting-together,
and overtaking). We selected only interaction videos for
action recognition with respect to suspicious activities.

HCA dataset contains video sequences for six criminal
actions. Each category contains a set of videos to depict a
particular action. Each video is recorded with different actors
performing various actions under numerous environmental
conditions. ,ere are 302 videos in total. Actions include
fight, kick, push, punch, gun shooting, and sword-fighting.

0
-20

-15

-10

-5

0

5

10

15

20 40 60
Frames

G
ra

di
en

t

80 100 120 140

(a)

0
0

0.5

1

1.5

2

2.5

3

20 40 60
Frames

Av
er

ag
e G

ra
di

en
t

80 100 120 140

(b)

Figure 8: (a) Gradients of interest points along with each frame. (b) Average gradient along frames.
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3.2. Results and Comparison with Current Approaches.
,e proposed approach is evaluated on four datasets. ,e
system used for the simulation was Intel Xeon Processor,
32GB RAM, and NVIDIA GTX1660 graphics.

,e runtime performance of our approach depends on
the number of people present in the video. ,e number of
interest points (body parts) increased with people’s count,
which is the main factor in calculating the time complexity.
,e runtime complexity comprises two major parts: one
CNN processing time with complexity isO (1), constant with
a variable number of people; second, multiperson analyzing
time, which takes the complexity of O (n2), where n rep-
resents the number of actors present in the video. ,e rest is
time series approach, whose complexity is O (n).

All four datasets contained a different variety of actions,
which helped in better assessing the performance of the
proposed approach. ,e first dataset processed was the UT-
interaction dataset with a total number of 20 videos (10 in Set
1 and 10 in Set 2); set 1 contained actions with static
backgrounds, which generated close to zero noise, and set 2
videos were captured in a more natural environment with
multiple actors in the background. We used the leave-one-
out validation and the 10-fold cross-validation separately to

train the model, and the confusion matrix is shown in
Figure 11. Our approach outperforms the state-of-the-art
techniques. ,e recognition rate for Set 1 was 96.4%. ,e
reason for this high accuracy is that our descriptor extracts
the most relevant information about the actions performed,
and the full body of actors is visible with minimal occlusions.
Similarly, for Set 2, the same results were achieved, re-
gardless of the environmental effects, our approach extracts
the motion of the body parts, and it is the least affected by the
environmental changes or occlusion. Table 1 shows the
action-wise accuracies for each action, which shows good
performance on all the actions except few misclassifications
in the push and punch actions. ,e reason for misclassifi-
cation is due to interclass similarity. ,e comparisons of the
approaches with the state-of-the-art methods; our approach
improved the accuracy by 1%, as shown in Table 2.

Our approach successively classifies the Shakehand,
Hug, kick, and point actions as all the actions have uniquely
defined movement of body parts, which clearly differ from
other actions, but for the case of punch and push, we can see
few misclassifications as both the actions comprise of similar
movement. For example, for the actions of push and punch,
one actor remains still, while the other actor approach and
executes the action, which results in an impact on the first
actor and he leans back (with the effect of push or punch).
,e hand movement of both actions is quite similar in few
cases, which causes misclassification in few cases.

Next, we evaluated the proposed approach on the UCF11
dataset, which contained 11 actions, and most of the videos
are taken in a realistic environment, so this dataset was quite
challenging with respect to UT interactions due to large
viewpoint variations, backgrounds, camera motions, and
object appearances. Different body parts remained unseen
for a fraction of time, as this dataset contains different
viewpoints. Table 2 shows the performance comparisons for
the UCF11 dataset with other state-of-the-art. Our approach
outperforms because we first detected the poses and shaped
the actions by joining the body parts together in the tem-
poral domain. Here, in this dataset, we have multiple oc-
clusions where actor movements are overlapping with other
actors, which can cause misclassification. Figure 11(e) shows
the confusion matrix for the UCF11 dataset, which

Figure 9: Formulation of action with the help of extracted features.
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Figure 10: ROC curve for classification.
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represents few misclassifications. ,e reason for misclassi-
fication is specifically in spiking and basketball shooting
where the actor information is occluded and hand move-
ment is overlapped with other actors. ,erefore, it is crucial
not to lose the body parts for a long-time. To overcome this
issue, we picked the centroid of an actor and followed its
motion relative to other body parts so that we do not lose the
action attributes. As we are extracting the motion of the

body parts, the background jitter did not have much of an
effect.

For the CASIA dataset, there are three viewpoints, the
angle view, the horizontal view, and the top view. ,e
horizontal and angle viewpoints are better than the vertical
(bird-eye) viewpoints. We have picked interaction videos to
test the performance of our approach. Figure 11 shows the
confusion matrices for horizontal (c) and vertical (d). Our
approach requires the visualization of body parts for the
maximum duration to extract the information about the
action. In the vertical viewpoints, most of the actions look
comparatively similar, and most of the body parts are
hidden, so the transformation of the pose into motion will
cause misclassifications as only the head, shoulder, and arms
are highlighted for a very small period.

Our approach performed best for horizontal viewpoint
and achieved an accuracy of 98%. Table 3 shows the activity-
wise accuracies. ,e results only show the horizontal view as
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Figure 11: Confusion Matrices of (a) UT-Interaction (Set 1), (b) UT-Interaction (Set 2), (c) CASIA (Horizontal), (d) CASIA (Vertical), and
(e) UCF11 dataset.

Table 1: Classwise accuracy on UT-interaction.

Dataset Action Accuracy

UT-interaction

Shake hand 96%
Hug 97.46%
Kick 94.35%
Point 100%
Punch 92.12%
Push 93.80%
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our approach performs best where most of the body part is
visible in the entire video. ,e actions in this dataset are
different from one another.,erefore our approach does not
suffer from interclass similarity issues as we faced in UT-
interaction (push and punch).

However, few misclassifications were observed in the
“following” and “overtaking” actions where actors were
overlapped in most of the frames and the approach was not
able to classify the exact action. For the vertical viewpoint,
most of the body cannot be seen due to camera position.
,erefore, we can see many misclassifications. To better
understand the actions in the vertical viewpoints and similar
cases, optical flow and trajectory information was helpful for
the translation of the poses into actions.

,e last dataset selected for evaluation is Hybrid Criminal
Action (HCA) dataset. ,is dataset comprised videos from
different datasets; push, punch, and kick action videos were
taken from the UT-interactions dataset; gun shooting and
sword-fighting action videos were taken from HMDB51, and
fight action videos were taken from the CASIA dataset. ,e
overall experimental parameters change for each criminal
action. ,erefore, each of the actions is calculated separately
and the average value is shown in Table 2.

Previously the proposed approach is evaluated separately
on each of the actions and per-class accuracy for a fight, kick,

push, punch, gun-fighting, and sword-fighting are 96%, 99%,
93%, 91%, 78.4%, and 76%, respectively, as shown in Table 4.

,e action videos in this dataset contain very low
background noise, our approach extracts the features and
computes the relative descriptor efficiently, but the actions of
sword-fighting and gun-fighting were classified with less
accuracy. ,e videos from HMDB51 were collected mostly
from movies and web sources. ,e videos are low quality
with camera motion, illumination effects, nonstatic back-
ground, changes in position, viewpoint, and occlusion. Our
approach misclassifies few videos due to camera motion and
viewpoint variations, but the overall accuracy is acceptable.

4. Conclusions

,e proposed approach achieved good performance on all
the datasets. Our method utilizes the position of the actor
and computes the movement of body parts for feature
representation. ,en, by combining them into actions
using a time series approach. ,e proposed method effi-
ciently computes the features and later formulates the
action. ,is is why the background noise and occlusion do
not affect the overall performance of the approach.
However, for future directions, additional research is re-
quired to refine the extraction of the features from the
background information, and vertical viewpoints of the
actors, trajectory information, and optical flow can also
help in extracting valuable information. Extraction of
additional types of features, as well as dimensionality re-
ductions of the feature space using feature selection
methods or Principal Component Analysis (PCA), can lead
to a higher performance of the system.

Data Availability

,e authors have used publicly available datasets (UT-In-
teraction, CASIA, and UCF-11). However, HCA dataset can
be made available on request to the corresponding author.

Table 2: Performance comparison of the proposed approach with
the state-of-the-art.

Dataset Paper
Results

LOOV
set 1

LOOV
set 2 10-fold

UT-
interaction

Proposed
method 96.4% 96% 93%

(average)
Afrasiabi et al.

[35] 93% 93% —

Ahmad Jalal
et al. [34] 88% 87% —

Vahdat et al.
[44] 93.3% 91.3% —

Ngoc et al. [45] 95% 96% —

UCF11

Proposed
method 99.1% 98%

Cheng [46] 98.30% —
Yadav et al.

[47] 91.30% —

Wang et al.
[48] 98.7% —

Nazir et al. [14] 96.68% —
Amin Ullah

[49] 97.17%

CASIA

Proposed
method 98% 95%

Tian et al. [42] 94% —
Abinta et al.

[43] — 73.33%

HCA

Proposed
method 88.72% 86.28%

Abinta et al.
[43] 80.79%

Table 3: Acitivty-wise accuracy on CASIA (horizontal).

Dataset Actions Accuracy

CASIA

Fight 99.2%
Follow always 97.33%
Followtogether 95.55%
Meet apart 98.61%

Meet together 100%
Overtake 99.78%

Rob 96.88%

Table 4: Classwise accuracies on HCA dataset.

Dataset Actions Accuracy

HCA

Fight 96%
Kick 99.28%
Push 93.45%
Punch 91.22%

Gun-fighting 78.4%
Sword-fighting 76.21%
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