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Variational modal decomposition (VMD) has the end effect, which makes it difficult to efficiently obtain fault eigenvalues from
rolling bearing fault signals. Inspired by the mirror extension, an improved VMD is proposed. (is method combines VMD and
mirror extension. (e mirror extension is a basic algorithm to inhibit the end effect. A comparison is made with empirical mode
decomposition (EMD) for fault diagnosis. Experiments show that the improved VMD outperforms EMD in extracting the fault
eigenvalues.(e performance of the new algorithm is proven to be effective in real-life mechanical fault diagnosis. Furthermore, in
this article, combining with singular value decomposition (SVD), fault eigenvalues are extracted. In this way, fault classification is
realized by K-nearest neighbor (KNN). Compared with EMD, the proposed approach has advantages in the recognition rate,
which can accurately identify fault types.

1. Introduction

VMD is a novel method to deal with the signals. At present,
VMD has shown great achievements in the processing of
vibration signal, biological signal, and electrical signal. It has
been used for detection, diagnosis, and prediction. In the
heart sound signal, Babu et al. [1] adopted VMD to extract
the Shannon entropy envelope of the heart beat pulse. (e
approach can accurately identify the signal features
reflecting cardiac abnormalities in ECG. Li et al. [2] pro-
posed an adaptive denoising method based on VMD, which
is applied to water supply pipeline leakage location. Com-
pared with EMD, VMD can effectively eliminate modal
aliasing and is robust to noise and sampling [3, 4].

At present, many scholars use different methods to study
the vibration signal of fault bearing [5–11]. In the field of
fault diagnosis, some scholars study and apply VMD. Zhang
et al. [12] constructed a new technique, which applies VMD
to mechanical fault diagnosis. (rough failure mechanism
analysis, they established the fault model in fast Fourier
transform (FFT) and envelope analysis. (is approach can

successfully diagnose the fault of rolling bearing. Jiang et al.
[13] presented an adaptive detection method, which uses
VMD to detect early defects in bearings. Yi et al. [14]
employed VMD to extract bearing fault characteristics. Lv
et al. [15] used VMD and multicore vector to realize me-
chanical fault diagnosis. Compared with the traditional fault
diagnosis model, this approach had better performance. Yan
et al. [16] adopted VMD to extract hybrid-domain features,
identifying fault type with high accuracy. VMD has an
important application value for mechanical fault diagnosis
[17]. However, the drawback of the abovementioned ap-
proaches is that they have the modal aliasing in VMD, which
affects the diagnostic performance.

In this paper, a new method is proposed for rolling
bearing fault diagnosis. First, a mirror extension to suppress
its modal aliasing is used and the improved VMD into
bearing fault diagnosis is introduced [18].(en, combine the
improved VMD with SVD to achieve the effective extraction
of fault eigenvalues, finally adopt KNN to complete fault
classification. (e contributions of this paper are presented
as follows:
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(1) An improved VMD approach is proposed based on
VMD and mirror extension, which inhibits the end
effect. Improved VMD makes it effective for fault
diagnosis.

(2) Compared with EMD, the proposed approach has an
advantage in the recognition rate, which can accu-
rately identify the rolling bearing fault type.

(3) (e proposed diagnosis framework is effectively
verified by detection of the rolling bearing fault.
Results demonstrate that our framework has ad-
vantages in extracting the characteristic frequency,
which is suitable for the detection of manufacturing
systems.

(e article is organized as follows. (e principles of
VMD, mirror extension, and KNN are introduced in Section
2. Section 3 provides a new method and the detailed di-
agnosis scheme of the proposed approach. Section 4 presents
the experimental verification. Section 5 concludes this paper.

2. Theories

2.1. VMD. VMD is a new approach of signal processing,
which is adaptive and quasi-orthogonal. (e original signal

is decomposed into several modal components using VMD.
Eachmodal component has limited bandwidth, and it is near
the central frequency wk [19]. As presented in equation (1),
the constrained variational models are calculated:

min
uk{ }, wk{ }
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where uk  � u1, . . . , uk  are the narrow-band components
and wk  � w1, . . . , wk  represent the central frequencies.
k � 

K
k�1, where k is the number of decompositions.

In order to find the optimal solution of the constrained
variational model, the VMD method uses the quadratic
penalty function with good convergence and the Lagrange
multiplier λ operator with strong constraint ability.
(erefore, a Lagrangian function L can be introduced to
optimize the constrained variational problem so as to
minimize the narrow-band component uk and the central
frequency wk obtained in equations (3) and (4). (e ex-
pression of L is introduced:

L uk , wk , λ(  � α
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+〈λ(t), f(t) − 
k

uk(t)〉. (2)

(e formula for minimizing the narrow-band compo-
nent uk is expressed as follows:

u
n+1
k (w) �

f(w) − i≠kui(w) + λ(w)/2
1 + 2α w − wk( 

2 . (3)

(e formula for minimizing the central frequency
narrow-band component uk is obtained as follows:

w
n+1
k �


∞
0 w|u(w)|

2dw


∞
0 |u(w)|

2dw
. (4)

2.2. KNN. KNN is a nonparametric prediction algorithm. It
searches for k most similar eigenvectors in the historical
database to predict the future value [20]. (e model has
simple structure and high computational efficiency.

(e KNN classification algorithm is described as follows.
When the testing sample (unknown sample) is given, first
search the pattern space to find the K training sample closest
to the testing sample, that is, K-nearest neighbor, and then
calculate the selected K-nearest neighbor. If a class has the
maximum number of the nearest neighbors, the testing
sample can be determined to the class. Euclidean distance is
used to calculate the distance between the testing sample and
all training samples. (e formula is defined as follows:

d(X, Y) �

������������


N

i�1 xi − yi( 
2



, (5)

where X is the testing sample and Y denotes the training
sample. Figure 1 is the detailed steps of KNN.

3. The Proposed Diagnosis Method

3.1. Improved VMD. (e mirror extension assumes that a
mirror is placed at both ends of the data. (e original data
sequence image in the mirror is symmetrical with respect to
the mirror and the original data sequence [21]. (e original
data sequence image and the original data sequence in the
two mirrors form a continuous and closed ring without
endpoints. (e internal data completely determines the
upper and lower envelopes of the data, so the end effect is
fundamentally avoided [22]. Above the mirror surface is the
original data. Below the mirror surface is the extension data.
After the operation, only the data processing results above
the mirror surface are output.

(e purpose of boundary extension is not to provide
accurate data beyond the end, but to provide a condition that
the data within the end completely determine the envelope.
(e mirror extension satisfies this condition, so it is an ideal
extension algorithm.

When VMD analyzes and processes the fault signal, the
error is caused by the influence of external factors on both
ends [23–27]. Taking into account the end effect in VMD, a
mirror extension is adopted to suppress it. (e newly
proposed method has an advantage in extracting the
characteristic frequency. Figure 2 is the detailed steps of the
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improved VMD.(emain process of improved VMD can be
summarized as follows:

Step 1 : initialize u1
k , w1

k , λ
1
, n⟵ 0, where uk  �

u1, . . . , uk  are the narrow-band components,
wk  � w1, . . . , wk  represent the central fre-
quencies, k is the number of decompositions,
and λ represents the Lagrange multiplier.

Step 2 : set n⟵ n + 1 and k⟵ k + 1 and execute the
whole cycle. Update uk and wk for all w≥ 0 to
reach the preset decomposition number. When
k � K, the cycle ends. (e updated formula of
the narrow-band component and the corre-
sponding central frequency are as follows:

u
n+1
k (w) �

f(w) − i<ku
n+1
i (w) − i>ku

n
i (w) + λ

n
(w)/2

1 + 2a w − w
n
k( 

2 , (6)

w
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0 w u

n+1
k (w)



2
dw


∞
0 u

n+1
k (w)



2
dw

. (7)

Step 3 : update λ according to the formula:

λ
n+1

(w)⟵ λ
n
(w) + τ f(w) − 

k

u
n+1
k (w)⎛⎝ ⎞⎠. (8)

Step 4 : return to Step 2 and repeat the above process
until the whole iterative process meets the
constraints, and a series of narrow-band ei-
genmode component signals are obtained.
Equation (9) is the constraint condition, where ε
is set to 10−6:

k u
n+1
k − u

n
k

����
����
2
2

u
n
k

����
����
2
2 < ε

. (9)

(e specific extension process is provided as follows:

(1) Find all extreme points of the rolling bearing fault
signal x(t), t � 1, 2, . . . , T. (e extreme points
include the local maximum points and the local
minimum points.
(e local maximum point sequence of the signal x(t)

is

fmax(1), xmax(1)( , fmax(2), xmax(2)( ,Λ fmax tmax( , xmax tmax( (  . (10)

(e local minimum point sequence of the signal x(t)

is

fmin(1), xmin(1)( , fmin(2), xmin(2)( Λ fmin tmin( , xmin tmin( (  , (11)

where fmax(t), t � 1, 2, . . . , T, are the local maxi-
mum points, fmin(t), t � 1, 2, . . . , T, are the local
minimum points, xmax(t), t � 1, 2, . . . , T, are the
maximum points, and xmin(t), t � 1, 2, . . . , T, are
the minimum points.

(2) According to equation (12), the symmetrical ex-
tension is employed to the extreme points of the fault
signal x(t) to obtain a new extreme point sequence
p′ :

Calculate distance:
given the unknown
object, calculate its
distance from each

object in the training set.

Find the nearest
neighbor: circle the
nearest K training

objects as the nearest
neighbor of unknown

objects.

Do classification: the
most frequent category

 in the KNN is the
testing object's

prediction category.

First Step Second Step Third Step

Figure 1: Steps of KNN.
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fmax(0) � fmax(1)

xmax(0) � 2∗xmax(1) − xmax(2)
 , when xmin(1)< xmax(1) ,

fmin(0) � fmin(1)

xmin(0) � 2∗xmin(1) − xmin(2)
 , when xmin(1)>xmax(1) ,

fmax tmax + 1(  � fmax tmax( 

xmax tmax + 1(  � 2∗ xmax tmax(  − xmax tmax − 1( 
 , when xmin tmin( >xmax tmax( 

fmin tmin + 1(  � fmin tmin( 

xmin tmin + 1(  � 2∗ xmin tmin(  − xmin tmin − 1( 
 , when xmin tmin( < xmax tmax(  .
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

(3) Correct the new extreme point sequence p′  after
extension:

fmin(0)> x(1), when xmax(1) <xmin(1)

fmax(0)> x(1), when xmax(1) >xmin(1)

fmin tmin( >x(t), when xmin tmin(  <xmax tmax( 

fmax tmax( <x(t), when xmin tmin(  > xmax tmax( 
. (13)

(4) Use the value on the left end of the fault signal x(t) as
the symmetry plane, and the mirror extension is

realized. Meanwhile, the new fault signal y(i) of
rolling bearing is realized.

Calculate the local extreme value p
of rolling bearing fault signal x (t)

The mirror extension is applied to
the newly formed extreme

value sequence {p}

Compare the endpoints before
and after the extension

For the new sequence {p′},
the mirror continuation

starts from the left

VMD is used to decompose the
new signal y (i) of rolling bearing

fault

Figure 2: Steps of the improved VMD.
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3.2. Diagnosis Scheme. Owing to the feature extraction is
difficult in the incipient rolling bearing failures, this paper
presents a new method combined improved VMD and
KNN. (e structure of the diagnosis scheme is shown in
Figure 3.

(e detailed steps of the diagnosis scheme are as follows:

(1) Firstly, improved VMD is applied to handle the fault
signal, and several narrow-band eigenmode com-
ponents u are realized.

(2) (en, the narrow-band components are selected,
which have rich fault information. (ese modal
components are selected to reconstruct the fault
signal, and the envelope spectrum is conducted for it.

(3) Finally, the feature vector frommodal components is
extracted by using SVD. After feature extraction,
there are 100 data sets. 70 of the 100 data sets are
randomly employed to train the KNN classification
model, and the rest are employed to test the clas-
sification performance.

4. Experimental Verification

4.1. Experimental Setting. As shown in Figure 4, the fault
diagnosis platform consists of a 0.75 kW three-phase
asynchronous motor, two couplings, a reducer, a magnetic
powder brake, a piezoelectric accelerometer, a faulty rolling
bearing, and a photoelectric speed sensor. (e faulty rolling
bearing is installed in the bearing pedestal of the reducer.

(e signal acquisition system is used to collect the fault
signals, in which the rotation speed n and the sampling
frequency f are set at 600 r/min and 1 kHz, respectively.
Table 1 is the basic parameters of rolling bearing. According
to these parameters, the fault characteristic frequencies are
calculated: inner race is 99Hz and outer race is 71Hz. (e
improved VMD is applied to decompose the fault signal.
When the mode number K is different, their central fre-
quency is different. (e relationship between them is
depicted in Figure 5.

4.2. Experimental Results and Analysis. When the value of K
starts from 5, the central frequency is close [26], see
Figure 5(a). (is is an over decomposition phenomenon.
Hence, the K value taken in the test is 5. Based on VMD
experience, the balance parameter constrained by data fi-
delity adopts the default value of 2000, and the time step of
the double rise is 0.1. Figure 6(a) illustrates the time domain
diagram of the inner race fault, and its improved VMD result
is demonstrated in Figure 7(a).

As illustrated in Figure 5(b), when the value of K starts
from 5, the central frequency is close, which is an over
decomposition phenomenon [28]. (ereby, the K value
taken in the test is 5. Based on VMD experience, the balance
parameter constrained by data fidelity adopts the default
value of 2000, and the time step of the double rise is 0.1.
Figure 6(b) shows the time domain diagram of the outer race
fault. (e improved VMD result is demonstrated in
Figure 7(b).

As shown in Figure 6(a), the original signal of the inner
race fault contains considerable background noise, which
obscures the fault information. As shown in Figure 7(a),
compared with the original signal, the modal components
after the improved VMD eliminate the noise, which is the
function of Wiener filter. (ere are obvious fault shock
components in U3, U4, and U5. (erefore, these three modal
components are selected to reconstruct the signal, and the
envelope spectrum is conducted for it. (e result of the
envelope spectrum is depicted in Figure 8(a).

In contrast to the improved VMD, the first five com-
ponents of EMD are also taken, and Figure 9(a) is the de-
composition results. In Figure 9(a), IMF1, IMF2, and IMF3
contain many fault feature information, and they are
reconstructed. Figure 8(b) presents the envelope spectrum of
the reconstructed signal.

From Figure 6(b), the original signal time domain of the
outer race fault contains large background noise, which
obscures the fault information. Figure 7(b) shows that the
modal components eliminate the noise, which is the func-
tion of the Wiener filter. (ere are obvious fault shock
components in U2, U4, and U5. Hence, these three modal
components are selected to reconstruct the signal, and the
envelope spectrum is conducted for it. (e result of the
envelope spectrum is provided in Figure 10(a).

As a comparative test analysis, the first five components
of EMD are taken, and Figure 9(b) is the decomposition
result. As evident in Figure 9(b), IMF1, IMF2, and IMF3
contain many fault feature information, and they are
reconstructed. Figure 10(b) presents the envelope spectrum
of the reconstructed signal.

Figure 8(a) displays that the envelope spectrum has
obvious fault shock characteristics around 99Hz, which is
basically consistent with the theoretical value. (e small gap
does not affect the fault identification. 198Hz is the second
frequency, and 297Hz is the third frequency. As shown in
Figure 8(b), the envelope spectrum is not ideal. 99Hz and its
octave are not demodulated. Consequently, the decompo-
sition result of the improved VMD outperforms EMD.

Figure 10(a) shows that the envelope spectrum has
obvious fault shock characteristics around 71Hz. (is is
basically consistent with the theoretical value. (e small gap
does not affect the fault identification. 142Hz is the second
frequency, and 213Hz is the third frequency. In
Figure 10(b), the envelope spectrum is not ideal. 71Hz and
its octave are not demodulated. (erefore, the decomposi-
tion result of the improved VMD is shown to outperform
EMD.

In the fault classification, K in the KNN algorithm is set
to 1. (e first three groups of singular values are selected as
the nearest neighbor classification training sets and testing
sets. For each fault type, 70 of the 100 datasets are randomly
employed to train the KNN classification model, and the rest
are applied to test the classification performance. (e fault
classification results after improved VMD+SVD are shown
in Figure 11(a), and the fault classification results after
EMD+SVD are provided in Figure 11(b). Figures 11(a) and
11(b) show that the performance of the improved
VMD+SVD is better than EMD+ SVD.
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VMD SVD
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fault signal
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The fault
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Figure 3: (e structure of the diagnosis scheme.

Motor Reducer Piezoelectric accelerometer 

Magnetic powder brake Photoelectric speed sensor 

Coupling 

Figure 4: (e fault diagnosis platform.

Table 1: (e parameters of bearing.
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Figure 5: (e relationship between mode number and central frequency after improved VMD. (a) Inner race fault. (b) Outer race fault.
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Figure 7: (e decomposition results after improved VMD. (a) Inner race fault. (b) Outer race fault.
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Figure 8: Envelope spectrum of inner race fault. (a) U3 +U4 +U5. (b) IMF1 + IMF2 + IMF3.
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(e fault recognition rates are reported in Table 2. In the
classification results after the improved VMD+SVD, one
inner race fault is incorrectly identified as the outer race
fault, and one outer race fault is incorrectly identified as the

inner race fault. In the classification results after
EMD+SVD, three inner race faults are incorrectly identified
as the outer race faults, and five outer race faults are in-
correctly identified as the inner race faults.
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Figure 10: Envelope spectrum of outer race fault. (a) U2 +U4 +U5. (b) IMF1 + IMF2 + IMF3.
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Figure 9: (e decomposition results after EMD. (a) Inner race fault. (b) Outer race fault.
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5. Conclusion

A new method combining the improved VMD and KNN for
the rolling bearing fault detection system is presented. First,
the improved VMD decomposes the fault signal to obtain
the modal component. (en, the modal components with
many fault shock components are reconstructed. Finally, the
envelope spectrum is applied to the reconstructed signal, and
the characteristic frequency is identified successfully. Fur-
thermore, combining with SVD, KNN realizes fault type
classification. (e experimental results demonstrate that the
proposed approach has potential application in rolling
bearing fault diagnosis.
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“Partial rub detection based on instantaneous angular speed
measurement and variational mode decomposition,” Journal

of Vibration Engineering & Technologies, vol. 8, no. 2,
pp. 351–364, 2020.

[25] Z. Wang, J. Wang, andW. Du, “Research on fault diagnosis of
gearbox with improved variational mode decomposition,”
Sensors, vol. 18, no. 10, p. 3510, 2018.

[26] Y. Miao, M. Zhao, and J. Lin, “Identification of mechanical
compound-fault based on the improved parameter-adaptive
variational mode decomposition,” ISA Transactions, vol. 84,
pp. 82–95, 2019.

[27] Y. X. Wang, L. Yang, and J. W. Xiang, “A hybrid approach to
fault diagnosis of roller bearings under variable speed con-
ditions,” Measurement Science and Technology, vol. 4,
pp. 1587–1601, 2017.

[28] H. Liu, D. Li, Y. Yuan, S. Zhang, H. Zhao, andW. Deng, “Fault
diagnosis for a bearing rolling element using improved VMD
and HT,” Applied Sciences, vol. 9, no. 7, p. 1439, 2019.

Mathematical Problems in Engineering 11


