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In order to find the optimal path for emergency evacuation, this paper proposes a dynamic path optimization algorithm based on
real-time information to search the optimal path and it takes fire accident as an example to introduce the algorithm principle.
Before the accidents, it uses the Dijkstra algorithm to get the prior evacuation network which includes evacuation paths from each
node to the exit port. When the accidents occur, the evacuees are unable to pass through the passage where the accident point and
the blocking point are located, then the proposed method uses the breadth-first search strategy to solve the path optimization
problem based on the prior evacuation network, and it dynamically updates the evacuation path according to the real-time
information. Because the prior evacuation network includes global optimal evacuation paths from each node to the exit port, the
breadth-first search algorithm only searches local optimal paths to avoid the blockage node or dangerous area. Because the online
optimization solves a local pathfinding problem and the entire topology optimization is an offline calculation, the proposed
method can find the optimal path in a short time when the accident situation changes.,e simulation tests the performances of the
proposed algorithmwith different situations based on the topology of a building, and the results show that the proposed algorithm
is effective to get the optimal path in a short time when it faces changes caused by the factors such as evacuee size, people
distribution, blockage location, and accident points.

1. Introduction

,e most important thing for emergency evacuation is to
guide people to move from dangerous areas to safe areas in
the shortest time. Facing emergencies such as hurricanes,
tsunamis, fires, and poisonous gas leakage [1], somemethods
were proposed to find the optimal path according to the
prior information [2, 3], and the methods are not suitable for
the emergency evacuation when the situations are signifi-
cantly different from the prior information. Studies have
shown that fire is the most frequent accident among the
above emergencies [4–6], and it gets more attention from
researchers since fire accidents frequently cause huge losses
to mankind; then, this paper takes fire accident as an ex-
ample to introduce the proposed algorithm principle. ,e
evacuation environment includes route topology, exit lo-
cation, evacuee size, and people distribution, and changes of
each element bring different evacuation paths. Fire accidents

often happen suddenly and unpredictably, and the static
path planning algorithms have limited application in
practice since the prior environment information is different
from the real-time environment information during
emergencies. According to the studies of some fire event
cases [7–9], chaotic and untimely evacuation is the im-
portant reason for the high casualty rate. In crowded
buildings such as shopping malls, supermarkets, and large
cruise, people always move without any regular pattern, and
it is necessary to search evacuation paths according to exit
locations, real-time evacuee locations, and evacuee size
[10, 11]. It is dangerous for evacuees to pass a passageway
that is full of smoke, and the smoke spreading changes the
route topology during the evacuation. ,e old path is not fit
for the new situation when some passageways change, and it
is a time-consuming process to find a new optimal path. In
order to find the evacuation path in a short time, some
methods [12] simplified the route topology to reduce the
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computation time, and the incomplete dynamic route to-
pology made the new path different from the shortest one.
With the development of stochastic optimization, some
intelligent algorithms such as ant colony algorithm [13–15],
particle swarm algorithm [16–18], bee colony algorithm
[19–21], and genetic algorithm [22] or greedy algorithm [23]
were used to find the dynamic path. When route topography
and constraints changed, intelligent algorithms took the old
path as a feasible solution for dynamic path searching.
Although intelligent algorithms are able to search for op-
timal solutions globally, they converge slowly when facing
dynamic evacuation problems.

Recently, the dynamic evacuation problem has become a
hot research topic, and many scholars try to get the shortest
path according to dynamic situations. ,e authors in ref-
erences [24–27] built the intelligent integrated fire rescue
system which updated optimal paths by using the wireless
sensor or vision camera to detect people locations. However,
the wireless sensors and vision cameras are difficult to get
accurate dynamic information about the people, and the
online computation is also complex and time consuming. In
order to get the shortest paths in a short time, basic and
improved Dijkstra algorithms are the most popular methods
used to search the optimal paths [28–30]. Beside the path
length, safety is also important for people during the
evacuation, and the authors references [31–33] took the
safest and shortest paths as the cost function to search the
optimal paths. Facing the dynamic situation, the authors in
references [34–37] used dynamic planning to search for the
optimal paths and informed everyone on the ship how to
move toward the exit. Neural networks are good at learning
the hidden knowledge from sample data, and the authors in
[38–41] used neural networks to decide which paths are
available for people to evacuate dynamically. Because the
smog keeps spreading during the fire accident, feasible
evacuation paths should consider the future changes of
dangerous areas. ,e authors in [42–44] tried to predict the
dangerous area and searched the optimal paths step by step,
and the prediction performances influenced the effectiveness
of the evacuation significantly.

Effective emergency evacuation paths are important for
the safety of personal in accidents, and the basic requirement
is that the commander gets the optimal paths to fit the
dynamic changes in a short time. ,is paper proposes a
dynamic path optimization method which includes offline
search and online search. ,e offline optimization gets the
prior evacuation network which includes evacuation paths
from each node to the exit port, and the online optimization
searches the local optimal paths based on the prior evacu-
ation network when the accidents happen.,e changes from
accident locations, dangerous areas, and blocking paths call
the online optimization algorithm to search the dynamic
optimal paths. Online optimization quickly plans the
evacuation paths to adapt the real-time situations.

,is paper is organized as follows: Section 2 introduces
the method of establishing the network topology of the
building. Section 3 details the proposed dynamic optimi-
zation algorithm that uses offline optimization and online
optimization to search the optimal evacuation paths. ,e

simulation results and analysis are in Section 4. Section 5
summaries the conclusions.

2. Evacuation Environment Model

,e emergency evacuation model mainly includes micro-
scopic model and macroscopic model [45]. ,e micro-
scopic model focuses on the study of individual behavior
characteristics, and the path optimization algorithm sim-
ulates human individual behavior and mental activities to
select evacuation paths. Typical microscopic models in-
clude the social force model, cellular automata model, and
lattice gas model [46]. Because the microscopic model uses
less overall information about the environment, it always
gets local feasible paths and ignores the global optimal
paths. ,e local feasible paths are able to guide people to
move toward the exit, but it is different from the optimal
solution that considers the evacuation time and personal
safety during the evacuation process. In addition, the
optimization algorithms based on the microscopic model
converge slowly, and the online pathfinding requires fast
convergence algorithms [47]. ,e macroscopic model pays
attention to the people flow of each evacuation path at
different moments based on global information. People
move at different speeds when the density of people
changes, and the move speeds are macroviews of individual
behavior. ,e relationship between move speed and people
density is summarized by the characteristics of individual
movement and saved as a piecewise function. Since the
optimization outputs based on the macroscopic model are
global optimal solutions, the paths are more effective for
emergency evacuation.

In the macroscopic model, paths and intersections of the
building are regarded as the edges and nodes of a graph. ,e
macroscopic model is a weighted graph as follows:

G � (V, E, W), (1)

where V is the set of nodes, V � vi | i ∈ [1, n] , in which n is
the total number of the network nodes. E is the set of graph
edges, V � eij | i, j ∈ V . W is the set of weights of each
edge. Usually, corridors or stairways in a building are set as
edges, and the endpoints of corridors are set as nodes, and
the weight of each edge is the actual distance between the
connected nodes. In the large-scale macroscopic model,
optimization also requires complex computation due to a
large number of nodes and edges.

,is paper uses macroscopic modeling principles to
establish the model of an underground shopping mall and
related passage spaces.,is shoppingmall is the middle floor
of a three-floor structure, the bottom floor is the subway
station, and the top floor has several urban traffic roads. ,e
macroscopic model represents the fire evacuation envi-
ronment of the surrounding area, and its graph is shown in
Figure 1.,emodel is a multioutlet network, where V is a set
of ordinary nodes and V � N1, N2, . . . , N22  and O is a set
of safe exit nodes and O � O1, O2, O3, O4 . Each weight is
the actual distance between adjacent nodes, and the weight
values are shown in Table 1.
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3. Dynamic Path Optimization

,e proposed dynamic path optimization includes offline
optimization and online optimization. With prior infor-
mation of the evacuation model shown in Figure 1, the
offline optimization is used to search for the optimal paths
that contain evacuation routes from each node to exit nodes.
,e online optimization dynamically searches the optimal
paths when real-time information is different from the prior
information. ,e online optimization searches the local
areas and converges fast, and it gets new optimal paths that
fit the real-time requirement in a short time.

3.1. Offline Prior Evacuation Path Network. Before the fire
accident, it is necessary to get the shortest evacuation path
from each node to each exit for the building.,is search is an
offline process that uses the Dijkstra algorithm to get the
prior evacuation path network that stores the node number
of each evacuation path. ,e Dijkstra algorithm is a typical
algorithm for searching the shortest path between nodes in a
graph, and it has been widely used to search for the shortest
evacuation paths in fire incidents. ,e flow of the standard
Dijkstra algorithm is shown as Algorithm 1. ,e operation
u← vertex in Q with min dist [u] means the algorithm
searches for the vertex u in the vertex set Q that has the least
distance. Operation length(u, v) returns the length of the
edge connecting two adjacent nodes u and v.

,e variable expand is the length of the path from the
source node to the node v via u. ,e principle used to
determine whether the node v satisfies the slack condition is
as follows:

d(u,v) > d(u,q) + d(q,v), (2)

where d(u,v) is the distance between node u and node v.
Equation (2) shows that the distance from node u to node v

via node q is shorter than the old distance between node u

and node v, and then the path p(u, v) is updated as follows:

p(u, v) � u, q, v . (3)

According to the Dijkstra algorithm, we get the evac-
uation path network of the building shown in Figure 1. ,e
network includes the shortest path from each node to each
exit. Since the network is too large to display, Table 2 de-
scribes the nodes from node 3 to the four exits and the paths
are shown in different colors in Figure 2. If people are at
node N3, they will use the information shown in Table 2 to
quickly escape to the safety exit, so this network is the prior
information for the people to escape. When the fire envi-
ronment is the same as the offline optimized hypothetical

Safe exit

N2 N6 N13

N12

N19 N22

N3
N1 N7 N14

O2

N4 N8 N15 N20N17

N5 N9 N16 N18
O1

N10 N21 O3
O4N11

Figure 1: Network model of the underground shopping mall.

Table 1: ,e weight values between adjacent nodes.

Node number Weight value (m)
1 w1,3 � 32
2 w2,3 � 7, w2,6 � 11
3 w3,1 � 32, w3,2 � 7, w3,4 � 21, w3,7 � 5
4 w4,3 � 21, w4,5 � 13, w4,8 � 8
5 w5,4 � 13, w5,9 � 14, w5,O1 � 6
6 w6,2 � 11, w6,7 � 43, w6,13 � 64
7 w7,3 � 5, w7,6 � 43, w7,8 � 17, w7,14 � 11
8 w8,4 � 8, w8,7 � 17, w8,9 � 4, w8,15 � 11
9 w9,5 � 14, w9,8 � 4, w9,10 � 44, w9,16 � 5
10 w10,9 � 44, w10,11 � 8, w10,21 � 92
11 w11,10 � 8
12 w12,13 � 8
13 w13,6 � 64, w13,12 � 8, w13,14 � 51, w13,19 � 13
14 w14,7 � 11, w14,13 � 51, w14,O2 � 3
15 w15,8 � 11, w15,16 � 13, w15,17 � 41
16 w16,9 � 5, w16,15 � 13, w16,18 � 37
17 w17,15 � 41, w17,18 � 26, w17,20 � 81, w17,O2 � 14
18 w18,16 � 37, w18,17 � 26, w18,O4 � 99
19 w19,13 � 13, w19,20 � 52, w19,22 � 14
20 w20,17 � 81, w20,19 � 52, w20,21 � 34
21 w21,10 � 92, w21,20 � 34, w21,O3 � 12
22 w22,19 � 14
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environment, people can move according to the prior
evacuation network.

3.2. Online Local Path Optimization. ,e location and time
of the fire are unpredictable; the distribution of people inside
the building is also changing. ,e prior evacuation network
needs to be modified when some edges are blocked or in a
dangerous area. ,is modification only adjusts the nodes of
the paths that are affected by the fire, and it is a local path
optimization based on the prior evacuation network. Be-
cause the fire is changing during the evacuation, then the
online local path optimization keeps searching for the new
solutions. In the network graph model G � (V, E, W), the

evacuation path p(i, j) from the start node i to the end node
j is as follows:

p(i, j) � Ni, Nr, . . . , Ns, Nj , (4)

where Ni, Nr, Ns, and Nj are the node number. ,e total
distance dist p(i, j)  of the evacuation path p(i, j) is

dist p(i, j)  � 

j

t�i

w(t,t+1), (5)

where w(t,t+1) is the actual distance between node t and node
t + 1. ,e cost function of the dynamic optimization is to
search for the paths that do not include the impassable

create vertex set Q
for each vertex v in Graph:
dist [v]⟵ Infinity
path [v]⟵ Undefined
add v to Q

dist [source]⟵ 0
while Q is not empty:

u⟵ vertex in Q with min dist [u]
remove u from Q
for each neighbor v of u:

expand⟵ dist [u] + length (u, v)
if expand< dist [v]:
dist [v]⟵ expand
path [v]⟵ u

return dist [], path []

ALGORITHM 1: Offline evacuation path optimization.

Table 2: Evacuation paths from node 3 to the exits.

Start node and exit node Shortest path Distance (m)
N3-O1 N3, N4, N5, O1  40
N3-O2 N3, N7, N14, O2  19
N3-O3 N3, N7, N14, O2, N17, N20, N21, O3  160
N3-O4 N3, N7, N14, O2, N17, N18, O4  158

Safe exit

N2 N6 N13 N19 N22

N3N1 N7 N14 O2

N4 N8 N15 N20N17

N5 N9 N16 N18O1

N10 N21 O3
O4N11

Figure 2: ,e paths from node 3 and node 8 to different exits in the prior evacuation network.
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nodes. Suppose the real-time impassable nodes set is IV,
then the online optimization problem is as follows:

min

j

t�i

w(t,t+1), t ∈ V, t ∉ IV. (6)

Equation (6) is a constraint optimization problem; the
optimization result p(i, j) only includes the safe and passable
nodes. Suppose PNet is the prior evacuation path network,
NBNode is the neighbor nodes of the impassable nodes in IV.
,e online optimization starts to search for the optimal paths
when the PNet is not fit for the real-time situation, and the
online optimization algorithm flow is shown as Algorithm 2.

,is paper uses the online dynamic optimization algo-
rithm to search for the real-time optimal paths for the graph
in Figure 1. Suppose N7 is in the fire area and the impassable
node set IV � N7 . According to the dynamic optimization
algorithm in Algorithm 2, the SNode stores the starting
nodes of the prior paths that contains N7, and the nodes of
SNode are as follows:

SNode(1) � N12, N13, N14, N17, N19, N20, N22 ,

SNode(2) � N1, N2, N3, N4, N5, N6, N8, N9, N10, N11, N15, N16 ,

SNode(3) � N1, N2, N3, N4, N5, N8, N9, N10, N11 ,

SNode(4) � N1, N2, N3, N6 ,

(7)

where SNode(i) contains the starting nodes of the prior paths
that are from each node to Oi via N7. Because the paths from
the nodes in SNode to exits are impassable, then these paths
are adjusted dynamically. N3, N6, N8, and N14 are neighbor
nodes of N7; then, the nodes of NBNode are as follows:

NBNode(1) � N14 ,

NBNode(2) � N3, N6, N8 ,

NBNode(3) � N3, N8 ,

NBNode(4) � N6 ,

(8)

where NBNode(i) contains the neighbor nodes of N7 in
SNode i{ }. Because the nodes of NBNode are around node
N7, the paths from these nodes to the exits help the people to
avoid the impassable node N7. We use the breadth-first
search (BFS) algorithm to search for the optimal paths from
the nodes of SNode to the exits. Since the paths from each
node to the exits are stored in the prior evacuation network,
the BFS gets the shortest path from a node when it visits the
node. ,is prior evacuation path network reduces the search
time significantly, and it only needs a little lookup time to get
the path information when it visits a node. ,e BFS visits
nodes of NBNode and checks whether the shortest paths
contain impassable node. If path from node Nk to exit Oh

does not contain the impassable node, then the new path
from node Ni to exit Oh is updated as follows:

p Ni, Oh(  � p Ni, Nk(  + p Nk, Oh( , (9)

where node Ni ∈ SNode, Nk ∈ NBNode, and Oh is the exit
node. ,e paths from nodes of SNode to the exit nodes are

updated according to equation (9) step by step. Although the
new paths avoid impassable node, some paths are not the
shortest, and it is necessary to fine-tune the suboptimal
paths. Suppose DPNode is the set of the new dynamic paths,
and one of the new paths is

p Ni, Oh(  � Ni, Nr, . . . , Nk, Nt, . . . , Nn, Oh , (10)

where Ni, Nr, . . ., Nn ∉ IV. Nodes around the node of
p(Ni, Oh) are used to check whether there is a much shorter
path; if a node Nα around Nk satisfies the inequality as
follows:

w Nk, Nα(  + dist Nα, Oh( <w Nk, Nt(  + dist Nt, Oh( ,

(11)

then the new shorter path is as follows:

p′ Ni, Oh(  � p Ni, Nα(  + p Nα, Oh( . (12)

,e real-time information triggers the online dynamic
optimization to search for the new shortest paths according
to the above algorithm principle. In Figure 1, suppose node
N7 is in the fire area, there are 35 paths that contain N7.
Different paths are shown in Figure 3. Path1 is the prior
shortest evacuation path from node N6 to exit O2, Path2 is a
feasible path that avoids node N7, and Path3 is the final
shortest path obtained by global search. It takes 11ms to
update the shortest paths from nodes in SNode to the exits.

4. Simulation Results and Analysis

,emore nodes in the network model, the more time it takes
to search for evacuation paths in real-time. ,is paper es-
tablishes a network model with 2000 nodes to compare the
performances of the proposed dynamic optimization and the
traditional Dijkstra algorithm. Suppose the set of safe exit
nodes is O � N7, N77, N777  and each node has two edges
connecting to other nodes, the weight of each edge is
randomly assigned a positive value between 0 and 100.

Let node N18 be in the fire area; both the proposed
dynamic algorithm and the Dijkstra algorithm are used to
search for the shortest paths from node N1225 to exit N7 and
N777. ,e path optimization results are shown in Table 3.
,e M1 is the method that uses the Dijkstra algorithm to
search for the shortest path offline. M2 and M3 are the
methods that use the proposed dynamic algorithm and the
Dijkstra algorithm to search for the shortest path according
to the real-time information as node N18 is in the fire area.
M2 and M3 are online searching that avoid passing through
node N18. ,e results show that the evacuation paths of the
online searching algorithms are longer than those of the
offline algorithm; this difference is due to the fact that the
online search algorithms need to avoid node N18. M2 gets
the same path as M3 in online path searching, and it shows
that the proposed dynamic algorithm has the ability to get
the shortest path.

,e node from N1 to N200 is set as a fire point step by
step, and the curve of the number of nodes in SNode is
shown in Figure 4. Different nodes cause different sizes of
SNode, and the online searching time is also shown in
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Figure 4. ,e curves in Figure 4 show that the online
searching time is positively correlated with the size of SNode.

With the same nodes in SNode, this paper compares the
online searching time of the proposed dynamic algorithm
with that of the Dijkstra algorithm, and the results are shown
in Figure 5. ,e comparison result shows that the proposed
dynamic algorithm searches much faster than the Dijkstra
algorithm all the time. ,e Dijkstra algorithm executes a
global optimization when facing a new order to search for a
path from the node in SNode to the exit; it takes a long time

to find out the shortest path. ,e proposed dynamic algo-
rithm takes advantage of the prior evacuation path and only
visits the nodes around the fire area to get the local shortest
paths. Because the proposed dynamic algorithm does not
search each node of the model, it is more effective than the
Dijkstra algorithm. Let tp denote the online searching time
of the proposed dynamic algorithm and td denote the online
searching time of the Dijkstra algorithm; the ration of tp to td

is also shown in Figure 5.,emaximum ratio is 0.92, and the
minimum ratio is 0.02, and there are some ratios that have a

Safe exit
Path1

Path2
Path3

N2 N6 N13 N19 N22

N3N1 N7 N14 O2

N4 N8 N15 N20N17

N5 N9 N16 N18
O1

N10 N21 O3
O4N11

Figure 3: ,e paths from node N6 to exit O2 updated by the proposed dynamic algorithm.

for p in PNet
for d in IV

if path p contains node d
SNode⟵ the first node of path p

for Ni in NBNode
p(Ni, Oh) is updated by the breadth-first search algorithm

for Nk in SNode
update the path of DPNode as p(Nk, Oh) � p(Nk, Ni) + p(Ni, Oh)

for p in DPNode
for Nr in path p

p⟵ check the nodes around Nr whether p is the shortest
return DPNode

ALGORITHM 2: Online dynamic path optimization.

Table 3: Evacuation paths of different algorithms.

Start-end Method Evacuation path Distance

N1225–N7

M1 {N1225, N564,N18, N1587, N113, N1210, N653, N1030, N334, N1503, N51, N1289, N1201, N7} 291
M2 N1225, N1631, N801, N979, N1668, N1580, N432, N1218, N7  N1218, N7} 324
M3 N1225, N1631, N801, N979, N1668, N1580, N432, N1218, N7  N1218, N7} 324

N1225–N777

M1 N1225, N564,N18, N474, N761, N558, N777  234
M2 N1225, N564, N1372, N607, N895, N1938, N197, N777  279
M3 N1225, N564, N1372, N607, N895, N1938, N197, N777  279
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value of 0 since they have no node pass through the fire area.
At node N51, there are 256 paths that need to be modified
and the ratio is 0.1. At node N35, there are 178 paths that
need to be modified and the ratio is 0.05. It is efficacious to
use the proposed dynamic algorithm as there are many
nodes in the SNode.

5. Conclusions

,e prior evacuation paths are inefficient when the situa-
tions are different from the prospective environments. It
takes a long time to search for the shortest paths from each
node to the exits, and it is unsuitable for online searching.
,e proposed dynamic algorithm adjusts the prior paths that
pass through the fire areas according to the situations.
Because the proposed method takes advantages of the prior
evacuation path network, it visits the nodes around the fire
area to get the path information instead of searching each
node of the model. It modifies the paths that pass through
the fire areas in a short time, and each path is the shortest
one from itself to the exit. ,e proposed dynamic algorithm

is suitable for the online evacuation path optimization be-
cause of its fast convergence and global searching.

Data Availability

,e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

References

[1] S. Aalami and L. Kattan, “Fairness and efficiency in pedestrian
emergency evacuation: modeling and simulation,” Safety
Science, vol. 121, pp. 373–384, 2020.

[2] T. Yamada, “A network flow approach to a city emergency
evacuation planning,” International Journal of Systems Sci-
ence, vol. 27, no. 10, pp. 931–936, 1996.

[3] R. E. Meouche, M. Abunemeh, I. Hijaze, A. Mebarki, and
I. Shahrour, “Developing optimal paths for evacuating risky

50 100 150 2000
Sequence number of the node

0

100

200

300

Si
ze

 o
f t

he
 S

N
od

e

(a)

50 100 150 2000
Sequence number of the node

0

100

200

300

400

500

Se
ar

ch
in

g 
tim

e (
m

s)

(b)

Figure 4: ,e performance of the proposed dynamic algorithm: (a) relationship between the size of SNode and node number; (b) re-
lationship between the searching time and the node number.

100 150 20050
Sequence number of the node

0

2000

4000

6000

Se
ar

ch
in

g 
tim

e (
m

s)

Dynamic search
Dijkstra algorithm

(a)

0

0.2

0.4

0.6

0.8

1

Ra
tio

 o
f t

p t
o 
t d

100 150 20050
Sequence number of the node

(b)

Figure 5: ,e performance comparison between the proposed dynamic algorithm and the Dijkstra algorithm: (a) comparison of the
searching time; (b) ratio of tp to td.

Mathematical Problems in Engineering 7



construction sites,” Journal of Construction Engineering and
Management, vol. 144, no. 2, Article ID 04017099, 2018.

[4] J. M. Czerniak, H. Zarzycki, Ł. Apiecionek, W. Palczewski,
and P. Kardasz, “A cellular automata-based simulation tool
for real fire accident prevention,” Mathematical Problems in
Engineering, vol. 2018, Article ID 3058241, 12 pages, 2018.

[5] H. Mi, Y. Liu, W. Wang, and G. Xiao, “An integrated method
for fire risk assessment in residential buildings,”Mathematical
Problems in Engineering, vol. 2020, Article ID 9392467,
14 pages, 2020.

[6] I. Bakas, K. Georgiadis-Filikas, and K. J. Kontoleon, “Trea-
sures gutted by fire. Fire safety design awareness as a con-
sequence of historic building accidents and disasters,” IOP
Conference Series. Earth and Environmental Science, vol. 410,
no. 1, Article ID 12113, 2020.

[7] Z. Dou, A. Mebarki, Y. Cheng et al., “Review on the emer-
gency evacuation in chemicals-concentrated areas,” Journal of
Loss Prevention in the Process Industries, vol. 60, pp. 35–45,
2019.

[8] R. R. M. Gershon, “,e world trade center evacuation study:
factors associated with initiation and length of time for
evacuation,,” Fire and Materials, vol. 36, no. 5-6, pp. 481–500,
2012.

[9] C. Minji, “Effect of dynamic emergency cues on fire evacu-
ation performance in public buildings,” Journal of Infra-
structure Systems, vol. 24, no. 4, 2018.

[10] P. Chen and F. Feng, “A fast flow control algorithm for real-
time emergency evacuation in large indoor areas,” Fire Safety
Journal, vol. 44, no. 5, pp. 732–740, 2019.

[11] F. Mirahadi and B. Y. McCabe, “EvacuSafe: a real-time model
for building evacuation based on Dijkstra’s algorithm,,”
Journal of Building Engineering, vol. 34, Article ID 101687,
2020.

[12] W. Y. Lin and P. H. Lin, “Intelligent generation of indoor
topology (i-GIT) for human indoor pathfinding based on IFC
models and 3D GIS technology,” Automation in Construction,
vol. 94, pp. 340–359, 2018.

[13] M. Goodwin, O.-C. Granmo, and J. Radianti, “Escape plan-
ning in realistic fire scenarios with ant colony optimisation,”
Applied Intelligence, vol. 42, no. 1, pp. 24–35, 2015.

[14] Y. Zhao, H. Liu, and K. Gao, “An evacuation simulation
method based on an improved artificial bee colony algorithm
and a social force model,” Applied Intelligence, vol. 51, no. 1,
pp. 100–123, 2021.

[15] L. Liu, H. Zhang, J. Xie, and Q. Zhao, “Dynamic evacuation
planning on cruise ships based on an improved ant colony
system (IACS),” Journal of Marine Science and Engineering,
vol. 9, no. 2, p. 220, 2021.

[16] F. Li, “Modelling multi-exit large-venue pedestrian evacua-
tion with dual-strategy adaptive particle swarm optimization,”
IEEE Access, vol. 8, pp. 114554–114569, 2021.

[17] Y. Zhang, D. Zhang, and J. Jin, “Evacuation path optimization
algorithm for inland river passenger ship in emergency sit-
uation,” Journal of Coastal Research, vol. 83, p. 256, 2018.

[18] Y.-J. Zheng, H.-F. Ling, J.-Y. Xue, and S.-Y. Chen, “Pop-
ulation classification in fire evacuation: a multiobjective
particle swarm optimization approach,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 1, pp. 70–81, 2014.

[19] N. Khamis, H. Selamat, F. S. Ismail, O. F. Lutfy, M. F. Haniff,
and I. N. A. M. Nordin, “Optimized exit door locations for a
safer emergency evacuation using crowd evacuation model
and artificial bee colony optimization,” Chaos, Solitons &
Fractals, vol. 131, Article ID 109505, 2020.

[20] H. Liu, B. Xu, D. Lu, and G. Zhang, “A path planning ap-
proach for crowd evacuation in buildings based on improved
artificial bee colony algorithm,” Applied Soft Computing,
vol. 68, pp. 360–376, 2018.

[21] C. Wang, L. C. Wood, H. Li, Z. Aw, and A. Keshavarzsaleh,
“Applied artificial bee colony optimization algorithm in fire
evacuation routing system,” Journal of Applied Mathematics,
vol. 2018, Article ID 7962952, 17 pages, 2018.

[22] L. Yapeng, C.Wei, and A. K. Austin, “Design of level of service
on facilities for crowd evacuation using genetic algorithm
optimization,” Safety Science, vol. 120, pp. 237–247, 2019.

[23] Z. Yu, D. Li, S. Zhu,W. Luo, Y. Hu, and L. Yuan, “Multisource
multisink optimal evacuation routing with dynamic network
changes: a geometric algebra approach,” Mathematical
Methods in the Applied Sciences, vol. 41, no. 11, pp. 4179–4194,
2018.

[24] Y. Amirgaliyev, R. Yunussov, and O. Mamyrbayev, “Opti-
mization of people evacuation plans on the basis of wireless
sensor networks,”Open Engineering, vol. 6, no. 1, pp. 206–213,
2016.
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