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Robust regression is an important iterative procedure that seeks analyzing data sets that are contaminated with outliers and
unusual observations and reducing their impact over regression coefficients. Robust estimation methods have been introduced to
deal with the problem of outliers and provide efficient and stable estimates in their presence. Various robust estimators have been
developed in the literature to restrict the unbounded influence of the outliers or leverage points on the model estimates. Here, a
new redescending M-estimator is proposed using a novel objective function with the prime focus on getting highly robust and
efficient estimates that give promising results. It is evident from the results that, for normal and clean data, the proposed estimator
is almost as efficient as ordinary least square method and, however, becomes highly resistant to outliers when it is used for
contaminated datasets. .e simulation study is being carried out to assess the performance of the proposed redescending
M-estimator over different data generation scenarios including normal, t-distribution, and double exponential distributions with
different levels of outliers’ contamination, and the results are compared with the existing redescending M-estimators, e.g., Huber,
Tukey Biweight, Hampel, and Andrew-Sign function..e performance of the proposed estimators was also checked using real-life
data applications of the estimators and found that the proposed estimators give promising results as compared to the
existing estimators.

1. Introduction

Robust regression is an alternative method to the ordinary
least square (OLS) regression when the basic assumptions
are violated by the nature of the data. .e method of OLS
requires several assumptions to fit a regression line effi-
ciently, but it produces very poor estimates of the regression
coefficients when the same assumptions are not fulfilled, and
consequently, the residuals become very large leading to
inflated standard errors, which can seriously distort model
predictions. .us, the confidence interval becomes wider,
and the estimates of the regression coefficients are no longer
asymptotically consistent. Observations that bias the

estimates of the parameters are called bad leverage points,
whereas observations that lie along the predicted line are
called good leverage points.

During estimation of the regression coefficients, if as-
sumptions of the OLS are violated, then this problem is often
fixed by using the transformation techniques. .e trans-
formed variables sometimes eliminate the effect of the in-
fluential outliers, which can affect the significance of the
regression coefficients that can also lead to incorrect pre-
dictions. Under these situations, robust regression methods
that are resistant to outliers become the only best choice left
to fit the regression line and find efficient estimates of the
regression coefficients.
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A regression model is generally defined as

Y � Xβ + ε, (1)

where the dependent variable Y and the vector of true re-
siduals ε are n x 1, and the design matrix X is n× p. Write β
for an estimate of β, and

e � Y − Xβ, (2)

for the corresponding fitted residuals.
.e least squares method is commonly used for pa-

rameter estimation of the regression model under certain
assumptions; for example, the errors term may follow
normal distribution with zero mean and constant variance,
i.e., ei∼N (0, δ2)..e basic notion of the least square principle
for parameter estimation is to minimize the sum of squared
residuals. For normal data, the least square method esti-
mation is defined by

min
n

i�1
e
2
i , (3)

where ei � yi − xT
i β represents the vectors of residuals.

However, this estimator is very sensitive to bad observations
and to even a small departure of the data points from
normality. .erefore, statisticians and data-scientists have
been working to introduce new robust methods that are
highly resistant to outliers.

While numerous robust methods have been proposed in
the literature that are resistant to outliers. For example, some
of the popular robust regression estimators are presented
here: L1-estimator, M-estimator, R-estimators, GM-esti-
mator, RM-estimator, S-estimator, LMS and LTS, MM;
τ-estimator and redescending M-estimators [1, 2]. However,
there is no single method that can outperform all the
methods in all outlying scenarios. One method may be good
and perform well for one outlier scenario but may not be
good for other outlying situation.

Keeping in view the weaker performance of the available
robust estimators, an attempt has been made in this paper to
introduce a novel redescending M-estimator that outper-
forms the existing robust methods in terms of efficiency and
robustness, which gives promising results. .e main con-
tribution in this paper is to propose a new redescending
M-estimator that has the potential to perform well in almost
all kinds of contaminated datasets without compromising on
its efficiency.

2. Literature Review

In this section, we present and discuss all those robust
methods that have been introduced in the literature by
different researchers, with the main objective being coping
with the problem of outliers that may be vertical outliers or
leverage points. .e details of these methods are as follows.

2.1. L-Estimators. L-estimators are computed by using some
linear combinations of order statistics. .e first type of this
estimator is called L-estimation method. It is more resistant

than the classical ordinary least square and is known as least
absolute deviation (LAD) regression, which is also called L1-
regression, because it minimizes the sum of absolute devi-
ations. Least absolute value is a very simple and easy pro-
cedure towards bounded influence of robust regression. .e
method of least square regression, which minimizes the sum
of square of regression, also fits the definition of L-estimators
and is sometimes called as L2-norm. Other types of L-es-
timators are least median of square (LMS) and least trimmed
square (LTS). However, a brief discussion on L-estimators is
given as follows.

2.2. Least Absolute Deviation (LAD) Estimator. .e LAD
estimator was introduced by Edgeworth in 1887 [3], which is
more resistant to outliers, specifically when they appear in
the direction of dependent variable y. .e estimates of the
regression coefficients can be obtained by minimizing the
sum of absolute value of the residuals. .e mathematical
form of the least absolute value regression is defined as

min
n

i�1
ei


 � min

n

i�1
yi −  xijβj



. (4)

.e objective function of the LAD estimator denoted by
ρ(r) is a more general form of the quantile regression and
can be written as


n

i�1
ρω ei( , (5)

where

ρω ei(  �
ωei if ei ≥ 0

(ω − 1)ei if ei < 0
 , (6)

and ω is the quantile, which needs to be estimated. More
details on the topic of quantile regression and its application
are given in Koenker and Basset [4] and Koenker & D’orey
[5].

Although LAD is less affected by outliers in the direction
of response variable y and performs better than OLS, yet
when unusual values appear in the direction of explanatory
variable x (called leverage points), the method of LAD
produces very poor estimates of the regression coefficients as
its breakdown point becomes zero, i.e., BDP� 0. .e LAD
estimates are not efficient in the case of mean, using the
assumption thaty ∼ N(μ, δ2) and the sampling variance of y
for ordinary least square (OLS) is δ2/n, and for LAD it is
(π/2) � 1.57 times greater than that of the variance of the
OLS, i.e., Var(LAD) � (πδ2/2n). .e low breakdown points
in case of outliers in the direction of explanatory variable x
and low efficiency of LAD are compared to the ordinary least
square (OLS), which makes the LAD regression estimators
less attractive than other robust regression techniques [6].

2.3. LeastMedian of Squares (LMS) Regression. Least median
of square (LMS) was introduced by Rousseeuw and Yohai
[7], which is based on the median of square residuals instead
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of sum of square residuals used in the ordinary least squares.
.emathematical form of the least median square is given as

β
⌢

LMS � min r
2

 
h: n

, (7)

where (r2)1: n ≤ (r2)2: n ≤ · · · ≤ (r2)n: n are the ordered
squared residuals and where the optimal coverage is chosen
as h � [(n + p + 1)/2]. Here, p is the number of regression
coefficients to be estimated including the intercept term..e
LMS procedure performs well on the majority of the data
points. One formal technique for expressing and quantifying
this feature depends upon the breakdown point of an es-
timator. Usually, the breakdown point (BD) of an estimator
is theminimum fraction of change in the data points that can
make an estimator large. .e breakdown point of the lo-
cation estimate, which is called mean, is zero percent, and
even a single outlier out of n can bring arbitrarily large
changes. Similarly, the breakdown point for median is 50%.
It can be seen that these figures persist for the regression; i.e.,
the breakdown point for OLS is 0%, and that for the LMS
regression is 50%. Since the breakdown point of LMS es-
timator is 50%, therefore, it has certain disadvantages that
limit its use. .e maximum relative efficiency of LMS is 37%
[8]; because of the convergence rate of n− 1/3 the influence
function is not well defined [7]. Despite these disadvantages,
it can be seen that LMS estimates are significant and play an
important role in the calculation of more efficient estimators
called MM-estimators by giving them initial estimates of the
residual.

2.4. Least Trimmed Square (LTS) Estimator. Least trimmed
square (LTS) estimator was proposed by Rousseeuw in
1984, which is based on the idea of trimmed sum of squared
residuals that allows some observations to have potentially
large residuals. .e principle of LTS estimation is to
minimize the trimmed sum of squared residuals. It is
generally defined by the following mathematical
expression:

min
w

i�1
e
2
(i), (8)

where w � [n(1 − λ) + 1] is the subset of observations
having smallest residuals with the minimum least squares
objective function, and λ is the proportion of trim values. It
is equivalent to searching for finding w observations having
smallest residuals and applying LS fit to these w observa-
tions. For the value ofw � (n/2) + 1 the breakdown point for
LTS estimator is 50%, i.e., BDP� 0.50 [9].

Even though the LTS estimator has more resistance to
outliers, it suffers from the problem of very low relative
efficiency [10]. Because of the low efficiency of the LTS
estimator, it is not a desirable one. .e importance of the
LTS estimator cannot be denied, because it plays a sig-
nificant role in the calculation of the other robust esti-
mators like GM-estimators, which were introduced by
Coakley and Hettmansperger [11]; and the residuals ob-
tained from LTS method can be used successfully in outlier
diagnostic plots.

3. Huber M-Estimators

In order to restrict the influence of outliers in a regression
problem, the M estimator was introduced by Huber [12],
which is obtained by minimizing a less rapidly increasing
function of residuals instead of sum of squared residuals..e
main objective behind its development was to make a trade-
off between the efficiency of OLS and robustness of LAD
estimators. M-estimator is nothing but a generalization of
the OLS and LAD estimators. .e method of M-estimation
is based on the minimization of some function of the re-
siduals. .e robustness of the M-estimation depends upon
the choice of the weight function.

If the assumptions, like linearity, homoscedasticity, and
no autocorrelation between error terms of the classical re-
gression, are satisfied, then the OLS estimator of β can be
obtained by minimizing the sum of square of error by using
the method of maximum likelihood estimation, i.e.,

min
n

i�1
ri( 

2
. (9)

.e criterion function for M-estimator based on the
minimization of the sum of square of residuals is replaced with
a less rapidly increasing function of residuals, say, ρ(ri), i.e.,

min
n

i�1
ρ ri( , (10)

where the function ρ(ri) is called objective function, which
possesses the following properties:

(i) ρ(ri)≥ 0
(ii) ρ(0) � 0
(iii) ρ(ri) � ρ(− ri)

(iv) ρ(ri)≥ ρ(rj) for |ri|≥ |rj|

(v) ρ is continuous (ρ is differentiable)

.e M-estimator is not necessarily scale invariant (i.e., if
the errors ri � yi − Xi

′β are multiplied by a constant, the new
solution to eq. (8)might not be the same as the old one). .e
ψ function is obtained by taking the derivative of the ob-
jective function with respect to the coefficientsβ, and then
equating it to zero gives a system of k + 1 estimating
equations for the coefficients, that is,


n

i�1
ψ ri(  � 0, (11)

where ψ is the score function. .e weight function is then
obtained by dividing the Psi-function by the corresponding
residuals, that is,w(ri) �ψ(ri)/ri. Now, suppose thatwi � w(ri),
then the above estimating equation can be written as



n

i�1
wi ri( xi

′ � 0. (12)

For computation of M-estimator, an iterative method is
required to solve the above system of nonlinear equation.
For this purpose, the most commonly used optimization
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techniques is iterative reweighted least square (IRLS)
method.

3.1. RedescendingM-Estimators. Redescending M-estimator
was proposed by Hampel in 1972 [13], which is also known
as three-part redescending M-estimator. .e objective
function ρ(ri) of the redescending estimator is bounded, and
for large values of residuals, its psi-function ψ re-descends
towards zero. Redescending M-estimators completely reject
extreme outliers and are thus more robust than the M-es-
timators. Alternatively, if the derivative of ρ (objective
function) redescends to zero, the estimators is said to be
redescending M-estimator, i.e.,

lim
η⟶±∞

ρ′ ri(  � 0. (13)

.e breakdown point of the redescending M-estimators
approximately equals 0.5 and is considered to be high
breakdown robust estimators. .e score function of such
high breakdown point estimators smoothly redescends to
zero [14]. .ere are many types of redescending M-esti-
mators, some of which are discussed as follows.

3.2. Hampel’s Hree-Part Function. Hampel’s three-part
redescending M-estimator was introduced by Andrews et al.
[15] and was considered as a first attempt towards a redes-
cending M-estimator. .e objective function of Hampel’s
estimators is a step function, which is also known as Hampel’s
three part redescending estimators. .e objective, Psi, and
weight function of the Hampel’ estimator are as follows:

Hampel’s objective function is defined by

ρ(r) �

r
2

2
, for |r|≤ a,

a|r| −
1
2
a
2
, for a<|r|≤ b,

ab −
a
2

2
+

a(c − b)

2
1 −

c − |r|

c − b
 

2
⎡⎣ ⎤⎦, for b<|r|≤ c,

ab −
a
2

2
+

a(c − b)

2
, for |r|> c.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

.e corresponding redescending Ψ-function is

ψ(r) �

r, for |r|≤ a,

a sign(r), for a<|r|≤ b,

a
c − |r|

c − b
sign(r), for b<|r|≤ c,

0, for |r|> c.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

.e weight function is

w(r) �

1, for |r|≤ a,

a

|r|
, for a<|r|≤ b,

a(c − |r|)

(c − b)|r|
, for b<|r|≤ c,

0, for |r|> c,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where the parameters a, b, and c are constants, and their ranges
vary from 0< a≤ b< c<∞. .e performance of Hampel es-
timator is efficient as shown in Figure 1. .e score function is
differentiable. However, a smoothψ-functionwas required that
led to the development of Andrews’ sine function.

3.3.Andrew’sSineFunction. Andrews et al. [15] introduced a
new redescending M-estimator popularly known as
Andrews-sine function. .is estimator is more resistant to
outliers and smoothly redescending as can be observed from
Figure 2. .e objective function, Psi, and weight function of
the Andrews-sine estimator are as follows:

ρ(r) �

c
2 1 − cos

r

c
  , for |r|≤ cπ,

2c
2
, for |r|> cπ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

.e corresponding redescending Ψ-function is

ψ(r) �

c sin
r

c
 , for |r|≤ cπ,

0, for |r|> cπ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

.e weight function is

w(r) �

c

r
sin

r

c
 , for |r|≤ cπ,

0, for |r|> cπ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

We graph the ρ-function, Ψ-function, and the weight
function in Figure 2.

3.4. Tukey’s Biweight Function. Beaton and Tukey [16] in-
troduced a biweight function. Tukey’s biweight function is
smooth and has been used successfully and extensively used
in a wide variety of applications. .e objective function ρ,
Ψ-function, and weight function can be defined as follows:

ρ(r) �

c
2

6
1 − 1 −

r

c
 

2
 

3
⎡⎣ ⎤⎦, for |r|≤ c,

c
2

6
, for |r|> c.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)
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.e corresponding Ψ-function is

ψ(r) �

r 1 −
r

c
 

2
 

2

, for |r|≤ c,

0, for |r|> c.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

.e weight function is

w(r) �

1 −
r

c
 

2
 

2

, for |r|≤ c,

0, for |r|> c.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

We graph the ρ-function, Ψ-function, and the weight
function in Figure 3.

3.5. Iteratively Reweighted Least Squares (IRLS). Since there
is no closed form solution of robust estimator, therefore,
IRLS fitting algorithm is commonly used to estimate the
regression coefficients. Before finding the residuals, one
needs to fit the model, which is not possible in a single step.
.e estimates of the regression coefficients cannot be found

until the values of the residuals are known. .at is why the
method of iterative reweighted least square is employed. It
has the following steps:

(i) Regression line is fitted to the data through OLS
method by setting the iteration counter at I� 0, and
the initial values of the estimates of the regression
parameters are found.

(ii) Initial estimates of the weights can be found from
the residuals e

(0)
i which are extracted from fitting

the OLS regression to the data.
(iii) A weight function is then applied to the initial

values of the OLS residuals to create preliminary
weights, w(e

(0)
i ).

(iv) .e weighted least square minimizes  w
(1)
i e2i and

thus obtains β
(1)

in the first iteration at I� 0. In
matrix form, with W representing the n× n diag-
onal matrix of individual weights, the solution is

β
(1)

� X′WX( 
− 1

X′Wy. (23)

(v) .e new weights w
(2)
i . can be obtained from the

residuals of the initial weighted least square (WLS).

0-a-b a b c-c

(a)

0-a-b a b c-c

-1

0

1

(b)

0.0

0.5

1.0

w
ei
gh
ts

0-a-b a b c-c
residuals

(c)

Figure 1: Graph of Hampel three-part function. (a) Objective function. (b) Ψ-function. (c) Weight function.

Mathematical Problems in Engineering 5



(vi) .e new weights w
(2)
i are used in the next iteration,

I� 2, of weighted least square (WLS) to estimate
β

(2)
.

(vii) .e iteration will be stopped when estimates of β
stabilize from the previous iteration.

In general, at each of the q iterations, the solution is
β

(I)
� (X′WqX)− 1X′Wqy, where Wq � diag w

(I− 1)
i . .e

procedure of iteration continues until β
(I)

− β
(I− 1)

� 0. .e
iteration should be stopped, and the solution is considered to
be converged if the deviation in estimates is not more than
0.01% from the preceding iteration.

M-estimators are considered to be robust in situations
when the distribution of error is heavy-tailed, the variance of
error does not follow the assumption of homoscedasticity,
and outliers appear in the direction of dependent variable y.
M-estimators also consider that the matrix X of the model is
measured without error. Under these situations, M-esti-
mators are considered to be more efficient than OLS esti-
mates [14].

.e efficiency of theM-estimates is about 95% as compared
to OLS under the assumptions of classical regression model.
Although M-estimators are developed in place of the OLS
especially in terms of resistance and robustness to those unusual
data points, which appear in the direction of y, like least absolute
value (LAV) estimators,M-estimators are not totally resistant to
odd observations, because they are not those outliers that are

leverage points. It is to be noted thatM-estimates of location are
highly robust, because they have a breakdown point (BDP) of
0.5 as well as a bounded influence function, butM-estimates for
regression have these characteristics only for y but not for x, and
thus their breakdown point equals zero, i.e., BDP� 0 [17]. In
other words, in some situations, M-estimators perform no
better than OLS [2]..e importance of M-estimators cannot be
denied because of the fact that it plays a significant role in
computing more robust estimates.

4. Proposed Estimator

Redescending estimators aim to minimize 
n
i�1 ρ(ei) where ρ

is even, smooth, differentiable, and continuous function..e
choice of ρmainly depends on keeping in view the objective
of the estimators. For example, the objective function should
be that function that is able to resist extreme outliers and
should have bounded influence ψ–function that is zero for
large residuals. Similarly, redescending estimators should
have ideally differential and smooth function to maintain
high efficiency along with robustness.

In this study, an attempt has been made to cover some of
the drawbacks of the above mentioned redescending esti-
mators. For this purpose, the properties of the tangent
hyperbolic function were assessed, and it was found that
tangent hyperbolic function satisfies all the properties as-
sociated with a good objective function as mentioned below.

0 c*22/7-c*22/7

(a)

c*22/70-c*22/7

1

0

-1

(b)

0.0

0.5

1.0

w
ei
gh
t

0 c*22/7-c*22/7
residuals

(c)

Figure 2: Graph of Andrew’s sine function. (a) Objective function. (b) Ψ-function. (c) Weight function.
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Consider the following tangent hyperbolic function as
the objective function:

ρ(r) � c tan− 1 tanh
r
2

2c
  , for ri


≥ 0, (24)

where c and ri in the above defined objective function are the
tuning constant and the scaled residuals over MAD. .e
proposed ρ-function satisfies all the properties associated
with a good objective function, namely,

(i) ρ(ri)≥ 0
(ii) ρ(0) � 0, the objective function is zero for any re-

sidual ri � 0
(iii) ρ(ri) � ρ(− ri), the objective function should be

monotonic
(iv) ρ(ri)≥ ρ(rj) for |ri|≥ |rj|

(v) ρ is continuous (ρ is differentiable)

.e corresponding score function Ψ is obtained by
taking the first derivative of the proposed ρ-function, that is,

ψ ri(  �
ri

cosh r
2
i /c 

, for ri


≥ 0. (25)

Similarly, the corresponding weight function is obtained
by dividing the Ψ-function by ri, and we get

w(r) �
1

cosh r
2/c 

, for ri


≥ 0. (26)

.e graphical representation of the objective function,
score function, and weight function is presented in Figure 4.

An important characteristic of a robust estimator is the
breakdown point (BDP) and efficiency, which measure the
stability of a robust estimator regarding how much it is
consistent against wild data points present in the dataset. A
common practice to these questions is a compromise be-
tween efficiency and resistance; that is, choose an optimal
estimator, which has maximum resistance with minimum
loss of efficiency. In other words, avoid a robust estimator at
the cost of maximum efficiency loss, nor should you choose
completely nonrobust estimator with maximum efficiency,
but prefer make a compromise between these two properties.
.e proposed Ψ-function, given in Figure 2(b), has a dif-
ferent mechanism as compared to Andrew’s sine and
Tukey’s biweight estimators. .e score function Ψ of the
mean is a linear-straight line, and, therefore, it becomes a
more efficient estimator provided that all the assumptions of
normality are fulfilled. .e longer and linear central section
of the proposed Ψ-function behaves linearly for most of the
central observations, where other smoothly redescending
estimators fail to do so. .is increased linearity, certainly,
improves the efficiency as most of the central observations

0 c-c

(a)

c0-c

1

0

-1

(b)

0 c-c
residuals

0.0

0.5

1.0

w
ei
gh
ts

(c)

Figure 3: Graph of Tukey’s biweight function. (a) Objective function. (b) Ψ-function. (c) Weight function.
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still satisfy the normality assumption. .e Ψ-function, then,
redescends slowly for large values of residuals and becomes
zero for values lying outside the particular band.

.e most interesting point of the proposed estimator is
its weight function. .e weight function of the proposed
estimator assigns weights nearly equal to 1 from zero to
moderate size of the residuals and then weights down the
residuals, and thus the outlier gets weight that is nearly equal
to zero. Figure 2(c) shows graph of the proposed weight
function.

5. Simulation Study

To assess the overall performance of the proposed estimator
and the existing methods in the literature, an extensive sim-
ulation study is carried out. For comparison purposes, datasets
have been simulated from different distributions and levels of
contamination in the datasets. A simulation study is carried out
by considering different factors that can potentially influence
the model fit and the outcomes of the competing methods. For
the purpose of simulation study, 1000 datasets were generated,
and the proposed estimator, called Ali redescending M-esti-
mator, is utilized along with Huber, Tukey biweight, Andrew’s
sine, Hampel, and OLS estimator. For comparison purposes,
total mean square error is calculated for all the replications in
the simulation study by using the following formula:

TMSE �

�����������������


g
i�1 

p
j�1

βij − βij 
2

gp




. (27)

.e simulated datasets were generated from well-known
distributions, of which two are heavy tailed distributions.
.e following simulation scenarios were considered here in
this study:

(i) Generating both X andY from standard normal
distribution, i.e., X&Y ∼ N(0, I)

(ii) Student’s t-distribution, i.e., X&Y ∼ t(3)

(iii) Double exponential distribution, i.e.,
X&Y ∼ L(0, I).

All the datasets were either generated from the above-
mentioned distributions or some contaminations were
added in the form of outliers, and the results of the com-
peting methods are presented in the following tables along
with data generation scenarios and dimensions.

.e three desiring properties of every robust method are
bias, efficiency, and breakdown point. .e results of the
simulation study for the clean data set are generated from
normal distribution with λ� 0% level of contamination
summarized in Table 1. It can be observed from the results
given in Table 1 that the OLS estimator has the lowest total
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Figure 4: Graph of Ali function. (a) Objective function. (b) Score function. (c) Weight function.
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mean square error (TMSE). .e proposed Ali redescending
M-estimator is a good competitor of OLS in terms of the
smallest total mean square error and highest efficiency.

Table 2 presents the results obtained for the second
scenario, where the datasets of different sizes and number of
predictor variables were generated from t-distribution, and
the total mean square errors were obtained for all the
competing methods including the proposed estimator. It is
evident from the results given in Table 2 that the proposed
method outperforms all the competing methods in terms of
smallest mean square error. Similarly, the results presented
in Table 3 are based on simulated datasets generated from
standard Laplace distribution, which is a heavy tailed dis-
tribution with different sample sizes and number of pre-
dictors. It can be observed from the given results that the
performance of the proposed estimators based on lowest
total mean square error is better than the rest of the
mentioned methods. Table 4 presents the total mean square
error of the proposed estimator along with competing
methods based on datasets generated from normal, where
90% of the observation are normal, and 10% consist of
outliers in the response as well as predictors. From the given
results, it is evident that the proposed method performs well
than the rest of the methods having lowest TMSE in almost
all the data generation scenarios with different sample sizes
and predictors. From Table 5, it is evident that the proposed
methods are more efficient having lowest TMSE as com-
pared to the competing methods for the simulated datasets,
where 80% of the observations have been generated from
standard normal distribution, and the remaining 20% were
generated as outliers from the same distribution.

.e results presented above show that the performance
of the proposed method is promising for higher dimension,
which means that as the sample size increases, the efficiency
of the proposed method also increases, and the TMSE de-
creases. Similarly, when the number of predictors increases,
the performance of the proposed methods becomes better,
which testifies the performance of the proposed method for
higher dimensional simulated datasets. From the simula-
tions results given in Table 6, where 80% of the observations
of the explanatory and response variables were simulated
from standard normal and 20% from the same distribution
with different location-scale parameters as mentioned, it is
evident that the performance of the proposed Ali estimator is
more efficient that the other competing methods with
smallest total mean square error. Moreover, the proposed

estimator has shown similar performance when the rate of
contamination of the outliers increased from 20% to 40% in
the simulated data as shown in Tables 7–9. It is also clearly

Table 1: Total mean square error for datasets generated from normal distribution (X & Y∼N (0, 1)).

N P OLS Huber Hampel Andrew Tukey Proposed

N� 30
P� 2 0.301 0.301 0.301 0.301 0.301 0.301
P� 3 0.339 0.350 0.342 0.369 0.369 0.342
P� 6 0.523 0.547 0.550 0.741 0.731 0.527

N� 50
P� 2 0.196 0.204 0.200 0.206 0.012 0.197
P� 3 0.248 0.256 0.250 0.260 0.260 0.249
P� 6 0.362 0.381 0.373 0.371 0.411 0.363

N� 100
P� 2 0.138 0.144 0.141 0.144 0.144 0.108
P� 3 0.175 0.180 0.175 0.180 0.180 0.170
P� 6 0.242 0.258 0.253 0.261 0.261 0.207

Table 2: Total mean square error for datasets generated from t-
distribution (X & Y∼t-distribution, t(3)).

N P OLS Huber Hampel Andrew Tukey Ali

N� 30
P� 2 0.373 0.301 0.311 0.305 0.303 0.300
P� 3 0.441 0.361 0.370 0.380 0.378 0.301
P� 6 0.671 0.507 0.532 0.660 0.652 0.530

N� 50
P� 2 0.288 0.210 0.221 0.214 0.217 0.240
P� 3 0.342 0.260 0.266 0.261 0.263 0.267
P� 6 0.458 0.360 0.369 0.380 0.370 0.384

N� 100
P� 2 0.199 0.157 0.163 0.155 0.155 0.162
P� 3 0.227 0.172 0.175 0.173 0.175 0.180
P� 6 0.300 0.237 0.245 0.243 0.243 0.245

Table 3: Total mean square error for datasets generated from
Laplace distribution (X & Y∼L(0, 1)).

N P OLS Huber Hampel Andrew Tukey Ali

N� 30
P� 2 0.336 0.293 0.305 0.300 0.299 0.227
P� 3 0.415 0.349 0.365 0.372 0.370 0.305
P� 6 0.562 0.507 0.532 0.685 0.675 0.529

N� 50
P� 2 0.243 0.214 0.225 0.221 0.220 0.201
P� 3 0.303 0.259 0.270 0.261 0.261 0.201
P� 6 0.562 0.505 0.532 0.685 0.673 0.528

N� 100
P� 2 0.172 0.149 0.157 0.150 0.150 0.102
P� 3 0.200 0.172 0.181 0.172 0.173 0.165
P� 6 0.275 0.235 0.245 0.235 0.236 0.216

Table 4: Total mean square error for contaminated datasets
generated from normal distribution (90% X & Y∼N(0, 1) and 10%
X∼N(20, 1); and 10% Y∼N(100, 1)).

N P OLS Huber Hampel Andrew Tukey Ali

N� 30
P� 2 4.980 4.982 0.296 0.302 0.299 0.284
P� 3 3.628 3.695 0.362 0.380 0.377 0.363
P� 6 2.500 3.001 0.703 0.802 0.704 0.702

N� 50
P� 2 5.103 5.103 0.222 0.222 0.207 0.201
P� 3 4.002 4.003 0.300 0.302 0.302 0.300
P� 6 2.370 2.123 0.411 0.421 0.408 0.401

N� 100
P� 2 4.980 4.710 0.150 0.150 0.153 0.142
P� 3 3.531 4.011 0.212 0.223 0.215 0.201
P� 6 2.290 2.001 0.273 0.280 0.280 0.276
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evident from the results in these tables that the performance
of the proposed estimators has improved from smaller
sample size to large and from lowest to high-dimensional
datasets.

6. Applications on Real Datasets

Here, in this section, the performance of the proposed es-
timator will be assessed using real world datasets in order to
check its performance along other competing methods.

6.1. Brownlee’s Stack Loss Data. .e Stack loss data set is a
well-known data set taken from Brownlee [18]. It consists of
the examination of a plant for the oxidation of ammonia in
the production of nitric acid..ere are 21 observations in the

dataset and three explanatory variables, that is, air flow (X1),
cooling temperature (X2), and acid concentration (X3), and
the dependent variable is stackloss (Y).

.e analysis results presented in Table 10 give esti-
mates of the regression coefficients and their corre-
sponding sum of squares computed by OLS and the
existing robust methods including the proposed redes-
cending M-estimator. .e estimates of the regression
coefficients and fitted values obtained by the proposed
estimator are promising as compared to the competing
robust methods as shown in the table. Similarly, the re-
siduals computed from the model fitted through the
proposed estimator are smaller than the residuals com-
puted from the models fitted through other redescending
M-estimators that lead to smaller sum of square residuals.
Hence, from the simulation study, as well as real data
applications, it can be concluded that the performance of
the proposed estimator is better than the redescending
M-estimators considered in the study.

Table 5: Total mean square error for contaminated datasets
generated from normal distribution (80% X & Y∼N(0, 1) and 20%
X∼N(20, 1) and 20% Y∼N (100, 1)).

N P OLS Huber Hampel Andrew Tukey Ali

N� 30
P� 2 5.050 5.092 0.297 0.312 0.314 0.201
P� 3 3.600 3.703 0.445 0.432 0.504 0.410
P� 6 2.509 2.570 1.133 1.125 1.124 1.101

N� 50
P� 2 4.989 5.012 0.253 0.243 0.233 0.210
P� 3 3.598 3.624 0.330 0.330 0.335 0.290
P� 6 2.382 2.426 0.490 0.505 0.505 0.454

N� 100
P� 2 5.053 4.985 0.155 0.159 0.159 0.153
P� 3 3.659 3.567 0.197 0.199 0.199 0.191
P� 6 2.509 2.318 0.284 0.286 0.287 0.281

Table 6: Total mean square error for contaminated datasets
generated from normal distribution (80% X & Y∼N(0, 1) and 20%
X∼N(20, 1) and 20% Y∼N(10, 5)).

N P OLS Huber Hampel Andrew Tukey Ali

N� 30
P� 2 0.545 0.537 0.324 0.317 0.325 0.312
P� 3 0.625 0.515 0.490 0.490 0.489 0.457
P� 6 1.036 0.695 0.656 0.771 0.766 0.623

N� 50
P� 2 0.519 0.512 0.484 0.409 0.418 0.402
P� 3 0.526 0.450 0.433 0.408 0.416 0.403
P� 6 0.770 0.528 0.522 0.597 0.519 0.502

N� 100
P� 2 0.514 0.505 0.499 0.413 0.417 0.401
P� 3 0.625 0.397 0.399 0.350 0.355 0.307
P� 6 1.035 0.385 0.390 0.360 0.363 0.349

Table 7: Total mean square error for datasets generated from (60%
X & Y∼N(0, 1) and 40% X∼N(20, 1); and 20% Y∼N(10, 5)).

N P OLS Huber Hampel Andrew Tukey Ali

N� 30
P� 2 5.123 5.163 0.523 0.523 0.523 0.511
P� 3 3.703 3.725 1.264 1.283 1.278 1.212
P� 6 2.534 2.576 2.502 2.731 2.720 2.517

N� 50
P� 2 5.044 5.061 0.257 0.258 0.258 0.207
P� 3 3.629 3.645 0.521 0.528 0.528 0.509
P� 6 2.534 2.417 2.127 2.159 2.157 2.012

N� 100
P� 2 5.014 5.023 0.181 0.186 0.186 0.171
P� 3 3.576 3.585 0.229 0.229 0.229 0.219
P� 6 2.310 2.321 1.547 1.551 1.551 1.527

Table 8: Total mean square error for contaminated datasets
generated from (X∼N (0, 1); 80% Y∼N (0, 1) and 20% Y∼N (100, 1)).

N P OLS Huber Hampel Andrew Tukey Ali

N� 30
P� 2 21.410 0.615 0.314 0.317 0.317 0.307
P� 3 23.81 0.727 0.398 0.405 0.405 0.390
P� 6 27.764 3.278 0.608 0.649 0.649 0.599

N� 50
P� 2 20.800 0.559 0.225 0.229 0.229 0.213
P� 3 21.885 0.681 0.288 0.289 0.289 0.270
P� 6 24.249 0.858 0.421 0.429 0.428 0.410

N� 100
P� 2 20.467 0.540 0.158 0.160 0.160 0.150
P� 3 20.883 0.567 0.200 0.205 0.205 0.197
P� 6 22.150 0.664 0.282 0.288 0.288 0.271

Table 9: Total mean square error for datasets generated from
X∼N(0, 1); 60% Y∼N(0, 1) and 40% Y∼N(100, 1)).

N P OLS Huber Hampel Andrew Tukey Ali

N� 30
P� 2 41.297 12.45 0.356 0.356 0.356 0.345
P� 3 42.357 23.84 0.466 0.467 0.467 0.445
P� 6 46.583 48.64 0.755 0.752 0.752 0.728

N� 50
P� 2 40.617 5.583 0.260 0.260 0.260 0.245
P� 3 41.376 14.14 0.337 0.337 0.401 0.327
P� 6 43.420 34.79 0.497 0.497 0.497 0.477

N� 100
P� 2 40.38 2.297 0.183 0.183 0.183 0.161
P� 3 40.60 4.247 0.233 0.233 0.269 0.211
P� 6 42.637 11.335 0.330 0.334 0.334 0.310

Table 10: Estimates of the model parameters for Brownlee’s
stackloss data.

Method Estimate
of β0

Estimate
of β1

Estimate
of β2

Estimate
of β3

WSSR

OLS − 39.9197 0.7156 1.2953 − 0.1521 178.83
Huber − 41.0265 0.8294 0.9261 − 0.1278 200.765
Hampel − 40.4747 0.7411 1.2251 − 0.1455 256.768
Andrew − 40.7300 0.9370 0.5350 − 0.111 225.870
Tukey − 42.2853 0.9275 0.6507 − 0.1123 253.426
ALI − 37.1170 0.7679 0.7951 − 0.1046 212.148
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7. Conclusion

.e proposed redescending estimator is more continuous,
smooth ,and linear in the middle, and, therefore, according
toWinsor’s principle, it satisfies almost all the properties of a
good estimator in the presence of outliers. To assess the
overall performance of the proposed estimator, a simulation
study was conducted in different data generation scenarios,
for example, normal distribution, t-distribution, and Laplace
distribution along with different contamination scenarios in
the response as well as explanatory variables. It was found
from the simulation results that when the dataset is normal,
the performance of the proposed estimator is almost the
same as that of OLS in terms of total mean square error, but
it outperforms the existing robust estimators. In case of
contaminated datasets (that is, when outliers are present in
response as well as explanatory variable), the proposed es-
timator was found to be the best among all the estimators for
all sample size “n” and number of predictors “p” with dif-
ferent level of contamination in the datasets. Similarly, it can
also be concluded from the simulation results that the
performance of the proposed estimator has improved as the
sample size increases while maintaining its robustness
higher as compared to the competing estimators. Moreover,
the efficiency of the proposed estimator was found to be
higher than the rest of the estimators. .e same results were
also found in the real data applications of the proposed
estimator as compared to the existing estimator. Finally, it
was concluded from the simulation study, as well as real data
applications, that all robust estimators perform well for all
levels of contamination in response, but their performance
gets poor in case of leverage points. However, the proposed
estimator was found to perform better than all the redes-
cending estimators considered in this study.
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[10] A. J. Stromberg, O. Hössjer, and D. M. Hawkins, “.e least
trimmed differences regression estimator and alternatives,”
Journal of the American Statistical Association, vol. 95, no. 451,
pp. 853–864, 2000.

[11] C. W. Coakley and T. P. Hettmansperger, “A bounded in-
fluence, high breakdown, efficient regression estimator,”
Journal of the American Statistical Association, vol. 88, no. 423,
pp. 872–880, 1993.

[12] P. J. Huber, “Robust estimation of a location parameter,” He
Annals of Mathematical Statistics, vol. 35, no. 1, pp. 73–101,
1964.

[13] F. R. Hampel, “Robust estimation: a condensed partial sur-
vey,” Zeitschrift furWahrscheinlichkeitstheorie und Verwandte
Gebiete, vol. 27, no. 2, pp. 87–104, 1973.

[14] D. M. Khan, S. A. Khan, K. U. Alamgir, and A. Ali, “A
comparative study of three improved robust regression
procedures,” Pakistan Journal of Statistics, vol. 32, no. 6, 2016.

[15] D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber,
W. H. Rogers, and J. W. Tukey, Robust Estimates of Location:
Survey and Advances, Princeton University Press, Princeton,
NJ, USA, 1972.

[16] A. E. Beaton and J. W. Tukey, “.e fitting of power series,
meaning polynomials, illustrated on band-spectroscopic
data,” Technometrics, vol. 16, no. 2, pp. 147–185, 1974.

[17] S. Van Aelst, G. Willems, and R. H. Zamar, “Robust and
efficient estimation of the residual scale in linear regression,”
Journal of Multivariate Analysis, vol. 116, pp. 278–296, 2013.

[18] K. A. Brownlee, Statistical Heory and Methodology in Science
and Engineering, Wiley, New York, NY, USA, pp. 491–500,
1965.

Mathematical Problems in Engineering 11


