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Temperature is the main driving force of most ecological processes on Earth, with temperature data often used as a key en-
vironmental indicator to guide various applications and research fields. However, collected temperature data are limited by the
hardware conditions of the sensors and atmospheric conditions such as clouds, resulting in temperature data that are often
incomplete. (is affects the accuracy of results using the data. Machine learning methods have been applied to the task of
completing missing data, with mixed results. We propose a new data reconstruction framework to improve this performance.
Using the MODIS LST map over a span of 9 years (2000–2008), we reconstruct the land surface temperature (LST) data. (e
experimental results show that, compared with the traditional reconstruction method of LST data, the proportion of effective
pixels of the LST data reconstructed by the new framework is increased by 3%–7%, and the optimization effect of the method is
close to 20%. (e experiment also discussed the influence of different altitudes on the data reconstruction effect and the influence
of different loss functions on the experimental results.

1. Introduction

As a key element of biological survival, temperature is an
important subject in the field of climate research. Re-
searchers can determine the water-heat balance between the
Earth’s surface and the atmosphere based on surface tem-
perature data. (ese data can also be used as a basis for
understanding various terrestrial activities, determining fire
and seismic zones, exploring geothermal resources, and
studying urban heat island effects [1, 2]. Temperature also
directly affects evapotranspiration and soil content and is
key to evaluating terrestrial water volume, vegetation, and
soil biochemical characteristics; atmospheric precipitation;
and regional CO2 content [3–9]. Temperature data are a
common input variable into models of atmospheric, eco-
logical, hydrological, and biogeochemical processes. (e
accuracy of the data directly affects the output accuracy and
overall model accuracy [10, 11]. (erefore, it is important to
obtain high-precision, continuous surface temperature data.

(e collection of surface temperature data was initially
carried out on mobile phones through discrete observation
stations, obtaining high-precision, all-weather data through
a large number of ground observation stations. However, the
ground stations do not completely cover the Earth’s surface,
leading to a loss of data in many areas. Technological ad-
vances have led to Earth observation satellites as the
mainstream data collection method, with remote sensing
technology the only surface temperature observation
method able to guarantee thorough coverage at all times in
all areas on a global scale [12]. (e collection of surface
temperature using remote sensing technology is now an
effective method for obtaining surface temperatures at a
large scale. (e theory and method of land surface tem-
perature inversion from thermal infrared remote sensors are
now relatively mature and produce high-precision clear-sky
surface temperatures [13, 14]. However, thermal infrared
remote sensing cannot penetrate clouds, leaving areas under
cloud cover inaccessible and affecting data collection.
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Solving the problem of missing temperature data due to
cloud cover is currently a major topic in the field of climate
research.

So far, researchers have applied many mature data re-
construction methods to solve the problem of temperature
information loss. (ese methods fall into three broad cat-
egories [15]: space-based methods, spectrum-based
methods, and time-based methods. Details of these methods
are provided in the discussion in Section 2.2. In the research
on the reconstruction of land surface temperature data, Shuo
Xu et al. reconstructed the land surface temperature in the
Tibetan Plateau (TP) and the Heihe River Basin (HRB) area
based on the Bayesian maximum entropy (BME) method
and verified the effectiveness of the method by using the soil
temperature measured in the field [16]. Zhang et al. merged
TIR and MW observations from a perspective of decom-
position of LST in temporal dimension and overcame
shortcomings of single-source remote sensing [17]. Martins
et al. proposed an all-weather LST product based on visible
light and infrared observations, which combines clear-sky
LST retrieved from the Spinning Enhanced Visible and
Infrared Imager on Meteosat Second Generation (MSG/
SEVIRI) infrared (IR) measurements with LST estimated
with a land surface energy balance (EB) model to fill gaps
caused by clouds [18]. Although these different methods can
acquire satisfactory recovery results, most of them are
employed independently, and they can only be applied to a
single specific reconstruction task in limited conditions [19].
On the one hand, most traditional data reconstruction
methods such as Bayesian and KNN interpolation are based
on linear regression, which requires a linear relationship
between the data. However, the actual data missing scene is
more complicated, and the data are often nonlinearly re-
lated. On the other hand, the ability of traditional data
reconstruction methods to process data is limited. When the
data reach a certain amount, the time to process the data will
increase rapidly, and the data reconstruction experiment will
be greatly affected. (erefore, it is necessary to find a better
data reconstruction method that can integrate diversified
information to overcome the limitations and deficiencies of
traditional methods.

In recent years, benefiting from the improvement of
computer computing power, LeCun et al. made a huge
breakthrough in the field of image recognition using ma-
chine learning methods [20–23]. Considering that the sat-
ellite remote sensing field also needs to complete the
recognition and classification of remote sensing satellite
images and other similar tasks, related scholars have tried to
introduce machine learning methods into the field of Earth
sciences and have achieved certain results. Chen et al. used
the Apriori method to find potential correlations in geo-
logical data [24]. Xie and Li used deep learning methods to
denoise hyperspectral images [25]. Wei et al. improved the
accuracy of sharpened images through the residual network
[26]. Shah et al. proved the correlation between LST
anomalies and earthquakes (EQs) in Pakistan with the ANN
method based on MODIS LST data [27]. However, in terms
of the reconstruction task of LST data based on machine
learning methods, it is still difficult to find related research.

(erefore, we propose the LST palindrome reconstruc-
tion network (LPRN) method, which uses a deep con-
volutional neural network to reconstruct remote sensing
images contaminated by dense clouds in MODIS LST data.
At the same time, in order to provide high-quality training
data and label data for the deep learning framework, the
LPRN method also incorporates a variety of data pre-
processing schemes, such as histogram equalization, inverse
distance weighted interpolation, and so on. Compared with
traditional data reconstruction methods, this method can
effectively improve the number of “good quality” pixels (also
represents effective pixels, explained in Section 2.1) in cloud-
contaminated images while also greatly improving com-
puting efficiency.

(e rest of this article is organized as follows. In Section
2, we introduce the available datasets for reconstruction,
current mainstream methods for reconstructing remote
sensing data, and the network structure and specific details
of our LPRN data reconstruction model. Section 3 presents
our experimental results from using the model to recon-
struct the surface temperature dataset. Finally, Section 4
presents our summary, concluding remarks, and directions
for future research.

2. Materials and Methods

2.1. Datasets. (e dataset used in the experiment came from
the Terra-MODIS and the MODIS-Aqua datasets (https://
modis.gsfc.nasa.gov/data/dataprod/mod11.php), and the
MODIS data product IDs used are MOD11A1, MYD11A1,
MOD11A2, and MYD11A2. (e Terra-MODIS dataset was
from March 2000, and MODIS-Aqua from August 2002,
both with daily resolution. (e time difference between the
Aqua satellite data and the Terra satellite data in the same
area can be as short as a few hours, so there is great similarity
between the two data. And Terra satellite data can be added
to the dataset as supplementary information to the Aqua
satellite data. We selected and processed nine years of
MODIS Daily data and 8-Day data from 2000 to 2008 as
experimental data. MODIS Land Surface Temperature and
Emissivity products map land surface temperatures and
emissivity values ideally under clear-sky conditions [28].(e
underlying algorithms use other MODIS data and further
auxiliary maps for input, including geolocation, radiance,
cloud masking, atmospheric temperature, water vapor,
snow, and land cover [29]. Temperatures are provided in
Kelvin. (e MODIS LST algorithm is aimed at reaching a
better accuracy than 1Kelvin (±0.7 K stddev.) for areas with
known emissivities in the range −10°C to 50°C [13, 29]. LST
is observed by the two MODIS sensors four times per day
(01 : 30, 10 : 30, 13 : 30, and 22 : 30, local solar time) originally
at 1000m pixel resolution. Clouds and other atmospheric
disturbances, which may obscure parts of or even the entire
satellite image, constitute a significant obstacle for contin-
uous LSTmonitoring; the low-quality pixels of each LSTmap
are marked in an accompanying quality assessment (QA)
layer. For the LST maps, we used the open-source software
GRASS to remap the MODIS LST data, filter out invalid
pixels, and reject the pixels with the following labels
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indicated in the QA bitmap: “other error,” “missing pixel,”
“poor quality,” “average emissivity error >0.04,” “LST error
2K–3K,” and “LST error >3K,” and the rest are “good
quality” pixels. Based on the tags in the bitmap, it is possible
to accurately filter the elements in the original LST image
and improve the efficiency of LST data preprocessing. It
should be noted that the data will only be stored in the
database after being processed by the GRASS software. (e
dataset in the database is still in an unclassified state and
there are abnormal values, and data cleaning and data
classification need to be completed through the data pre-
processing process.

2.2. Existing Remote Sensing Data Reconstruction Methods

Space-Based Methods. Space-based methods were
originally used for image reconstruction in the field of
computer vision. Among them, the most commonly
used method is linear interpolation, which is weighted
based on the surrounding information around missing
data to estimate the missing information. (is method
often relies on the correlation and connection between
missing information and its surrounding information.
However, when the missing information changes
greatly compared to the surrounding information, such
as boundary values, it often results in inaccurate in-
terpolation results. (is method is reasonable, but it is
limited by the amount of missing data and regional
characteristics.
Spectrum-BasedMethods. In the case of multispectral or
hyperspectral images, specific spatial correlations be-
tween them have led some scholars to propose an
innovative scheme for reconstructing missing infor-
mation using these correlations. Rakwatin et al. used a
polynomial linear fitting (LF) method to fit the missing
data in the Aqua MODIS data [30]. Chen et al. used
histogram matching and local least squares fitting
methods to reconstruct Aqua MODIS data [31].
However, this method provides no help for satellite
data with cloud cover.
Temporal Methods. Satellite remote sensing data are
obtained through continuous satellite scanning of a
defined area, with the collected data including the time
of collected data. Some methods use these time ele-
ments to restore and reconstruct missing information.
For example, Chen et al. proposed the use of a space-
time weighted regression model (STWR) to obtain
continuous cloud-free LST images [31]. Scaramuzza
and Barsi proposed a local linear histogram matching
(LLHM) method, but in most cases, it did not achieve
good results [32]. However, it is undeniable that time
differences are quite influential and useful when
reconstructing missing information.

2.3. Reference Deep Learning Model

Convolutional Neural Network. CNN [23] is a multi-
layer neural network originally used for image

recognition and classification. CNNs are generally
composed of four parts: convolutional layer, nonlinear
layer, pooling (also called downsampling) layer, and
fully connected layer. (e convolution operation pri-
marily extracts features in the convolutional layer. (e
pooling layer reduces the number of calculations in the
entire network and prevents overfitting. At the end of
the network is the fully connected layer. (e size of the
convolution kernel is very important, as it determines
the size of the neuron’s receptive field. If the kernel is
too small, it is difficult to extract effective regional
features. If the kernel is too large, the network com-
plexity increases and may exceed the representation
ability of the kernel. By convolving the input feature
block x with the kernel and then passing the activation
function f(x) plus a bias term b, the output y is obtained.
(e entire convolution operation is given in equation
(1). (e function of the pooling layer is to reduce the
amount of output data, obtaining lower dimensional
features, reducing the number of calculations, and
preventing feature overfitting. More specifically, neu-
rons in the network are temporarily discarded
according to a certain probability to prevent overfitting
and improve the generalization ability of the model.
(en, added regularization can make the parameters
sparser, which makes one part of the optimized pa-
rameters become 0 and other part a nonzero real value.
(e nonzero real value plays a role in selecting im-
portant parameters or feature dimensions and at the
same time plays a role in removing noise, which can
further improve the performance of the model.

y � f(w x + b). (1)

Fully Convolutional Network. FCNs [33] were first used
for semantic segmentation, which differs from ordinary
classification tasks that output a specific category only.
FCNs require the output and the input to be the same.
(e structure of FCNs differs from CNNs as well. On
the basis of CNNs, FCNs adjusted the last layer of the
network and added a “deconvolution layer.” (e fully
connected layer of a CNN loses some of the position
information in the input data. FCNs work to preserve
this information by replacing the fully connected layer
with a similar “deconvolutional layer.” After convo-
lution and pooling, the feature matrix is restored to the
original data dimensions after the “deconvolution
layer” and upsampling method. Upsampling is the
inverse process of the pooling layer introduced earlier
which restores data features extracted through con-
volution and pooling to the appropriate dimensions to
protect the original structure of the data at least in part.
(e entire network performs a total of five pooling
operations, with feature fusion performed in the last
step of the network. Feature fusion requires upsam-
pling the feature map with the smallest receptive field
obtained after convolution and pooling and then fusing
the result with the feature map of the previous layer.
(e fused feature map is again upsampled with the
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feature map of the previous layer, and feature fusion is
performed until the feature map is restored to the
original number of data dimensions.
U-Net. U-Net [34] is a variant of the FCN network, with
a changed encoder-decoder structure. (ere is no fully
connected layer in the network, and the structure is
divided into two parts: the encoder path and the decoder
path. (e structure of the encoder path is similar to the
traditional CNN structure, and the decoder path is the
encoder path’s inverse process. (e whole structure
resembles the letter U, incorporated into the name. (e
encoder path mainly performs feature extraction and
dimensionality reduction.(e decoder path is composed
of a convolutional layer, an activation layer, and an
upsampling layer, which fuse features and restore the
data dimensionality. (e biggest difference between
U-Net and FCN is in the deep and shallow feature in-
formation fusion of the data. FCN fuses feature infor-
mation by adding the values at the corresponding
positions, while U-Net fuses using same dimensional
splicing. (e latter works by placing feature information
at different levels in different channels, splicing it to-
gether, and then convolving to fuse features. (e FCN
network fuses data features through addition, which will
obscure the details of the data features, while U-Net’s
splicing structure can retain more position information
and reduce the loss of data details.

2.4. Proposed LST Palindrome Reconstruction Network
(LPRN). Inspired by the encoder-decoder framework in
U-Net, we try to improve the original network structure of
U-Net and propose the LPRN framework. (is framework
applies deep convolutional neural networks to LST data
reconstruction research, and the overall architecture is
shown in Figure 1. (e whole framework includes three
processes, namely, the reprojection of MODIS LST
(explained in section Datasets), the preprocessing of the
dataset used by the model, and the structure design of the
LPRN model.

2.4.1. Data Preprocessing. (eLSTdata after reprojection can
be divided into two categories according to whether they are
occluded by clouds: cloud-containing images and cloud-free
images. After the cloud-containing image is filtered, the “good
quality” pixels will be greatly reduced and cannot be directly
used as the training dataset of the deep learning network
(when there are too many missing values in the training
dataset, the deep learning method cannot capture the po-
tential correlation between the data, nor can it reconstruct the
missing real data). (erefore, it is necessary to use data
processing methods to interpolate the missing data to a
certain extent. In the process of data preprocessing, we first
use the histogram equalization (HE) method to determine
whether the image is occluded by clouds, then divide the
dataset, and finally use the inverse distance weighting (IDW)
method (see Figure 2) to interpolate part of the missing data.

(e data preprocessing process includes the following
steps:

Step 1: according to the experimental needs, download
the LSTdataset within a specified time scale in batches,
classify and store the data according to the satellite,
date, and other factors, and establish the corresponding
association between the data.
Step 2: divide the cloud-containing image according to
the spectral characteristics—take out the image data
from the database and convert it into the form of gray
frequency histogram; analyze the gray frequency his-
togram; if two peak frequencies appear and increase
with the gray value and the gray value between the
peaks has a buffer zone, the gray value of the area
corresponding to the second peak is set as an abnormal
value and the image is divided into cloud-containing
image; if the above requirements are not met, the image
is classified as pending image data; the above process is
repeated until all the images in the dataset are com-
pletely divided.
Step 3: analyze the spectral characteristics of the
cloud-containing image through the gray frequency
histogram. According to the analysis of the existing
data, it is found that the frequency histogram of the
nonthin cloud-containing image will show two ob-
vious gray scale peaks. (e peak frequency with the
higher gray scale will be significantly higher than the
one with the lower gray scale and there will be a
certain buffer in the frequency between two gray
values. (is feature is an important basis for deter-
mining whether an image is a cloud-containing
image. If the image is a cloud-free image, the gray
frequency histogram of the image will show an ap-
proximate standard normal distribution. According
to the above feature, the remote sensing data of LST
are preliminarily classified.
Step 4: perform histogram equalization processing on
the filtered pending image data and filter the cloud-
containing image for the second time according to the
processing result—take out the image data in sequence
from the pending image dataset, perform the histo-
gram equalization processing on the image data, and
calculate the gray average value and second-order
moment of the image before and after processing;
classify the image data according to equations (2) and
(3); if two inequalities are satisfied at the same time,
the image will be classified as a cloud-containing
image from the pending image dataset; otherwise, the
image will be classified as a cloud-free image (where
Meanb represents the average value of the candidate
image after equalization processing, Meanf represents
the average value of the candidate image before
equalization processing, ASMb represents the second
moment of the candidate image after equalization
processing, and ASMf indicates that the candidate
image is equalizing second moment before
transformation).

4 Mathematical Problems in Engineering



2.3 <
Meanb

Meanf

< 3

− 0.03 ≤ ASMf − ASMb ≤ 0.03.

(2)

Step 5: record the cloud occlusion range of the cloud-
containing image, divide the cloud occlusion area, and
count the cloud occlusion ratio—for the data classified
as cloud-containing images in step 2, the cloud oc-
clusion range is divided according to the highest gray
value peak of the cloud-containing image data in the
frequency histogram, and the pixels in the abnormal
gray scale peak interval are all cloud occlusion areas,
and count the number of cloud pixels; for the data
classified as cloud-containing images in step 4, the
cloud occlusion range is divided according to the av-
erage gray value of the buffer area in the distribution of
the frequency histogram. If there is a gray peak value
that is much larger than the average value, the area is
divided into a cloud occlusion area, and count the
amount of cloud pixels.

Step 6: filter data according to the cloud occlusion ratio
of each sample in the cloud-containing images—set the
threshold according to the proportion of cloud-oc-
cluded pixels calculated in step 5 and determine
whether to accept the land surface temperature data
according to the threshold (the threshold needs to be
flexibly determined according to the actual amount of
data, and if the threshold is set too high, too much data
will be deleted).
Step 7: take out the cloud-containing image in turn and
use the inverse distance weightingmethod to reconstruct
the pixels in the cloud occlusion area according to
equations (4), (5), and (3); if the range of the missing
pixels is large, the pixel value of the missing area of the
picture is reconstructed according to the ratio of the gray
values between the pixels in the image at different
moments in the same area (where di represents the
distance from the target pixel to the surrounding pixels,
λi represents the calculated weight based on the recip-
rocal of the distance, and P(x, y) represents the sum of
the products of the surrounding pixels and the weight).

di �

�����������������

x − xi( 
2

− y − yi( 
22



,

λi �
1/di


n
i�1 1/di( 

,

P(x, y) � 
n

i�1
λiP xi, yi( .

(3)

(e main purpose of the above process is to eliminate
outliers and obtain the standard dataset for the LPRNmodel,
and the brief process is shown in Figure 3.

(e above method can remove the data missing problem
caused by cloud occlusion to a certain extent and reduce the
numerical error caused by cloud occlusion. However, in
most cases, because the range of missing values is relatively
large, the effect of interpolation methods based on space and
time is limited.
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2.4.2. LPRN Framework. With reference to the structure of
U-Net, the LPRN model proposed in the paper is based on
the encoder-decoder architecture to reconstruct the missing
data of LST. (e LPRN model consists of 14 convolutional
layers, 3 pooling layers, and 3 upsampling layers, and since
the data characteristic specifications obtained by each layer
are different, each layer has constraints on the specifications
of the input data and the output data. Considering the
overall calculation amount of the model, the characteristics
that the model needs to obtain, and the LSTdata at different
times and dates, the model uses convolution kernels of
different sizes to obtain the characteristics of the LSTdata as
comprehensively as possible. (e overall architecture of the
LPRN framework is shown in Figure 4. (e label data in the
proposed model are the original 8-Day LST image, and the
training data in the proposed model are the preprocessed
Daily LST image.

As shown in the framework, the slice size of the input
Daily LST data sample is 200 ∗ 248. In the framework, five
channels of different sizes are set, which are 1, 8, 16, 32, and
64. (ree convolution kernels of different sizes are set to
realize feature extraction of different scales, which are [3, 3],
[2, 2], and [1, 1]. In order to avoid the loss of too much
detailed information in the data, the downsampling layer
only uses a convolution kernel with a size of [2, 2] to
compress the data volume features. (e framework adopts a

decoder-encoder structure to effectively reduce the loss of
original data information due to pooling and convolution.
(is structure retains the intermediate information of the
data during the decoding process and then uses convolution
and data splicing methods to fuse the original information
and the extracted features during the encoding process,
which can reconstruct the missing data according to the
characteristic correlation information in the original data.

In the deep learning network, the loss function is used to
estimate the degree of inconsistency between the predicted
value f(x) of the model and the true value Y. (e smaller the
loss function, the better the stability of the model. Relying on
the guidance of the loss function, the deep learning model
can realize the learning process.

In the experiment, we tried a variety of different loss
functions. Among them, the original loss function of the
U-Net network is the cross entropy function, and the
commonly used loss functions of deep learning networks
include mean square error (MSE) and root mean square
error (RMSE). However, the experimental results show that
aforementioned loss function has very limited guiding effect
on LPRN, so we tried the relatively unpopular normalized
cross correlation (NCC) loss function and achieved rela-
tively good results (the experimental results of different loss
functions are provided in the discussion in Section 3).

RMSE: RMSE is often used as a standard for measuring
the prediction results of machine learning models,
which is expressed as follows:

RMSE(X, h) �

����������������

1
m



m

i�1
h xi(  − yi( 

2




, (4)

where X represents the training sample, m represents
the number of training samples, h(x) represents the
predicted value of the training sample, and y represents
the true value of the training sample, which is also
called the label value.
NCC: NCC is primarily used with image matching, and
it is the process of finding the subimage having greatest
similarity to a real time image for the purpose of
identifying a target image, which is expressed as
follows:

ρ(x, y) �
σ Sx,y, g 

������
Dx,yD

 , (5)

where Sx,y and g, respectively, represent the corresponding
subblocks of the two compared images, ρ(x, y) represents
the correlation coefficient, which is used to determine
whether the two subblocks are related, σ(Sx,y, g) represents
the covariance of Sx,y and g, Dx,y represents the variance of
datum Sx,y, and D represents the variance of datum g.

(e inequality |ρ(x, y)|≤ 1 is used to measure the cor-
relation between two subblocks, and the value of similarity is
within [−1, 1]. (e correlation coefficient characterizes the
description of the degree of approximation between the two

Step 1 : Get LST Remote Sensing Dataset

Step 2 : Constructing the Gray
Frequency Histogram of Dataset

Step 3 : Classify the Dataset Based on Peak Frequency

Step 4 : Second Screening of Cloud-Containing Images

Step 5 : Histogram Equalization Processing
 for Cloud-Containing Images

Step 6 : Filter Cloud-containing Images According to the
Ratio of Cloud Occlusion Pixels

Step 7 : Reconstruct Cloud-Containing Pixels Using
Inverse Distance Weighting Method

Figure 3: (e flowchart of data preprocessing.
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data. Generally speaking, the closer it is to 1, the closer the
linear relationship between the two data is.

3. Results and Discussion

Uncertainty in the processed MODIS LSTdata as proposed
in this paper is of two types: (1) intrinsic uncertainty in the
downloaded MODIS data and (2) error introduced by
processing. (e former includes error in the radiometric
and geometric precision of the MODIS instrument and
uncertainties in the known emissivity values of land sur-
faces, cirrus, or other atmospheric phenomena. In the
experiment, the reprojection of MODIS LST and the
preprocessing of the dataset are used to minimize the
impact of related errors. (e latter is mainly the potential
error caused by the calculation of the average value in the
preprocessing process and the data reconstruction process.
(is error may be reduced in the future by using additional
data sources.

In order to comprehensively evaluate the impact of
uncertainty on the accuracy of LPRN reconstruction data,
this study carried out two different LST reconstruction data
accuracy evaluation experiments.

In the first experiment, we mainly examine the change
of a single LST value before and after reconstruction. (e
experiment randomly selected 2000 LST original samples
from the cloud-free image, so as to avoid selecting too
many similar regions. (en, we randomly select 5% of the
“good quality” pixels from each original sample and
modify them as missing data and record the location of the
modified pixels. Finally, we put the “modified” LST
original sample into the LPRN model for reconstruction
and find the reconstructed LST data according to the
position of the “modified” pixel and compare it with the
actual value of the LST in the original sample (see Table 1)

(because the images are randomly selected, the distri-
bution of the number of images in each year is not the
same).

Analyzing the results of the first experiment and
comparing the reconstructed data from 2000 to 2002 with
the original image, the average temperature error between
the corresponding pixels is larger, and the average error is
above 1 K. Comparing the reconstructed data from 2003
to 2008 with the original image, the average temperature
error between the corresponding pixels is small, the av-
erage error is below 0.4 K, and the smallest error is close to
0.1 K. Analysis of the reasons for this phenomenon is
mainly due to the different reconstruction effects caused
by the amount of training data. (e data from 2003 to
2008 are compared with the data from 2000 to 2002. (e
latter lacks MODIS-Aqua data, which leads to the re-
duction of data associations that can be referred to by the
model, so the reconstruction effect of the model also
decreases accordingly.

(e first experiment mainly evaluates the influence of
the LPRN model on the reconstruction of the original
data, and the result proves that the model will not cause a
large change in the normal data. However, for the newly
created information in the missing area, since they are
data that do not exist in the original dataset, their accuracy
cannot be verified, so we introduced a data correlation
coefficient ρ(Tre, Ttr) in the second experiment, as shown
in equation (6). In the second experiment, based on the
correlation between the reconstructed data and the label
data, we further verify the accuracy of the reconstructed
data of the LPRN model (experiment 2 used all the
extracted cloud-free data into the LPRN model for ex-
perimentation, and because there are few cloud-free data
available from 2000 to 2002, they were not used in the
experiment).
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Figure 4: Architecture of the proposed LPRN framework.
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D Ttr( 
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where Tre and Ttr, respectively, indicate reconstructed data
and label data and Cov(·) and D(·) indicate covariance and
variance, respectively.

(e second experiment first finds out the corresponding
data in the label dataset according to the date of the cloud-
free data and then puts all the cloud-free data into the
trained LPRN framework for reconstruction and obtains the
reconstructed cloud-free dataset. Finally, the correlation and
error between the original cloud-free dataset, the recon-
structed cloud-free dataset, and the label dataset are cal-
culated to verify the accuracy of the reconstructed data (see
Table 2).

(e focus of the introduction of the correlation coeffi-
cient is to test the accuracy of the reconstruction results of
the LPRN model. Analyzing the data results in Table 2, we
first analyze the correlation between the original data and the
label data. (e maximum correlation coefficient appeared in
2004 and was 0.90, and the error in that year was also the
smallest, with an average error of 2.92K. (e correlation
coefficient in 2006 was the smallest, 0.87, and the error in
that year was also the largest (5.07K). (e average value of
the correlation coefficient between the original data and the
label data is 0.883, and the average value of the error is 4.265.
(en, we analyze the correlation coefficient and error be-
tween the LST data reconstructed by the LPRN method and
the label data. (e maximum value of the correlation co-
efficient is 0.93, the minimum value is 0.90, the minimum
error is 1.21K, and the maximum value is 2.62 K. After the
reconstruction of the LST data, the average value of the
correlation coefficient is improved by nearly 0.03, and the
error is reduced by 2.4 K on average.

(e results of experiment two show that the correlation
coefficient and the error are linearly related, and the smaller
the error, the greater the correlation. Analyzing the error
between the original data before and after reconstruction
and the label data, it can be determined that the recon-
struction effect of the LPRN model is obvious. After com-
prehensive analysis of the results of the first experiment and
the second experiment, the LPRN model can significantly
reduce the error between the original data and the label data.
But when the correlation coefficient of the two data reaches a

certain value, the model reconstruction effect will be limited.
(erefore, more diversified label data can be considered in
future research, and the reconstruction effect of the LPRN
model can be improved by reducing the correlation between
the data. At the same time, it should be noted that, compared
with the first experiment, as the number of verification data
increases, the error will also increase to a certain extent. (is
may be due to the small amount of data used in the first
experiment, resulting in greater randomness in the results.

In addition, in order to test the effect of the LPRNmodel
on the reconstruction of missing data, the experiment selects
the method proposed in [35] for comparison. Reference [35]
mainly uses traditional data reconstruction methods such as
nearest neighbor algorithm and histogram equalization.
Considering that the experimental results are all recon-
structed data and lack the reference of real data, the ex-
periment mainly compares the number of “good quality”
pixels in the image reconstructed by the two methods. (e
experiment selects the same area as in research [35] (46 : 45 :
00N-45 : 36 : 50N; 10 : 06 : 33E-12 : 46 : 30E) and data size
(original size after data download). Table 3 shows the sta-
tistical analysis results for the spatial distribution of “good
quality” pixels. In the comparative experiment, in addition
to analyzing the “good quality” pixels in the observation
data, the correlation between the altitude factor and the
number of “good quality” pixels in the data was also analyzed
and studied.

Analyzing the experimental results in Table 2, the LST
data reconstructed by using the LPRN method show similar
characteristics to the data reconstructed by the traditional
method. Compared with high-altitude areas (>1500m), low-
altitude areas (such as flat bottoms and valleys) are more
likely to be obscured by coverings, resulting in fewer “good
quality” pixels that can be collected. It is reflected in Table 1
that the proportion of “good quality” pixels has dropped
significantly. At the same time, compared with traditional
reconstruction methods, in the LST data reconstructed by
LPRN (loss function using NCC), the proportion of “good
quality” pixels will be further increased, and the maximum
increase can reach 7%.

Based on the overall analysis of the experimental results,
after removing the interference of altitude factors, the
percentage of “good quality” pixels that can be collected
throughout the year is between 37% and 48%. Compared
with the data reconstructed by the traditional method, the
data reconstructed by the LPRN method can increase the
proportion of “good quality” pixels by 3%–7%.

Table 1: Average error statistics of the single pixel.

Year Error (K)
2000 1.3
2001 1.4
2002 1.0
2003 0.4
2004 0.1
2005 0.3
2006 0.4
2007 0.2
2008 0.3
Mean 0.6

Table 2: Evaluations of the reconstructed data.

Year ρ(Tori, Ttr) Error(Tori, Ttr) ρ(Tre, Ttr) Error(Tre, Ttr)

2003 0.88 4.90K 0.92 1.68K
2004 0.90 2.92K 0.93 1.21K
2005 0.88 4.31K 0.91 2.15K
2006 0.87 5.07K 0.92 1.74K
2007 0.89 3.83K 0.90 2.62K
2008 0.88 4.56K 0.93 1.43K
Mean 0.883 4.265K 0.918 1.805K
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In order to prove that the use of different loss functions
affects the effect of data reconstruction, the experiment
designed a comparative experiment with the loss function as
a variable (only RMSE and NCC are listed here; MAE and
MSE have poor results, so they are not listed here). Figure 5
shows the results of the proportion of “good quality” pixels
in the LST data reconstructed by the model trained using
RMSE and NCC as the loss function in an area with an
altitude of less than 500m.

In Figure 5, “ori” represents the proportion of “good
quality” pixels in the output result using traditional recon-
structionmethods, “RMSE” represents the proportion of “good
quality” pixels in the output result of using RMSE as the loss
function of the LPRN model, and “NCC” represents the
proportion of “good quality” pixels in the output result of using
NCC as the loss function of the LPRNmodel. In the area below
the altitude of 500m, the proportion of “good quality” pixels in
the output result of the model using the loss function NCC can
be increased by about 4.7% on average. (e reconstruction
effect of the model based on the loss function RMSE is im-
proved to a certain extent compared with the traditional
method, but it is lower than the LSTdata reconstruction effect
of the model based on the loss function NCC.

Figure 6 shows the results of the proportion of “good
quality” pixels in the LST data reconstructed by the model
trained using RMSE and NCC as the loss function in an area
with an altitude ranging from 500m to 1500m. (e pro-
portion of “good quality” pixels in the output result of the
model using the loss function NCC can be increased by
about 5.2%.

Figure 7 shows the results of the proportion of “good
quality” pixels in the LST data reconstructed by the model
trained using RMSE and NCC as the loss function in an area
with an altitude above 500m to 1500m. (e proportion of
“good quality” pixels in the output result of the model using
the loss function NCC can be increased by about 6.2%.

(e experimental results proved that the model effect
trained by the deep learning network has great correlation with
the choice of loss function. In different application scenarios,
the use of different loss functions will play different roles. In the
LST data reconstruction experiment, we compared the use of
RMSE as the loss function with the use of NCC as the loss

function, indicating that in the application scenario of LSTdata
reconstruction, using the loss function NCC will significantly
increase the proportion of “good quality” pixels, which proves
that NCC is more suitable for this field.

4. Conclusions

High-resolution, high-precision satellite remote sensing data
have tremendous value for many fields including the Earth
sciences. However, the satellite remote sensing data collected

Table 3: (e spatial distribution of “good quality” pixels in the
daily MODIS LST obtained after dividing by altitude (each value
represents the percentage of “good quality” pixels; the data ref-
erence comes from [35]).

Year 0–499m LPRN 500–1499m LPRN >1500m LPRN
2000 30.0 35.3 36.0 40.2 36.1 43.2
2001 32.4 36.5 40.3 46.5 40.5 46.1
2002 27.0 30.9 33.6 40.3 35.9 39.3
2003 35.5 38.2 46.1 49.9 47.6 53.8
2004 31.5 36.7 39.2 46.2 41.6 46.9
2005 35.1 40.0 44.7 50.1 45.1 50.3
2006 34.7 39.2 43.8 44.5 46.1 51.0
2007 38.2 45.1 46.6 53.2 46.5 52.6
2008 28.3 33.1 33.4 40.1 34.0 46.2
Mean 32.5 37.2 40.4 45.6 41.5 47.7
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Figure 5: Proportion of “good quality” pixels at altitudes <500m
(RMSE and NCC).
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Figure 6: Proportion of “good quality” pixels at altitudes
500m–1500m (RMSE and NCC).
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Figure 7: Proportion of “good quality” pixels at altitudes >1500m
(RMSE and NCC).
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are often contaminated, particularly by cloud cover. LSTdata
processed using existing methods lose significant information
due to occlusions, necessitating one or more passes through
reconstruction methods to restore the missing information.

In this article, we use the histogram equalization and
inverse distance weighting method to preprocess the LST
raw data, remove the outliers in the data and construct the
standard dataset usable by the deep learning network, and
finally use the LPRN framework to reconstruct LST data. In
the experiment to verify the accuracy of the reconstructed
data, the experiment proved that the LPRN method can
reduce the error between the training data and the label data.
(erefore, in future extended experiments, the recon-
struction effect of the LPRN method can be further en-
hanced by using higher precision or higher precision label
data. Compared with traditional reconstruction methods, in
the LST data reconstructed by LPRN, the proportion of
“good quality” pixels will be further increased, and the
maximum increase can reach 7%. Compared with traditional
reconstruction methods, in the LST data reconstructed by
LPRN, the proportion of “good quality” pixels will be further
increased, and the maximum increase can reach 7%. In
addition, the experimental results show that compared with
high-altitude areas (>1500m), low-altitude areas (such as
flat bottoms and valleys) are more likely to be obscured by
coverings, resulting in fewer “good quality” pixels that can be
collected, and the proportion of “good quality” pixels will
drop significantly. Finally, the experiment also found that
choosing a suitable loss function has a significant effect on
the experimental results. (e experimental results poten-
tially showed that increasing amounts of training data will
change the experimental results. (is is related to the in-
herent nature of the deep learning method. (erefore, it can
be expected that when the amount of data reaches a certain
level in the future, deep learning methods can explore more
hidden information in the data.

Existing deep learning framework research has shown
that training data with time continuity contain potential
time and space attributes, with the ability to predict the
future to some degree based on them. In the field of Earth
sciences, explorations of these phenomena are rare. In the
future, we plan to incorporate more diversified relevant data
into the model, such as wind speed, sunshine duration, and
light intensity, by integrating multiple data fusion methods
into the data reconstruction methods. In this way, we hope
to reduce the effects of data information loss caused by
external interference and to maximize the value of data.
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