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Reservoir inflow prediction is a vital subject in the field of hydrology because it determines the flood event.*e negative impact of
the floods could be minimized greatly if the flood frequency is predicted accurately in advance. In the present study, a novel hybrid
model, bootstrap quadratic response surface is developed to test daily streamflow prediction. *e developed bootstrap quadratic
response surface model is compared with multiple linear regressionmodel, first-order response surface model, quadratic response
surface model, wavelet first-order response surface model, wavelet quadratic response surface model, and bootstrap first-order
response surface model. Time series data of monsoon season (1 July to 30 September) for the year 2010 of the Chenab river basin
are analyzed. *e studied models are tested by using performance indices: Nash–Sutcliffe coefficient of efficiency, mean absolute
error, persistence index, and root mean square error. Results reveal that the proposed model, i.e., bootstrap quadratic response
surface shows good performance and produces optimum results for daily reservoir inflow prediction than other models used in
the study.

1. Introduction

*e frequency of massive rainfall upsurges in recent time
causing frequent flood damage due to latest regional effect and
climate change [1].*e accelerated hydrological cycle enhances
the intensity of precipitation events which boost variation in
streamflow, and such events are responsible for frequent floods
and droughts [2]. Researchers have applied many models to
predict stream inflow including autoregressive (AR), autore-
gressive moving average (ARMA), autoregressive integrated
moving average (ARIMA), regression-based models, neuro-
fuzzy models, conceptual models, and more complex models
based on artificial neural network (ANN) [3–7]. Soft com-
puting models such as ANN, adaptive neuro-fuzzy inference

system (ANFIS), and random forest are proposed by Seo et al.
[8] for river stage modeling. *e proposed models have been
coupled with the variation mode decomposition (VMD)
technique. *ey found that the VMD technique had improved
performance as compared with the traditional simple models.
*erefore, they pointed out that the VMD-based models are
more consistent for river stream flow modeling. Kim and Lee
[9] examined Bayesian multiple regression analysis for the
analysis of regional low flow frequency. Kim and Han [10]
introduced the nonlinear autoregressive model with exogenous
inputs and self-organizing map (NARX-SOM) for flood
prediction.

Wavelet analysis (WA) is a valuable method for the
examination of variations, drifts, and periodicities in data.
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WAalso has great attention in the field of hydrology [11–14].
Two-hybrid models such as wavelet-based artificial neural
network (WANN) and wavelet-based adaptive neuro-fuzzy
inference system (WANFIS) were introduced by Seo et al.
[15] for flood forecasting. *ey concluded that WANN and
WANFIS models perform almost similarly and produced
reliable prediction results than traditional models. Shafaei
and Kisi [16] explored the performance of theWANNmodel
for the prediction of daily river streamflow. *e WANN
model depicts excellent performance than simple ANN and
support vector machine (SVM) models for daily streamflow
prediction. Wei [17] introduced a new algorithm called
wavelet support vector machine (wavelet SVM) for the
prediction of hourly water level. Using different combina-
tions of wavelet technique to the SVM model, a new model
developed is wavelet SVM. Gaussian SVM and wavelet SVM
models are applied for the prediction purpose. Results di-
vulged that the wavelet SVMmodel produces more accurate
prediction results and provides practical solutions to the
water level prediction.*e wavelet bootstrap artificial neural
network (WBANN) model is introduced for reliable hourly
flood forecasting. WBANN and bootstrap artificial neural
network (BANN) models depict much better results in
comparison with traditional ANN and WANN models. For
the peak water level, the WBANN model has excellent re-
sults. Overall performance of the WBANN model is good in
comparison with that of ANN, BANN, and WANN models
[18]. Bashir et al. [19] developed a bootstrap multiple linear
regression (BMLR) model for reservoir inflow prediction.
*e developed model is compared with other models like
wavelet multiple linear regression (WMLR), wavelet boot-
strap multiple linear regression (WBMLR), and multiple
linear regression (MLR) models. *ey concluded that the
BMLR model produced better prediction results than
WMLR, WBMLR, and MLR models.

Response Surface-Based Models. Quadratic response sur-
face (QRS) and nonlinear response surface (NRS) are
proposed by Yu et al. [20]. *ey showed that response
surface-based models perform well as compared with
MLR and ANNmodels. Keshtegar et al. [21] claimed that a
response surface-based model with the fifth-order poly-
nomial function is applied for streamflow prediction in
the Aswan high dam, and this model yields satisfactory
results. *e previous literature available on river flood
prediction depicts a lack of research on hybrid response
surface (RS) models by using the bootstrap and wavelet
technique. *is study, therefore, examines the hybrid
models for daily reservoir inflow prediction by the con-
junction of wavelet and bootstrap techniques to response
surface-based models. *e prime objective of this research
study is to develop a new hybrid model bootstrap qua-
dratic response surface (BQRS) for daily reservoir inflow
prediction and comparing the results of the developed
model with the remaining studied models: MLR, first-
order response surface (FORS), quadratic response sur-
face (QRS), wavelet quadratic response surface (WQRS),
wavelet first-order response surface (WFORS), and
bootstrap first-order response surface (BFORS).

2. Materials and Methods

2.1. Response Surface Models. *e relationship between the
response variable and predictors is given as follows:

y � f x1, x2, x3, . . . , xn(  + ε, (1)

where y represents the response variable, f is an unknown
response function, error term is denoted by ε, and
x1, x2, x3, . . . , xn are the independent variables. *e FORS
model used to define the linear relationship between in-
dependent and dependent variables is given as follows:

y � β∘ + β1x1 + β2x2 + β12x1x2 + ε. (2)

*e FORS model involves a single cross-product term.
x1 and x2 are input variables, and y represents response
variable. β∘, β1, β2, and β12 represent the unknown
parameters.

*e QRS model mathematically is defined as

y � β∘ + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 + ε. (3)

*is model includes the additional two-second order
terms as compared with the first-order model.

2.2. Wavelet Analysis. WA has gained popularity and
practiced in the hydrologic field in recent years since the
introduction of this technique in the early 1980s. WA de-
composes the original time series data to remove noise from
data and provide a reliable prediction of hydrological data by
utilizing important information from different resolution
levels. WA is accomplished by providing a joint represen-
tation of time series data in the time-frequency domain. To
achieve the target, time series data are divided into wavelets,
and these wavelets are scaled and translation versions of
mother wavelets [22].

Continuous wavelet transform (CWT) and discrete
wavelet transform (DWT) are two types of WA. CWT de-
composes time series data on all possible scales, and massive
amounts of data are generated on each possible scale which
necessitates heavy computational work. Moreover, a large
amount of data creates redundant information, where the
DWT is based on dyadic calculation of data. So, DWT is
simple to handle and requires less computational work than
CWT [23]. Based on previous applications of WT in the
hydrologic field, DWT proves superior results as compared
with CWT [24].

For discrete-time series data denoted by xt, DWT is
defined as

Tm,n � 2(− m/2)


N−1

i�0
xiψ 2− mi − n( . (4)

In equation (4), Tm,n is a wavelet coefficient. *e scale
parameter is denoted by a � 2m while the location parameter
is indicated by b � 2mn and n represents the positive integer.
xi signifies a finite time series data. N represents the total
length of data, and mathematically it is equal to N � 2m. *e
range of integer n is 0< n< 2M− m − 1, and the range of
integer m is 1<m<M. *erefore, at a specific interval of

2 Mathematical Problems in Engineering



time, one wavelet is required to yield one coefficient on an
enormous scale (2m &m � M). *e next scale will be
(2m− 1), two wavelets operate in a complete interval of time,
and two coefficients are produced. *e whole procedure
continues until m meets unity (m� 1).

At step m� 1, the scale parameter would be 21. *is
means 2m−1 or N/2 coefficients are required to explain the
time series data at this scale. *us, for discrete signal, the
total number of wavelet coefficients generated is Y � Xβ + u,
and if we elaborate, it would be
1 + 2+4 + 8+ . . .. . .. . .+2M−1 �N− 1 [25].

2.3. Bootstrap Method. Bootstrap is one of the resampling
techniques that are part of nonparametric statistics. Boot-
strap is a data-driven technique, and it is used to compute
several realizations of data set from a distribution. A set of
bootstrap samples are obtained by employing intensive
resampling with replacement. *e bootstrap technique
provides a better understanding of variability and average of
original time series data of unknown distribution and
minimizing uncertainty [26].

Consider the empirical distribution of the observed
sample. Empirical distribution constitutes a probability
distribution that allocates 1/n probability to each sample
value. In the bootstrap technique, we replace unknown
population distribution with the known empirical distri-
bution. *e steps involved in the bootstrap procedure are as
follows:

(i) Prepare a bootstrap sample by generating a sample
with replacement from the empirical distribution

(ii) Calculate the value of the estimator θ which is
drawn bootstrap sample

(iii) Repeat the first two steps by K number of times

2.4. Multiple Linear Regression Model. *e MLR model is a
technique to be used for modeling the relationship between
the response variable and the independent variables. *e
mathematical form of the MLR model in matrix form is
given as follows:

Y � Xβ + u. (5)

2.5. Performance Indices

2.5.1. Root Mean Square Error. Root mean square error
(RMSE) is represented as follows:

RMSE �

�������������


n
i�1 Oi − Pi( 

2

n



. (6)

2.5.2. Mean Absolute Error. Mean absolute error (MAE) is
the average of the difference between observed and predicted
values. *e range of MAE is from 0 to ∞.

*e mathematical expression of MAE is as follows:

MAE �
1
n



n

i�1
Oi − Pi


⎛⎝ ⎞⎠. (7)

2.5.3. Nash–Sutcliffe Coefficient of Efficiency.
Nash–Sutcliffe coefficient of efficiency (NSE) is used to
evaluate the predictive power of the hydrological model. It is
defined as

NSE � 1 −


n
i�1 Oi − Pi( 

2


n
i�1 Oi − O( 

2. (8)

*e range of NSE is −∞ to 1. Closer the value to 1
represents that the fit of the model is excellent.

2.5.4. Coefficient of Persistence. Coefficient of persistence
(CP) is expressed as

CP � 1 −


N
i�2 Pi − Oi( 

2


N−1
i�1 Oi+1 − Oi( 

2. (9)

3. Data and Statistical Analysis

*e Chenab river basin is the second largest river in Pakistan.
*e total catchment area of the Chenab river basin is
67515 km2.*e foundation of theChenab river basin is at 30° to
77° east and 32° to 50° north, and it is set up in the upper
Himalayas of district Lahaul and Spiti in Himachal Pradesh,
India. *e confluence of two streams named “Bhaga” and
“Chandra” forms the Chenab river basin. River Chenab enters
into the plains of Punjab, Pakistan. River Jhelummeets with the
Chenab river basin at the Trimmu gauging station. Rivers Ravi
and Satluj join river Chenab before the Punjnad gauging
station. Marala, Khanki, and Qadrabad gauging stations of the
Chenab river play a vital role in building the canal link system
in Pakistan. In the territory of the Chenab river basin, flood is a
severe issue during the monsoon spell. Heavy rainfall in the
monsoon season especially in the upper river catchment basin
sets the foundation for flood in river Chenab. Snowmelt
supplies on average 40% of total water flow in July. *e
geographical location of the three gauging stations under study
is represented in Figure 1.

Data used for this study constitute of Chenab river basin
daily discharge data of three gauging stations during the
period 2005–2010 (552 data points) monsoon season from 1
July to 30 September. Original data are separated into two
data sets. To train developed models, daily discharge data of
three gauging stations for the 2005–2009 monsoon season
are applied while daily discharge data for the year 2010
monsoon season (1 July to 30 September) are taken for
testing purposes. *e performance of the developed models
is evaluated through the testing data set.

3.1. Model Development. In analyzing the MLR, FORS, QRS,
WFORS, WQRS, BFORS, and BQRS models for streamflow
prediction, the key step is the selection of appropriate input
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variables. In this study, correlation analysis is used to select the
input variables.*e three gauging stationsMarala, Khanki, and
Qadrabad have a strong correlation among each other but all
these variables have a weak correlation with Trimmu and
Punjnad gauging stations as represented in Table 1. *erefore,
Marala and Khanki gauging stations are chosen as regressors,
and the Qadrabad gauging station is selected as the response
variable. Qadrabad gauging station is our forecast site. When
two or more variables in the regression model are highly
correlated, then multicollinearity exists among predictors.
Table 2 shows that both predictors Marala and Khanki have
partial regression coefficients with opposite signs which depict
that both predictors have the opposite relationship with each
other but this association contradicts with original fact. Both
predictors have a tolerance value of 0.215 that indicates the
presence of multicollinearity among predictors. Variance in-
flation factors, VIFx1 and VIFx2, respectively, for both pre-
dictors are approximately 5. *is is another evidence for the
presence of the multicollinearity factor. *e principal com-
ponent analysis (PCA) was utilized to solve the problem of
multicollinearity among predictors by taking principal com-
ponent scores which are orthogonal to each other.

Using the Mallat DWT algorithm, data of every gauging
station are decomposed into subtime series components called
detail and approximation [27]. Each component contributes a
different role in original time series data, and these subtime
series illustrate different behaviors [28]. Many basic wavelet
families can be utilized to transform the original signal. *e
selection of mother wavelet depends upon data to be analyzed.
Within each family, wavelets are classified based on the number
of vanishing moments. In hydrological modeling, widely used
wavelet families are Coiflets, Haar, symlets, and Daubechies.

*e iterative process decomposes the original time series
signal into many resolution levels. *is decomposition
process is called a wavelet decomposition tree. *e analysis
process continues indefinitely due to iterative behavior. In
practice, a suitable number of levels are selected for the
decomposition of time series data by using the formula as
follows [29]:

L � int(log(N)). (10)

*e level of decomposition is represented by L, and N is
the length of the signal. In this study, the number of de-
composition levels to be selected is three. Figure 2 represents
the decomposition of time series data (Marala, Khanki, and
Qadrabad gauging stations) on the third resolution level.

To test one day ahead prediction, thirteen wavelet FORS
models are built up by using Haar, Daubechies, Symlets, and
Coiflets wavelet functions with different vanishing moments
and presented in Table 3. Sym15 wavelet function has im-
proved results on all performance indices, and this wavelet
function is selected to give inputs to FORS and QRS models.
Figure 3 indicates the development of the models.

3.2.WFORSandWQRSModels. *e hybrid models WFORS
and WQRS are developed by the conjunction of the DWT
technique with the traditional response surface models
FORS and QRS. *e following steps were followed for the
development of WFORS and WQRS.

Original time series data are decomposed into wavelet
components by using the DWT technique by choosing an
optimum level of decomposition.

In the second step, effective wavelet components provide
input data to the traditional FORS and QRS model.

3.3. BFORS andBQRSModels. BFORS and BQRS are hybrid
models, and these models are developed by couple of
bootstrap technique with FORS and QRS models.

4. Results and Discussion

Statistical values of MLR, FORS, QRS, WFORS, WQRS,
BFORS, and BQRS models on different performance indices
such as NSE, RMSE, MAE, and CP were investigated and are
displayed in Table 4 for the Chenab river basin.

*e main purpose of this article is to observe the ap-
plicability of two techniques: wavelet and bootstrap. *ese
techniques combined with response surface-based models
to predict river stream inflow. First, the original observed
time series data are used as input to MLR, FORS, and QRS
models. Second, the data are decomposed by using the
DWT technique and by using appropriate decomposed
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Figure 1: Diagram showing location of Chenab river basin with its
adjoining.

Table 1: Linear correlation analysis between input variables.

Combinations Correlations
Marala and Khanki 0.88
Marala and Qadrabad 0.80
Marala and Trimmu 0.52
Marala and Punjnud 0.45
Khanki and Qadrabad 0.91
Khanki and Trimmu 0.49
Khanki and Punjnud 0.43
Qadrabad and Trimmu 0.48
Qadrabad and Punjnud 0.43
Trimmu and Punjnud 0.95
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subseries as input to FORS and QRS models to formulate
WFORS and WQRS models, respectively. *ird, bootstrap
technique is applied, and results obtained are used as input
to FORS and QRS models to produce two new models
BFORS and BQRS. As can be shown from results that the
DWT technique illustrates the significantly improved re-
sults of wavelet-based models like WFORS and WQRS,
then MLR, FORS, and QRS models use raw data set, but
when compared these models (WFORS and WQRS) with
models involving bootstrap technique (BFORS, BQRS), the

performance of wavelet-based models deteriorates. *e
proposed model BQRS produced excellent results in terms
of RMSE � 0.0079m3/s, NSE � 0.9927, CP � 0.9961, and
MAE � 0.0021m3/s for one day ahead prediction. For the
second and third day ahead prediction, the BQRS model
has superior performance than the remaining model dis-
cussed in the study. In comparison with all proposed
models for the testing period, the BQRS model proves good
predictive and reliable results for all three days ahead of
prediction.
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Level 2
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Figure 2: *ree-level decomposition of time series signal.

Table 2: Collinearity statistics of predictors by applying the linear regression equation.

Model Estimate T stat P value
Collinearity statistics

Tolerance VIF
Constant 16395.15 2.850 0.005
Marala (X1) −0.052 −0.440 0.659 0.215 4.64
Khanki (X2) 0.848 10.510 ≤0.001 0.215 4.64

Table 3: Performance of numerous WFORS models by using several mother wavelet functions.

Wavelet Vanishing moment NSE RMSE (m3/s) MAE (m3/s) CP
Haar 1 0.9560 0.3850 0.2688 0.9596
coif1 1 0.9283 0.4600 0.2627 0.9288
coif3 3 0.9532 0.3270 0.2046 0.9271
coif5 5 0.9580 0.2860 0.1886 0.9250
db4 4 0.9476 0.3770 0.2519 0.9418
db8 8 0.9632 0.2940 0.1995 0.9470
db12 12 0.9641 0.2700 0.1926 0.9514
db16 16 0.9527 0.2950 0.2063 0.9551
db20 20 0.9578 0.3250 0.2291 0.9465
sym5 5 0.9609 0.3470 0.2045 0.9357
sym10 10 0.9769 0.2380 0.1594 0.9536
sym15 15 0.9776 0.2250 0.1469 0.9521
Sym20 20 0.9681 0.2390 0.1538 0.9467
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Figure 4 represents the 1 d to 3 d ahead prediction
performance of QRS-based models for the Chenab river
basin. All figures depict observed discharge versus predicted
discharge by using a scatter diagram for the testing period
data set. *e BQRS model estimates are closer to the ob-
served water discharge when compared with other models

used in the study. It was observed that the BQRS model
minimizes the error in the prediction of peak streamflow,
and its values are closer to the predicted line. Similarly,
Figures 5 and 6 show FORS-based models and MLR model,
respectively, for 1 d to 3 d ahead prediction. It has been
observed that overall the BQRS model has improved results.

Table 4: Performances of numerous prediction models for 1 to 3 days lead time for testing data set 2010 (1 July to 31 September) of Chenab
river basin.

Days Model type Model NSE RMSE (m3/s) MAE (m3/s) CP

1 d

Traditional
MLR 0.8426 0.4010 0.2082 0.7398
FORS 0.8621 0.3780 0.1941 0.7719
QRS 0.8913 0.3390 0.1952 0.8201

Wavelet WFORS 0.9761 0.2250 0.1470 0.9521
WQRS 0.9796 0.2170 0.1354 0.9563

Bootstrap BFORS 0.9884 0.0214 0.0071 0.9981
BQRS 0.9929 0.0079 0.0021 0.9961

2 d

Traditional
MLR 0.8429 0.4010 0.2061 0.7399
FORS 0.8622 0.3770 0.1923 0.7719
QRS 0.8913 0.3390 0.1942 0.8202

Wavelet WFORS 0.9779 0.2230 0.1437 0.9526
WQRS 0.9799 0.2160 0.1328 0.9565

Bootstrap BFORS 0.9965 0.0128 0.0044 0.9977
BQRS 0.9971 0.0082 0.0021 0.9988

3 d

Traditional
MLR 0.8430 0.4010 0.2059 0.7402
FORS 0.8622 0.3770 0.1922 0.7719
QRS 0.8914 0.3390 0.1936 0.8202

Wavelet WFORS 0.9782 0.2220 0.1415 0.9529
WQRS 0.9800 0.2150 0.1316 0.9567

Bootstrap BFORS 0.9984 0.0122 0.0038 0.9984
BQRS 0.9987 0.0049 0.0011 0.9994

BFORS

Bootstrap data Daily river discharge data DWT data

BQRS FORS WFORS WQRSMLR QRS

Daily river discharge data

Figure 3: *e flowchart illustrates the development of various models.
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Figure 4: Scatter plots for QRS-based models of observed streamflow versus predicted streamflow for one to three days lead time in the
Chenab river basin: (a) 1 d lead time; (b) 2 d lead time; (c) 3 d lead time.
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Figure 5: Scatter plots for FORS-based models of observed streamflow versus predicted streamflow for one to three days lead time in the
Chenab river basin: (a) 1 d lead time; (b) 2 d lead time; (c) 3 d lead time.
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5. Conclusions

*is research article explores the predictability of two different
types of hybrid models: wavelet-based response surface models
and bootstrap-based response surface models. *e observed
time series data decomposed into subseries by applying DWT
and effective components are selected to provide inputs to
models. *e wavelet technique decomposes signals into the
multilevel components by adopting multiresolution analysis.
*e ability to predict time series data of wavelet conjunction
response surface-based models is found sensitive towards the
selection of wavelet function. Wavelet function sym15 is found
better in comparison with other wavelet functions. Overall
performance specifies that wavelet-based models produced
improved results than the models that used original time series
data: MLR, FORS, and QRS.*e bootstrap technique is used to
minimize uncertainty in time series data. It is observed that the
default number of bootstrap resamples is not appropriate.
Bootstrap-based prediction models should be enhanced
carefully. A small number of bootstrap resamples are suitable
for daily reservoir inflow prediction in the Chenab river basin.
*e bootstrap technique applies to the original time series data
to formulate bootstrap-based models: BFORS and BQRS. *is
study illustrates that the BQRS model is a suitable method for
modeling reservoir inflow prediction.
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