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Multivariate electricity consumption series clustering can reflect trends of power consumption changes in the past time period,
which can provide reliable guidance for electricity production. However, there are some abnormal series in the past multivariate
electricity consumption series data, while outliers will affect the discovery of electricity consumption trends in different time
periods. To address this problem, we propose a robust graph factorization model for multivariate electricity consumption
clustering (RGF-MEC), which performs graph factorization and outlier discovery simultaneously. RGF-MEC first obtains a
similarity graph by calculating distance among multivariate electricity consumption series data and then performs robust matrix
factorization on the similarity graph. Meanwhile, the similarity graph is decomposed into a class-related embedding and a spectral
embedding, where the class-related embedding directly reveals the final clustering results. Experimental results on realistic
multivariate time-series datasets and multivariate electricity consumption series datasets demonstrate effectiveness of the
proposed RGF-MEC model.

1. Introduction

Recently, multivariate electricity consumption series clus-
tering has been an important issue in machine learning fields
[1–3]. In multivariate electricity consumption series, each
instance consists of multiple time series from different sources
which often contain information related to each other [4]. For
example, multivariate electricity consumption series are
composed of global-active-power series, global-reactive-
power series, voltage series, and global-intensity series [5, 6].
*erefore, multivariate electricity consumption series clus-
tering needs to analyze the relationship among these series
[7, 8]. In other words, the objective of multivariate electricity
consumption series clustering is to discover the relationship
among multiple series and divide instances into groups.

*ere have been many works on time-series clustering,
including univariate time-series clustering [9, 10] and
multivariate time-series clustering [7, 11]. It is well known

that k-shape [12], k-DTW Barycenter Averaging (KDBA)
[13], kAVG+ED [14], and k-Spectral Centroid (KSC) [15]
are effective distance-based univariate time-series clustering
algorithms. k-shape [12] utilized a normalized version of
cross-correlation measure in order to consider shapes of
time series. KDBA [13] was a global averaging method for
dynamic time warping, where a new strategy was used to
reduce the length of the resulting average sequence.
kAVG+ED [14] made use of an efficient indexingmethod to
locate 1-dimensional subsequences within a collection of
sequences. KSC [15] can effectively find cluster centroids
with a similarity measure, which applied an adaptive
wavelet-based incremental approach to clustering. Because
k-shape, KDBA, kAVG+ED, and KSC have achieved great
success in univariate time-series clustering, researchers
considered the relationship among multiple series and ex-
tended these methods for multivariate time-series clustering
(i.e., m-kShape, m-kDBA, m-kAVG+ED, and m-KSC) [16].
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In addition to extending existing univariate time series
methods, researchers have proposed some unsupervised
feature learning works which can learn informative features
of multivariate time series. For example, two-dimensional
singular value decomposition [15], variable-based principal
component analysis (VPCA) [17], common principal
component analysis (CPCA) [18–20], and deep encoder
networks [21, 22] are used to reduce dimensionality of
multivariate time series and learn informative features for
clustering. He et al. [17] proposed a spatial weighted matrix
distance-based fuzzy clustering (SWMDFC) model for
multivariate time-series clustering. SWMDFC made use of
VPCA to achieve dimensionality reduction and reduce
computational consumption and then utilized spatial
weighted matrix distance to compute distance among
multivariate time-series data. Li [20] proposed amultivariate
time-series clustering method based on CPCA, which used
CPCA to construct projection coordinate features from
multivariate time series and reconstructed multivariate time
series from coordinate features. Franceschi et al. [21] pro-
posed an unsupervised scalable representation learning
model (USRL) for multivariate time series, which utilized a
deep encoder network formed by dilated convolutions to
generate informative features. However, noisy data and
outliers are ubiquitous in realistic multivariate electricity
consumption series data. Moreover, most existing works
ignore the existence of outliers and noisy data, which can
significantly affect clustering performance on multivariate
electricity consumption series data.

In this paper, we develop a novel robust graph factor-
ization framework (RGF-MEC) based on multivariate elec-
tricity consumption series, which is a joint learning framework
for multivariate electricity consumption series clustering and
discovery of outliers in multivariate electricity consumption
series. After calculating the similarity matrix among multi-
variate electricity consumption series data, RGF-MEC per-
forms robust orthogonal and nonnegative matrix factorization
on this similarity graph structure. In addition, it can directly
reveal clustering results without using k-means clustering that
is sensitive to initialization. *erefore, the main contributions
of this paper can be summarized as follows:

(1) *is paper proposes a novel multivariate electricity
consumption series framework (RGF-MEC) to si-
multaneously factorize the graph structure and
discover outliers in multivariate electricity con-
sumption series data

(2) RGF-MEC utilizes robust matrix factorization to
simultaneously learn nonnegative class-related rep-
resentations and orthogonal spectral representations

(3) We perform experiments on realistic datasets to verify
the proposed RGF-MEC model, and the results
demonstrate that RGF-MEC is an effectivemultivariate
electricity consumption series clustering framework

*e remainder of this paper is organized as follows.
Section 2 introduces related works, including spectral
clustering, symmetric nonnegative matrix factorization
(SymNMF), and orthogonal and nonnegative matrix

factorization (ONMF). Section 3 details the proposed RGF-
MEC framework, including specific derivation process and
complexity analysis. In Section 4, experimental results show
the feasibility of the proposed RGF-MEC framework. Fi-
nally, some conclusions are given in Section 5.

2. Related Works

*is section first explains the relationship between spectral
clustering and symmetric nonnegative matrix factorization
and then introduces the ONMF model.

Suppose X denotes original instances, Xi. denotes the ith
instance, L denotes normalized Laplacian matrix of original
instances, and F ∈ RN×K denotes spectral embedding.
Spectral clustering decomposes eigenvalues of normalized
Laplacian matrix L and constructs clusters by processing
eigenvectors [23], which has the advantage of clustering on a
sample space of arbitrary shape and converging to an op-
timal solution. *erefore, the objective function of spectral
clustering can be defined as

min
FTD−1F�I

Tr FTLF􏼐 􏼑 , (1)

where L � I − D− 1/2SD− 1/2, S denotes similarity graph of
original instances where an element Sij is similarity between
Xi. and Xj., D is the degree matrix with a diagonal element
Di � 􏽐jSij, and clustering results are obtained by per-
forming k-means clustering on the embedding D− 1/2F.

Kuang et al. [24] proposed SymNMF on the basis of
nonnegative matrix factorization, which can simplify the
high-dimensional graph structure to low-dimensional em-
bedding while keeping the information as unchanged as
possible. *e objective function of SymNMF is defined as

min
F≥0

G − FFT
����

����
2
F
, (2)

where G denotes the symmetric high-dimensional data.
Relaxing F to be orthogonal, the above problem becomes the
problem of spectral clustering.

Since the solution of (2) is difficult to compute, Han et al.
[25] first transformed the problem of spectral clustering into
the problem of symmetric nonnegative matrix factorization,

(1)⇔max
FTF�I

Tr FTGF􏼐 􏼑

⇔ min
FTF�I

−Tr GTFFT
+ FFTG􏼐 􏼑

⇔ min
FTF�I

Tr GTG − GT FFT
􏼐 􏼑 − FFT

􏼐 􏼑G + FFT
􏼐 􏼑 FFT

􏼐 􏼑􏼐 􏼑

⇔ min
FTF�I

G − FFT
����

����
2
F
,

(3)

and then introduced an auxiliary nonnegative variate H to
approximate the orthogonal variate F:

min
H≥0,FTF�I

G − HFT
����

����
2
F
, (4)

where H is a nonnegative embedding. With orthogonal and
nonnegative constraints, the reconstructed graph of ONMF
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naturally has clear structure about clusters. It can be seen
that ONMF can simplify the calculation by orthogonalizing
F while ensuring clustering accuracy.

3. Proposed Frameworks

In this paper, a robust graph factorization framework (RGF-
MEC) is proposed for multivariate electricity consumption
clustering, in which graph factorization and outlier dis-
covery are performed at the same time.

A multivariate electricity consumption series dataset
ME(i)􏽮 􏽯

N

i�1 is given, where ME(i) ∈ RM×D, M denotes the
number of sequences in ME(i), and D denotes the length of
each sequence in ME(i). RGF-MEC must first calculate the
similarity graph structure GME of ME(i)􏽮 􏽯

N

i�1. If ME(j) be-
longs to k-nearest neighbors of ME(i), an element GME

ij of
GME is equal to

G
ME
ij �

d ME(i)
,ME′(k+1)

􏼒 􏼓 − d ME(i)
,ME(j)

􏼐 􏼑

􏽐
k
j′�1 d ME(i)

,ME′(k+1)
􏼒 􏼓 − d ME(i)

,ME′(j′)􏼒 􏼓

,

(5)

where d(ME(i),ME(j)) � 􏽐
M
m�1 ‖ME(i)

m. − ME(j)
m. ‖

2
F and

ME′(k+1) is the k + 1th nearest neighbor of ME(i), otherwise
an element GME

ij is equal to zero. It is known that there are
many works that can reduce dimensionality of multivariate
time series, such as CPCA [20], VPCA [17], and deep en-
coder networks [21]. RGF-MEC can reduce dimensionality
of the data to obtain more effective features before calcu-
lating the graph structure. However, in order to verify ro-
bustness of the proposed model, this paper does not perform
dimensionality reduction operation.

RGF-MEC takes outliers into consideration while per-
forming matrix factorization on the similarity graph GME.
*e objective function of RGF-MEC can be defined as

min
HME≥0,FTF�I

􏽘

N

n�1
1RGn ≤ ε · GME

n. − HME
n. FT

����
����
2
F

+
λ
2

􏽘
i,j

HME
i. − HME

j.

�����

�����
2

F
Gij, (6)

where HME is the nonnegative class-related embedding, F is
the orthogonal spectral embedding, λ is a regularization
parameter, RGn � ‖GME

n. − HME
n. FT‖

2
F denotes the recon-

struction error of nth multivariate electricity consumption
series, and ε is a parameter to filter outliers (where ε is
determined according to the reconstruction error

‖GME
n. − HME

n. FT‖
2
F􏽮 􏽯

N

n�1 and a hypothetical ratio r of outliers,

and we need to sort ‖GME
n. − HME

n. FT‖
2
F􏽮 􏽯

N

n�1 from large to
small and assign reconstruction error ranked in r to the
parameter ε). If RGn ≤ ε , 1RGn ≤ ε � 1, otherwise 1RGn ≤ ε � 0. It
can be seen that the objective function of RGF-MEC consists

of two parts, the robust graph factorization term and the
graph regularization term. In other words,HME also satisfies
the graph constraint of ME(i)􏽮 􏽯

N

i�1.
In (6), RGF-MEC utilizes a squared F-norm to constrain

robust graph factorization term, named RGF-MEC with
squared F-norm (RGF-MECF2). At present, researchers have
proved that ℓ2,1-norm nonnegative matrix factorization is
effective and has a mathematical meaning [26–28]. *ere-
fore, we also present RGF-MEC with ℓ2,1-norm (RGF-
MECℓ2,1). *e objective function of RGF-MECℓ2,1 can be
defined as

min
HME≥0,FTF�I

􏽘

N

n�1
1RGn ≤ ε · GME

n. − HME
n. FT

����
����2,1 +

λ
2

􏽘
i,j

HME
i. − HME

j.

�����

�����
2

F
Gij. (7)

It can be seen that the main difference between RGF-
MECF2 and RGF-MECℓ2,1 is a norm of robust graph fac-
torization term. We provide the learning procedure in the
following two sections and then give a convergence analysis
of RGF-MEC.

3.1. Learning Procedure of RGF-MECF2. RGF-MECF2 can
make use of the coordinate descent method to solve
problem (6), where two embeddingsHME andF are updated
in turn. In addition, a detailed learning procedure of RGF-
MECF2 is provided in Algorithm 1.
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3.1.1. Fix F and Update HME. If F is fixed, problem (6) will
become

min
HME≥0

􏽘

N

n�1
1RGn≤ε · GME

n. − HME
n. FT

����
����
2
F

+
λ
2

􏽘
i,j

HME
i. − HME

j.

�����

�����
2

F
Gij.

(8)

Setting the derivative of problem (8) equal to zeros, we
have the following equation:

2 HME
− ΛεG

MEF􏼐 􏼑 + 4λLMEHME
� 0, (9)

where Λε is a diagonal matrix with nth diagonal element
1RGn ≤ ε and LME is the Laplacian matrix of GME. *erefore,
the solution of problem (8) is

HME
� max 0, Λε + 2λLME

􏼐 􏼑
− 1

ΛεG
MEF􏼐 􏼑􏼒 􏼓. (10)

3.1.2. Fix HME and Update F. If HME is fixed, problem (6)
will become

min
FTF�I

􏽘

N

n�1
1RGn ≤ ε · GME

n. − HME
n. FT

����
����
2
F

. (11)

Due to 1RGn ≤ ε ∈ 0, 1{ } and FTF � I, problem (11) can be
written as

(11)⇔ min
FTF�I

Λ1/2
ε GME

− HMEFT
􏼐 􏼑

�����

�����
2

F

⇔ min
FTF�I

Λε GME
− HMEFT

􏼐 􏼑
�����

�����
2

F

⇔ min
FTF�I

Tr GMETΛεH
MEFT

􏼐 􏼑,

(12)

which is the standard orthogonal procrustes problem. De-
fining the singular value decomposition of GMETΛεHME as
USVT, the solution of problem (11) is obtained:

F � UVT
. (13)

3.2. Learning Procedure of RGF-MECℓ2,1. Similar to RGF-
MECF2, RGF-MECℓ2,1 can make use of the coordinate de-
scent method to solve problem (7), too.

3.2.1. Fix F and Update HME. If F is fixed, problem (7) will
become

min
HME≥0

􏽘

N

n�1
1RGn≤ε · GME

n. − HME
n. FT

����
����2,1 +

λ
2

􏽘
i,j

HME
i. − HME

j.

�����

�����
2

F
Gij.

(14)

Setting the derivative of problem (14) equal to zeros, we
have the following equation:

􏽘

N

n�1
1RGn≤ε · an

z GME
n. − HME

n. FT
􏼐 􏼑
�����

�����
2

F

zHME
n.

+ 4λLMEHME
� 0,

(15)

where an � 1/2‖(GME
n. − HME

n. FT)‖F. If an is stationary,
problem (14) can be written as

min
HME ≥ 0

􏽘

N

n�1
an1RGn ≤ ε · GME

n. − HME
n. FT

����
����
2
F

+
λ
2

􏽘
i,j

HME
i. − HME

j.

�����

�����
2

F
Gij.

(16)

Setting derivatives of problem (16) equal to zeros, we
have the following equation:

2 HME
− ΛεaG

MEF􏼐 􏼑 + 4λLMEHME
� 0, (17)

where Λaε is a diagonal matrix with nth diagonal element
an1RGn ≤ ε.

*erefore, a solution to problem (14) is

HME
� max 0, Λaε + 2λLME

􏼐 􏼑
− 1

ΛaεG
MEF􏼐 􏼑􏼒 􏼓. (18)

3.2.2. Fix HME and Update F. If HME is fixed, problem (7)
will become

min
FTF�I

􏽘

N

n�1
1RGn ≤ ε · GME

n. − HME
n. FT

����
����2,1 . (19)

Similarly, problem (19) can be written as

Input: a set of a multivariate electricity consumption
series dataset ME(i)􏽮 􏽯

N

i�1, the parameters λ, r.
Output: the class-related embedding HME.
1: Calculate the similarity graph structure GME of ME(i)􏽮 􏽯

N

i�1 based on (5).
2: Initialize F, HME, and ε in turn.
3: while Not convergent do % HME is updated based on (18) in RGF-MECℓ2,1.
4: Fix F and calculate HME based on (10). % F is updated based on (21) in RGF-MECℓ2,1.
5: Fix HME and calculate F based on (13).
6: Calculate ε based on the parameter r and reconstruction errors ‖GME

n. − HME
n. FT‖

2
F􏽮 􏽯

N

n�1.
7: end while
8: return HME.

ALGORITHM 1: Learning procedure of RGF-MECF2
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(19)⇔􏽘
N

n�1
an1RGn ≤ ε · GME

n. − HME
n. FT

����
����
2
F

⇔ min
FTF�I

Λ1/2
aε GME

− HMEFT
􏼐 􏼑

�����

�����
2

F

⇔ min
FTF�I

Tr GMETΛaεH
MEFT

􏼐 􏼑,

(20)

which is the standard orthogonal procrustes problem. De-
fining the singular value decomposition of GMETΛaεHME as
U′S′V′T, a solution to problem (19) is obtained:

F � U′V′T. (21)

3.3. ConvergenceAnalysis. In RGF-MECF2, two embeddings
HME and F are updated in turn. When updating HME and F,
we know that (10) (i.e., the calculation of HME ) is the local
optimal solution of (8) and (13) (i.e., the calculation of F ) is
the local optimal solution of (11). *erefore, RGF-MECF2
converges to its local optimal solution.

In RGF-MECℓ2,1, two embeddings HME andF are
updated in turn, too. It can be seen that (18) (i.e., the cal-
culation ofHME ) is the local optimal solution of (16) instead
of (14).

Theorem 1. If (18) (i.e., the calculation ofHME ) is a solution
to (14), the objective value of (14) will not increase.

Proof. Suppose en � ‖(GME
n. − HME

n. FT)‖
2
F and an � 1/ ��

en

√ . In
RGF-MECℓ2,1, the minimizing problem of ��

en

√ in (14) is
transformed into the minimizing problem of anen in (16).
Suppose that an is stationary and g(H) � λ/2􏽐i,j

‖HME
i. − HME

j. ‖
2
F
Gij, (18) is a local optimal solution of (16).

*at is,

􏽘
n

a
t
ne

t+1
n 1RGn ≤ ε + g Ht+1

􏼐 􏼑≤ 􏽘
n

a
t
ne

t
n1RGn ≤ ε + g Ht

􏼐 􏼑,

⇔􏽘
n

e
t+1
n 1RGn ≤ ε + g Ht+1

􏼐 􏼑≤ 􏽘
n

e
t
n1RGn ≤ ε + g Ht

􏼐 􏼑

⇔􏽘
n

���

e
t+1
n

􏽱

1RGn ≤ ε + gHt+1
􏼐 􏼑≤ 􏽘

n

��

e
t
n

􏽱

1RGn ≤ ε + g Ht
􏼐 􏼑.

(22)

*erefore, the objective value of (14) will not increase
and *eorem 1 is proven.

It can be also seen that (21) (i.e., the calculation of F ) is a
local optimal solution of (19). In other words, RGF-MECℓ2,1
converges to its local optimal solution, too. □

4. Experiments

In this section, experimental results on multiple multivariate
time-series datasets and a multivariate electricity con-
sumption series dataset are used to validate the effectiveness
of the proposed RGF-MEC framework.

4.1. Experiments on Multiple Multivariate
Time-Series Datasets

4.1.1. Multivariate Time-Series Datasets. Multiple realistic
multivariate time-series datasets are used to evaluate the
proposed RGF-MEC framework, including Articular-
yWordRecognition [29], BasicMotions [30], Epilepsy [31],
ERing [32], Libras [33], NATOPS [34], StandWalkJump
[35], and UWaveGestureLibrary [36]. Among these multi-
variate time-series datasets, the maximum number of se-
quences is up to 24, the maximum length of these sequences
is up to 2500, the maximum size of instances is 575, and the
maximum number of classes is up to 25.

4.1.2. Contrast Algorithms. We compare RGF-MEC with
seven representative methods, including m-kShape,
m-kDBA, m-kAVG+ED, m-KSC, multiview clustering with
adaptive neighbors (MLAN) [37], and multiview spectral
clustering via integrating nonnegative embedding and
spectral embedding (NESE) [38]. m-kShape, m-kDBA,
m-kAVG+ED, and m-KSC are effective distance-based
multivariate time-series clustering algorithms [16], which
consider the relationship among multiple series and extend
traditional univariate time-series clustering methods (i.e.,
k-shape, KDBA, kAVG+ED, and KSC) for multivariate
time-series clustering. MLAN and NESE are multiview
clustering algorithms, where each series of a multivariate
time series can be seen as a view.

In RGF-MEC, λ is selected from
10− 5, 10− 4, 10− 3, 10− 2, 101, 100, 101, 102, 103􏼈 􏼉, and ε is de-
termined according to the reconstruction error and a pa-
rameter r that is a hypothetical ratio of outliers in the entire
data. r is selected from 0%, 1%, 2%, 3%, 5%, 10%, 15%, 20%{ }.
In addition, parameters of these contrast algorithms are
determined according to descriptions in their original pa-
pers. We utilize two widely used measurements (i.e., rand
index (RI) and normalized mutual information (NMI)) for
evaluation. For RI and NMI, a larger value indicates a better
result.

4.1.3. Performance Comparison. We first compare the
performance of RGF-MEC and other contrast algorithms on
real-world multivariate time-series datasets. Performance
comparisons between RGF-MEC and other contrast algo-
rithms are reported in Tables 1 and 2, where best results are
highlighted in bold. It can be seen that RGF-MEC out-
performs other contrast algorithms on most real-world
multivariate time-series datasets, where RGF-MEC achieves
five best performances on eight real-world datasets in terms
of RI or NMI. We can also make the following conclusions
from Tables 1 and 2. (1) RGF-MEC is clearly better than
other contrast algorithms in terms of “Mean ± Std,” which
demonstrates that RGF-MEC is an effective multivariate
time-series clustering method. (2)*e performance of NESE
is best on the epilepsy dataset, which indicates that each
series contains complementary information to each other. If
each series is sufficient to represent the similarity between
multivariate time series, then the multiview model can make
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full use of information of each series and achieve good
performance.

We then compare the performance of RGF-MECF2 and
RGF-MECℓ2,1 on real-world multivariate time-series datasets.
Table 3 gives performance comparisons between RGF-MECF2
and RGF-MECℓ2,1. It can be seen that RGF-MECℓ2,1 is clearly
better than RGF-MECF2 in terms of “Mean ± Std.” In other
words, RGF-MECℓ2,1 achieves mean improvements of 0.74%
RI and 2.31% NMI compared to RGF-MECF2. Compared
with RGF-MECF2, RGF-MECℓ2,1 needs to compute weights
an � 1/2‖(GME

n. − HME
n. FT)‖F􏼈 􏼉

N

n�1 when updating the non-
negative class-related embeddingHME, where weights an􏼈 􏼉

N
n�1

can be considered as parameters that penalize larger recon-
struction errors. *is may make RGF-MECℓ2,1 more robust
on most multivariate time-series datasets.

We also perform ablation studies on RGF-MEC. *e
objective function of RGF-MEC consists of two parts, the
robust graph factorization term and the graph regularization
term. Table 4 gives the performance comparisons between
the ablation model and RGF-MEC, where AblationF2 de-
notes RGF-MECF2 without the graph regularization term
and Ablationℓ2,1 denotes RGF-MECℓ2,1 without the graph
regularization term. It can be seen that RGF-MECℓ2,1 (resp.
RGF-MECF2) outperforms Ablationℓ2,1 (resp. AblationF2)
on most multivariate time-series datasets, which prove that
the graph regularization term enforces the nonnegative
embedding HME to satisfy the graph constraint and retain
more class-related information.

Finally, we analyze the impact of parameters r and λ on
the algorithm performance. Figure 1 shows the performance
(i.e., NMI) change process of RGF-MECℓ2,1 on four

multivariate time-series datasets as r increases. It can be seen
that RGF-MECℓ2,1 takes outliers into consideration and
achieves better clustering results on four multivariate time-
series datasets. Figure 2 shows the performance (i.e., NMI)
change process of RGF-MECℓ2,1 on four multivariate time-
series datasets as λ increases. It can be seen that RGF-
MECℓ2,1 takes the graph constraint of the nonnegative
embedding (i.e., λ/2􏽐i,j‖HME

i. − HME
j. ‖

2
F
Gij) into consider-

ation and achieves better clustering results on most multi-
variate time-series datasets, which is consistent with the
results of the ablation study. Next, as shown in Figure 3, we
use t-SNE [39] to visualize the class-related embeddingHME

of RGF-MECℓ2,1 on UWaveGestureLibrary. It can be seen
that some classes have obvious outliers, such as class-4, class-
6, and class-8. RGF-MECℓ2,1 takes outliers into consider-
ation and performs better than other contrast algorithms.

4.2. Experiments on Multivariate Electricity Consumption
Series Dataset

4.2.1. Multivariate Electricity Consumption Series Dataset.
A multivariate electricity consumption series dataset of a
region in China Southern Power Grid [5], denoted as the
CSPG dataset, is used to evaluate the proposed RGF-MEC
framework. CSPG contains four series, global-active power
(household global minute-averaged active power), global-
reactive power (household global minute-averaged reactive
power), voltage (minute-averaged voltage), and global in-
tensity (household global minute-averaged current inten-
sity). In addition, it contains multivariate series for two

Table 3: Performance comparisons between RGF-MECF2 and RGF-MECℓ2,1 on real-world multivariate time-series datasets.

Datasets
RI NMI

RGF-MECF2 RGF-MECℓ2,1 RGF-MECF2 RGF-MECℓ2,1

ArticularyWordRecognition 0.9960 0.9960 0.9762 0.9762
BasicMotions 0.7910 0.8090 0.6592 0.6112
Epilepsy 0.7269 0.7252 0.3856 0.3961
ERing 0.7747 0.7747 0.4040 0.4040
Libras 0.9255 0.9241 0.6724 0.6651
NATOPS 0.8631 0.8616 0.7155 0.7755
StandWalkJump 0.7048 0.7429 0.4489 0.5555
UWaveGestureLibrary 0.9524 0.9507 0.8395 0.8359
Mean ± Std 0.8418 ± 0.1016 0.8480 ± 0.0945 0.6377 ± 0.1990 0.6524 ± 0.1912

Table 4: Performance comparisons between ablation models and RGF-MEC on real-world multivariate time-series datasets.

Datasets
RI NMI

AblationF2
RGF-
MECF2

Ablationℓ2,1
RGF-

MECℓ2,1
AblationF2

RGF-
MECF2

Ablationℓ2,1
RGF-

MECℓ2,1

ArticularyWordRecognition 0.9960 0.9960 0.9960 0.9960 0.9762 0.9762 0.9762 0.9762
BasicMotions 0.7782 0.7910 0.7885 0.8090 0.5832 0.6592 0.5961 0.6112
Epilepsy 0.7269 0.7269 0.7074 0.7252 0.3856 0.3856 0.3248 0.3961
ERing 0.7747 0.7747 0.7724 0.7747 0.4040 0.4040 0.3802 0.4040
Libras 0.9240 0.9255 0.9222 0.9241 0.6724 0.6724 0.6575 0.6651
NATOPS 0.8624 0.8631 0.8567 0.8616 0.7147 0.7155 0.7055 0.7755
StandWalkJump 0.7048 0.7048 0.7429 0.7429 0.4489 0.4489 0.5555 0.5555
UWaveGestureLibrary 0.9524 0.9524 0.9404 0.9507 0.8368 0.8395 0.8031 0.8359
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different time periods, where the length of each series is 180
and the number of instances is 2780.

4.2.2. Performance Comparison. Since the effectiveness of
RGF-MEC has been verified in Section 4-4.1, we first give
results obtained by RGF-MEC in different series combi-
nations on CSPG. Table 5 shows performance compari-
sons between the combination containing four series and
combinations containing arbitrary two series. Compared
with the combinations containing arbitrary two series,
RGF-MEC achieves best results on the combination

containing four series. Next, we analyze the impact of
parameters r, λ on CSPG. Figure 4 shows the performance
(i.e., RI and NMI) change process of RGF-MEC on CSPG
as r increases. It can be seen that RGF-MEC takes outliers
into consideration and achieves better clustering results
on CSPG. Figure 5 shows the performance (i.e., RI and
NMI) change process of RGF-MEC on CSPG as λ in-
creases. It can be seen that RGF-MEC takes the graph
constraint of the nonnegative embedding (i.e.,
λ/2􏽐i,j‖HME

i. − HME
j. ‖

2
F
Gij) into consideration and achieves

better clustering results on CSPG.
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Figure 1: Performance (i.e., NMI) change process of RGF-MECℓ2,1 on four multivariate time-series datasets as r increases.
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Figure 2: Performance (i.e., NMI) change process of RGF-MECℓ2,1 on four multivariate time-series datasets as λ increases, where algorithms
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Figure 3: Visualization of the class-related embedding HME of RGF-MECℓ2,1 on UWaveGestureLibrary.

Table 5: Performance comparisons among different series combinations on the CSPG dataset.

Different series combinations RI NMI
Global-active power Global-reactive power Voltage Global intensity RGF-MECF2 RGF-MECℓ2,1 RGF-MECF2 RGF-MECℓ2,1

✓ ✓ 7 7 0.7394 0.7394 0.4220 0.4158
✓ 7 ✓ 7 0.7394 0.7485 0.3974 0.4218
✓ 7 7 ✓ 0.6554 0.6508 0.3452 0.3290
7 ✓ ✓ 7 0.6490 0.6351 0.2477 0.2400
✓ ✓ 7 ✓ 0.7349 0.7394 0.4125 0.4138
7 7 ✓ ✓ 0.7416 0.7349 0.4043 0.4153
✓ ✓ ✓ ✓ 0.7624 0.7600 0.4462 0.4585
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Figure 4: Performance (i.e., RI and NMI) change process of RGF-MEC on the CSPG dataset as r increases.
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5. Conclusion

*is paper builts an effective robust graph factorization
framework for multivariate electricity consumption
clustering, which performs robust matrix factorization on
the similarity of multivariate electricity consumption
series and obtains nonnegative class-related representa-
tions. *e proposed RGF-MEC framework also enforces
the nonnegative embedding to satisfy a graph constraint
and retain more class-related information. In addition,
RGF-MEC utilizes the squared F-norm and the ℓ2,1-norm
to constrain the robust graph factorization term, named
RGF-MECF2 and RGF-MECℓ2,1. Experimental results
demonstrate that RGF-MECF2 and RGF-MECℓ2,1 achieve
competitive results on multiple multivariate time series
datasets and a multivariate electricity consumption series
dataset.
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Eight realistic multivariate time-series datasets are deposited
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com/dataset.php). *e multivariate electricity consumption
series dataset used to support the findings of this study are
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