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Aiming at solving the control problem of a constrained and perturbed underwater robot, a control method was proposed by
combining the self-triggered mechanism and the nonlinear model predictive control (NMPC). +e theoretical properties of the
kinematic model of the underwater robot, as well as the corresponding MPC controller, are first studied. +en, a novel technique
for determining the next update moment of both the optimal control problem and the system state is developed. It is further
rigorously proved that the proposed algorithm can (1) stabilize the closed-loop underwater robot system, (2) reduce the time of
solving the optimal control problem and (3) save the information transfer resources. Finally, a case study is provided to show the
effectiveness of the developed researched scheme.

1. Introduction

Model predictive control (MPC) has got increasing at-
tention in the past few decades, because of its advantages in
dealing with practical control problems [1–4]. One of the
main barriers that stops MPC from being applied to more
industrial applications is its computational complexity as
an optimization problem should be solved at a fixed
sampling time repeatedly. +e event-based control method
can sample according to the relationship between actual
state and predicted state to determine the update of the
control signal, which is different from its time-driven
counterpart, in which the signals are sampled at fixed time
intervals, resulting in potential redundant control opera-
tions and wasted computation and communication re-
sources. Compared with the traditional sampling
mechanism, the event-based sampling scheme is more
suitable for MPC as the reduction of sampling instants can
significantly save its computation time. In recent years,
event-based control mechanism is an important discovery
because of its aforementioned advantages; meanwhile, it
also presents some design challenges, and one of the most
important issues is how to design a triggering condition to
achieve a reliable performance [5, 6].

Event-based control strategies for a variety of systems have
been widely studied. In general, the method mainly includes
the event-triggered and self-triggered controls, which are
separated by the different triggering mechanism.+e former is
performed by constantly monitoring the state of the system to
determine when control actions must be triggered, while the
latter is performed by determining the triggering interval and
the next trigger time based on the predicted system states. At
present, event-triggered model predictive control strategies are
mainly studied for two types of systems: unperturbed systems
[7–9] and perturbed systems [10–15]. Similarly, the self-trig-
gered MPC strategies have been investigated in [16–18] and so
on. More specifically, in [19], event-triggered and self-triggered
controls were introduced in general. +e authors mainly
highlighted the development history of event-based control
and the implementation problems in actual working condi-
tions. For discrete-time linear systems, a robust self-triggered
MPC was proposed in [20]. It was emphasized that the role of
this MPC scheme is to send the obtained triggering interval to
the system at the current triggering moment, before which the
system operates in an open-loop mode. In [21], a networked
self-triggered MPC scheme was proposed for multi-agent
systems which were commonly used in industrial systems, and
the problems encountered in the implementation process were
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classified and analyzed. For nonlinear continuous time system
with perturbation problem, the event-triggered MPC scheme
was studied in [11]. In this scheme, the triggering level was
designed to ensure that it will be triggered only under limited
conditions. A self-triggered MPC was constructed in [22], in
which the next triggering moment was determined by the
performance of the pre-designed triggering intervals. In [23],
the author proposed a self-triggered strategy in which the
design of triggering conditions involves a contraction set which
the final state will be finally brought into. In [24], a class of
perturbed discrete-time systems was studied. +e tube-based
random MPC method which required less information from
the controlled system was used to deal with the existing
constraints to ensure the robust performance of the system
under disturbance conditions. In [25], a robust self-triggered
MPC algorithm based on the min-max optimization was
proposed for discrete-time nonlinear constrained systems with
perturbations and model uncertainties. In [26], a self-triggered
fuzzy MPC method was proposed for nonlinear robot system
with additional constraints to ensure its stable operation. +e
authors of [27] proposed a robust self-triggered MPC algo-
rithm based on the adaptive control theory for constrained
nonlinear discrete-time systems with additive disturbances and
achieved feasibility of the optimal control problem and the
stability of the closed-loop system. In [28], a new distributed
control method based on acceleration gradient method and
decoupling strategy was proposed to solve constrained MPC
problems for systems composed of nonlinear subsystems. In
[15], for nonlinear systems with additional perturbations, an
integral-based event-triggered MPC framework was provided
to determine the selection of triggering conditions. In [29], the
authors proposed an event-based control strategy for the
nonlinear distributed systems, which can release the burden of
the network communication while achieving the desired global
performance. It is worthwhilementioning that although a lot of
interesting approaches as mentioned above have been devel-
oped, with the authors’ limited knowledge, results on self-
triggered MPC of underwater robot systems with bounded
disturbances are nearly missing in the literature.

In this paper, a new self-triggered MPC scheme is
studied for underwater robot that can be modeled in two
reference frame coordinates, the sensors and actuators of
which communicate wirelessly with the controller. +ere are
three main novelties and contributions in this paper sum-
marised as follows:

(i) +e structural characteristics and mathematical
properties of the holonomic kinematic model of the
underwater robot are explicitly analyzed, such that
the corresponding MPC controller design can be
realized in a simple structure to ease its
implementation

(ii) A novel self-triggered MPC scheme for the con-
sidered underwater robot system with bounded
interferences and input constraints is proposed to
decrease the computation and communication
loads of the robot system

(iii) +e conditions to guarantee the feasibility of the
proposed MPC and the stability of the closed-loop
underwater robot system are provided and the re-
sultant theoretical properties are proved

Note that the aforementioned new results (e.g., [25, 27])
are focusing on combining the min-max optimization or the
adaptive control theory with self-triggered MPC to achieve a
better theoretical analysis, which, however, will be associated
with a relatively larger calculation burden, and may be
difficult to be applied in a practical underwater robot due to
its short sampling period and limited computing power. In
this work, we first analyzed the theoretical properties of the
dynamic model of the considered underwater robot system
and designed a self-triggered MPC algorithm with a rela-
tively simple structure to facilitate the implementation.

+e main motivation of the paper is that the recent
researches of self-triggered MPC for underwater robot
systems are based on the nonholonomic system model and
few results are proposed for the robot characterized by the
holonomic system model, which could reflect the dynamic
behavior of the robot in a more accurate way. +e main
difficulty to develop such a control technique is that, given
the limited ability of the computation unit of the nowadays
underwater robots, the corresponding self-triggered MPC
should be associated with a relatively simple structure such
that control signal can be efficiently obtained. However, such
a simple structure would complicate the design of the
conditions to guarantee the feasibility and stability prop-
erties from a theoretical point of view. To achieve such an
objective, we have first studied the structural characteristics
and mathematical properties of the considered holonomic
model of the underwater robot systems and obtained a
number of useful theoretical results. Based on those results,
we have succeeded in designing the self-triggered MPC
algorithm in a more standard and simple way and deriving
the conditions to ensure the feasibility and stability of the
system.

+e rest of this work is scheduled as follows. Section 2
models and analyzes the robot system and describes the
control problem. +e theoretical analysis (feasibility and
convergence characteristics of the robot systems) of the
NMPC scheme for the considered system is presented in
Section 3. Section 4 shows a simulation example to verify the
validity of the MPC scheme. Finally, Section 5 gives the
conclusions.

2. Problem Formulation

2.1.Modeling. +e kinematic model of the underwater robot
is given as

_x � f(x, u)⇒

_χ

_y

_c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

cos ε −sin ε 0

sin ε cos ε 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μ

]

ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

and according to matrix multiplication, we further have
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_χ � μ cos ε − ] sin ε,

_y � μ sin ε + ] cos ε,

_c � ω,

(2)

with x � [χ, y, c]
T denoting the state variable made up of

the location (χ, y) and heading c of the robot under the
inertial reference frame. u � [μ, ],ω]

T represents the con-
trol inputs vector; meanwhile, (μ, ]) is the linear velocity
where ω is angular velocity, shown in the robot reference
frame. R(ε) is the rotation matrix, and it is denoted as

R(ε) �

cos ε −sin ε 0

sin ε cos ε 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

Considering the actual situation of robot movement,
there are the following constraints:

x(t) ∈ X ⊂ R3
. (4)

Assuming that the robot’s control inputs set is compact,
it follows that

u(t)≜ [μ(t), ](t),ω(t)]
T ∈ U ⊂ R3

. (5)

+e limitations of the control input components are
shown as |μ|≤ μ, |]|≤ ], and |ω|≤ω, with u, μ, ],ω ∈ R≥0.
+erefore, we deduce ‖u‖≤ u, with u �

����������

μ2 + ]2 + ω2


.
Given the model in (1), a perturbed model is shown as

follows:

_x � f(x, u) + α, (6)

with α(t) ∈ A ⊂ R3 representing the disturbance. Suppose
the random disturbance is bounded, and we set ‖α(t)‖≤ α.

2.2. NMPC Formulation and Control Design. +e desired
state can be described as the state vector
xd ≜ [χd, yd, cd]T ∈ X, which can be shown as follows:

_χd � μd cos εd − ]d sin εd,

_yd � μd sin εd + ]d cos εd,

_cd � ωd.

(7)

We assume the sequence tn  is the triggering time, and
u(s; tn), for s ∈ [tn, tn + T], as the control trajectory, where T

represents the prediction horizon.
+e cost function is formulated as

J x s; tn( , u s; tn( (  � 
tn+T

tn

F x s; tn( , u s, tn( ( ds

+ E x tn + T( ( ,

(8)

subject to

x
.

� f x s; tn( , u s; tn( ( , s ∈ tn, tn + T ,

u s; tn(  ∈ U, s ∈ tn, tn + T ,

x s; tn(  ∈ Xt−tn
, s ∈ tn, tn + T ,

x tn + T(  ∈ ξf,

(9)

where u(t) is the predicted control sequence and x(t) is the
predicted state sequence of the robot system, which satisfies
nominal system (1). F is the running cost function while E is
terminal cost function, and they can be represented by
F(x, u) � xTQx + uTRu and E(x, u) � xTPx, respectively.
We set the weighting matrices as Q � diag q1, q2, q3 ,
R � diag r1, r2 , and P � diag p1, p2, p3 , where Q, R, and P

are diagonal matrices. For further analysis, we define that
x(s; tn) means the predicted state at time s with s ∈ [tn, tn +

T] of the nominal system.

2.3. Problem Statement. In order to prove that the NMPC
scheme can generate controllers guaranteeing the robust
stability, the following stability assumptions are proposed.

Assumption 1. Assume that ξ ⊂ X is a minimum robust
positive invariant set of nominal system (1), and
ξ ≜ x ∈ X: ‖x‖≤ δ0 , with δ0 > 0.

Assumption 2. Assume that there exists a local stabilizing
controller, satisfying (zE/zx)f(x(s), uT(x(s)))≤ − F(x(s),

uT(x(s))), ∀x ∈ ξ.

Assumption 3. E(x) � xTPx≤ ρξ , for the set ξ, where
ρξ � max p1, p2, p3 δ20 > 0. We further suppose that
ξ � x ∈ X: uT(x) ∈ U . Take ρξf

∈ (0, ρξ) and assume that

ξf � x ∈ R3: E(x)≤ ρξf
 , ∀x ∈ ξ, f(x, uT) ∈ ξf.

At time tn, the optimal control trajectory u∗(s; tn) is
obtained by the solution of (9), for s ∈ [tn, tn + T]. We get

u( s ) � u
∗
( s; tn ), s ∈ [ tn, tn+1 ). (10)

+e control law should be used to the plant in the form of
an open-loopmanner within the time intervals [tn, tn+1).+e
meaningful thing is how long this time interval is. Later in
this article, a new self-triggered MPC scheme will be studied
to save the time to solve the problem. More importantly, the
framework proposed later can be used to calculate not only
the control law, but also the time of the next triggering
moment tn+1.

Considering that system (6) is affected by constraints (4)
and (5), our goal is to (i) design a self-triggered state
feedback robust control approach through (9), so that the
state of system (6) converges to an invariant set, and (ii)
design a triggering strategy to determine the triggering
interval and the next control update time.

First, some important performances of the nominal
system (1) are proved in the following lemmas.
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Lemma 1. 3e nominal underwater robot system (1) is
Lipschitz continuous, with Lipschitz constant
Lf ≜

���������
2(μ2 + ]2)


, in the state x.

Proof. Considering the Euclidean norm, we get

f x1, u(  − f x2, u( 
����

����
2

�

μcosϵ1 − ]sinϵ1 − μcosϵ2 + ]sinϵ2
μsinϵ1 + ]cosϵ1 − μsinϵ2 − ]cosϵ2

ω1 − ω2

�������������

�������������

2

� |μ|
2

+|]|
2

  sinϵ1 − sinϵ2



2

+ cosϵ1 − cosϵ2



2

 ≤ 2 μ2 + ]2  cosϵ1 − cosϵ2



2
.

(11)

It means that ‖f(x1, u) − f(x2, u)‖≤
���������
2(μ2 + ]2)


‖x1 −

x2‖ for all x1, x2 ∈ X. □

Lemma 2. For the disturbed underwater robot system, the
actual state x(s; tn) and the predicted state x(s; tn) are in-
consistent, with the deviation being

x s; tn(  − x s; tn( 
����

����≤ β(s), (12)

with β(s)≜ (2
���������

2(μ2 + ])2


+ ω)s, ∀ s ∈ [tn, tn + T].

Proof. For s ∈ [tn, tn+1], we get

x s; tn(  − x s; tn( 
����

����

� x tn(  + 
tn+t

tn

f(x(s), u(s))ds + 
tn+t

tn

ω(s)ds − x tn(  − 
tn+t

tn

f(x(s), u(s))ds

��������

��������

≤ 
tn+t

tn

[f(x(s), u(s)) − f(x(s), u(s))]ds

��������

��������
+ 

tn+t

tn

ω(s)ds≤ 2
���������

2 μ2 + ] 
2



+ ω t.

(13)

□

Because of the disturbance, the constraint set of the
system state needs to be modified to ensure the robustness of
the system. +erefore, we consider a restricted constraint set
Xt−tn

, with Xt−tn
⊂ X. Based on the constraint tightening

technique, when the control trajectory of (9) is applied to
system (6), the resulting states conform to the state con-
straint set X. To sum up, the restricted constraint set is
tightened to Xt−tn

� X ∼ St−tn
, where St−tn

� x ∈ R3: ‖x‖≤ β

(t − tn)}, with t ∈ [tn, tn + T], and the notation “ ∼ ” means
the Pontryagin difference. In the following, we further show
that the running cost of the MPC is also Lipschitz.

Lemma 3. 3e running cost F(x, u) is Lipschitz with the
Lipschitz constant LF ≜ 2(L2

max + (π/2)2)1/2λmax(Q) in the
state x, where λmax(Q) is the maximum eigenvalue of the
matrix Q, and Lmax is the maximum distance between the
robot’s current position and the target.

Proof. Given the definition of the MPC cost function, we
have ‖F(x1, u) − F(x2, u)‖ � ‖xT

1 Qx1 − xT
2 Qx2‖≤ (‖x1‖−

‖x2‖)λmax(Q)‖x1 − x2‖.

Notice that since ∀x ∈ X, and we know
‖x‖2 ≤ ‖χ‖2 + ‖y‖2 + ‖ϵ‖2 ≤L2

max + (π/2)2, we can derive that
LF ≜ 2(L2

max + (π/2)2)1/2λmax(Q). □

3. Theoretical Properties Analysis

+e stability analysis of the system will be carried out in this
section. Since the system is perturbed by disturbances, we
can only ensure the result of its ultimate boundedness. +e
theoretical analysis of the considered system under the
proposed predictive controller regarding the feasibility and
the convergence of the closed-loop system are proposed in
the following.

+e dual-mode control scheme is adopted in this work.
In other words, once the state belongs to the terminal set, we
will apply the state local control law u(t) � Kx(t), instead of
solving the optimal control problem, thus saving compu-
tation and communication resources. +e self-triggered
MPC algorithm we proposed is shown in Algorithm 1 as
follows.

3.1. Feasibility Property Analysis. +e feasibility property of
the considered system is shown in the following.

Theorem 1. Suppose that Assumptions 1–3 hold. If T meets

the condition T≤ (ρξ − ρξf
/LE(2

���������

2(μ2 + ])2


+ ω)), then the
proposed MPC scheme is feasible.
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Proof. We construct u(s; tn+1) as a common feasible control
input, at tn+1, as follows:

u( s; tn+1 ) �
u
∗
( s; tn ), s ∈ [ tn+1, tn + T ],

Kx
∗
( s; tn ), s ∈ [ tn + T, tn+1 + T ],

 (14)

where Kx∗(s; tn) is the local feedback control law. Given the
considered control signal, we have E( x( tn + T; tn+1 )

≤E( x( tn + T; tn ) ) + LEβ( T )≤ ρξf
+ LE

( 2
���������

2(μ2 + ])2


+ ω )T≤ ρξ . Note that the inequality

2
���������

2(μ2 + ])2


+ ω≤ (ρξ − ρξf
/LET) can guarantee that the

uncertainty is limited. Considering that
‖x(s; tn) − x(s; tn)‖≤ β(t), for all s ∈ [tn, tn + T], we have
x(s; tn) ∈ Xt−tn

, and then x(s; tn+1) ∈ Xt−tn
can be verified.

Furthermore, it can be shown that u(s; tn+1) ∈ U for all
s ∈ [tn+1, tn+1 + T]. +en, the proof is completed. □

3.2. Convergence Property Analysis. +e convergence
property analysis of the considered system is shown in the
following.

Theorem 2. Consider system (6) with constraints (4) and (5)
and suppose Assumptions 1–3 are valid. 3e control process is
shown as Algorithm 1.3e state will shrink to a compact set ξf

in limited time. Finally, the closed-loop system remains stable.

Proof. We choose the optimal cost J∗(u∗(s; tn),

x(tn))≜ J∗(tn) as the Lyapunov function. +en, the cost of
the feasible trajectory is denoted as
J
∗
(u(s; tn+1)t, nxq(tn+1))≜ J(tn+1), and tn, tn+1 are consec-

utive triggering moments. Considering the predicted state
x(s; tn+1), with s≥ tn+1, according to the actual state at time
tn+1, u(s; x(n + 1)) indicates the feasible control trajectory
from (14).

Set x1(s) � x(s; tn+1), u1(s) � u(s; tn+1), x2(s) � x(s; tn)

and u2(s) � u∗(s; tn).
According to the above definition, the difference be-

tween the feasible and optimal costs is

J tn+1(  − J
∗

tn(  � 
tn+T

tn+1

F x1(s), u1(s)( ds + E x1 tn+1 + T( ( 

+ 
tn+1+T

tn+T
F x1(s), u1(s)( ds − 

tn+1

tn

F x2(s), u2(s)( ds

− 
tn+T

tn+1

F x2(s), u2(s)( ds − E x2 tn + T( ( .

(15)

From (14), we know that u1(t) ≡ u2(t) ≡ u(t) for
t ∈ [tn+1, tn + T]. Applying this to system (1), we can get

x tn+1(  − x tn+1; tn( 
����

����≤ β tn+1 − tn( . (16)

With the help of (16), the difference between the running
costs becomes


tn+1+T

tn+1

F x1(s), u1(s)( ds − 
tn+1+T

tn+1

F x2(s), u2(s)( ds

≤ LF 
tn+1+T

tn+1

x1(s) − x2(s)
����

����ds � LF 2
���������

2 μ2 + ] 
2



+ ω  tn+1 − tn(  tn + T − tn+1( ≥ 0.

(17)

(1)while x(s; tn) ∉ ξf do
(2) Solve optimization problem;
(3)while tn+1 is not triggered do
(4) Apply the input u∗(s; tn);
(5) end while
(6) Compute the next triggering time tn+1;
(7) n � n + 1;
(8) end while
(9) Apply the state feedback control law.

ALGORITHM 1: Self-triggered MPC.
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Considering the property from Assumption 2 for
s ∈ [tn + T, tn+1 + T], we arrive at the following relationship:

E x1 tn+1 + T( (  + 
tn+1+T

tn+T
F x1(s), u1(s)( ds − E x2 tn + T( (  − E x1 tn + T( (  + E x1 tn + T( ( 

≤LE 2
���������

2 μ2 + ] 
2



+ ω  tn+1 − tn( ≥ 0.

(18)

As the function is positive definite, we can draw the
conclusion that


tn+1

tn

F x2(s), u2(s)( ds≥ LQ tn+1( ≥ 0, (19)

with LQ(t)≜ min q1, q2, q3, r1, r2  · 
t

tn
‖x(s; tn)‖2ds for

t> tn. So, if we substitute (17), (18), and (19) into (15), we get

J tn+1(  − J
∗

tn(  � LF 2
���������

2 μ2 + ] 
2



+ ω  tn+1 − tn(  tn + T − tn+1(  + LE 2
���������

2 μ2 + ] 
2



+ ω  tn+1 − tn(  − LQ tn+1( .

(20)

+en, we have

J
∗

tn+1(  − J
∗

tn( ≤ J tn+1(  − J
∗

tn( . (21)

Now, the Lyapunov function J∗(·) has been certified to
be decreasing, and it has turned out that the closed-loop
system state ends up in a compact set ξf. +e proof is
completed. □

3.3. Discussion on the Self-Triggered System. Denote tn as a
triggering instant, and tn, tn+1 as two consecutive triggering
moments; the next control update instant tn+1 can then be
found. More specifically, if we have time t satisfying
t ∈ [tn, tn+1], considering (20) and (21), we get

J
∗
(t) − J

∗
tn( ≤ LF 2

���������

2 μ2 + ] 
2



+ ω  t − tn(  tn + T − t( 

+ LE 2
���������

2 μ2 + ] 
2



+ ω  t − tn(  − LQ(t).

(22)

Further, we can get

LF 2
���������

2 μ2 + ] 
2



+ ω  t − tn(  tn + T − t( 

+ LE 2
���������

2 μ2 + ] 
2



+ ω  t − tn( ≤ΨLQ(t),

(23)

with 0<Ψ< 1. Together with (22), we have

J
∗
(t) − J

∗
tn( ≤ (Ψ − 1)LQ(t). (24)

+is means that convergence property is still guaranteed
if we can prove Ψ< 1. +erefore, when time t does not meet
(24), the system should be triggered again.

At time tn, the control signal is updated, and meanwhile,
future output signals for [tn, tn + T] are provided.We can get

( 2
���������

2 μ2 + ] 
2



+ ω )[ LF( tn + T − t ) + LE ]( t − tn )

� ΨLQ( t ).

(25)

Solve equation (23) and we can get the next update time
tn+1, and u(s) � u∗(s; tn) is used to the system in the form of
an open-loop manner within s ∈ [ tn, tn+1 ). In the next step,
the state calculated at the time of update is taken at time tn+1.
+e MPC controller cycles through the process from the
beginning until the closed-loop system state ends up in a
compact set ξf.

4. Simulation Results

Simulation and comparison results of the proposed self-
triggered MPC strategy are provided for the considered
underwater robot system. Consider system (6) with con-
straints (4) and (5) and suppose Assumptions 1–3 hold, the
disturbance is bounded by ‖α‖≤ 0.5, and the input constraint
is set as ‖u(t)‖≤ 2. When the simulation starts, the state of
the robot is x0 � [−45, 15, −π/6]T, and the desired position is
xd � [0, 0, 0]T. +e goal is to decrease the frequency of
control signal updates and the time of solving the optimal
control problem without significantly affecting control
performance.

+e simulation is carried out according to the self-
triggered MPC scheme in Algorithm 1. Figure 1 shows the
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state trajectories χ obtained by the self-triggeredMPC and its
time-triggered counterpart, which are represented by a green
line and a red line, respectively. It can be seen from the figure
that the state trajectories under the two control methods are
almost completely identical, and there is only a small dif-
ference between the states while they are approaching the
stable value. Figure 2 shows the difference between the state
trajectories y, and similar conclusions can be drawn as
above. In order to show the comparison more clearly, the
robot motion trajectories obtained by different methods in a
two-dimensional plane (including the coordinates and
orientation of the robot) are shown in Figure 3. Finally,

Figure 4 shows the triggering moments of the self-triggered
MPC scheme designed in this work. If the vertical axis is 1,
the MPC was triggered. If it is 0, the MPC was not triggered.
+e time-triggered framework is not shown in the figure
because it is periodically triggered at each sampling instant.
It is noted that the self-triggered MPC is only triggered 11
times out of 45 times over the whole simulation time, which
means that computational load of the system is reduced by
76% without significantly reducing the control performance.

5. Conclusions

In this study, a self-triggered model predictive control
scheme has been designed for the underwater robot systems
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Figure 1: Comparison of the trajectories of χ obtained via the self-
and time-triggered methods.
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Figure 2: Comparison of the trajectories of y obtained via the self-
and time-triggered methods.
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Figure 3: Comparison of state trajectories of the underwater robot
controlled via the self- and time-triggered model predictive control
methods.
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Figure 4: +e triggering time instants of the proposed method.

Mathematical Problems in Engineering 7



with constraints and perturbations. +is scheme is used to
determine the moment when the next trigger will occur, and
its purpose is to maximize the sampling interval. By taking
the cost function as the Lyapunov function, the triggering
condition is obtained through the stability calculation. +e
dual-mode control scheme is applied to further decrease the
triggering frequency and to save signal transmission re-
sources. To guarantee the feasibility of the strategy and the
stability of the system, the strict theoretical analyses and
proofs are given in detail. +e validity of the theoretical
results is also verified by a simulation example.
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