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,e inverse Gaussian (Wald) distribution belongs to the two-parameter family of continuous distributions having a range from 0
to∞ and is considered as a potential candidate to model diffusion processes and lifetime datasets. Bayesian analysis is a modern
inferential technique in which we estimate the parameters of the posterior distribution obtained by formally combining a prior
distribution with an observed data distribution. In this article, we have attempted to perform the Bayesian and classical analyses of
the Wald distribution and compare the results. Jeffreys’ and uniform priors are used as noninformative priors, while the ex-
ponential distribution is used as an informative prior. ,e analysis comprises finding joint posterior distributions, the posterior
means, predictive distributions, and credible intervals. To illustrate the entire estimation procedure, we have used real and
simulated datasets, and the results thus obtained are discussed and compared. We have used the Bayesian specialized Open BUGS
software to perform Markov Chain Monte Carlo (MCMC) simulations using a real dataset.

1. Introduction

In probability theory, the inverse Gaussian distribution
(IGD), also known as the Wald distribution, belongs to
the two-parameter family of continuous distributions
with support 0 to∞ [1]. ,e concept of Brownian motion
is applicable in describing the inherent process of many
phenomena, particularly in the natural and physical
sciences. ,e time in which a Brownian motion with a
positive drift reaches a fixed value is distributed as an
IGD.

,e probability density function, or density for short, of
the IGD is given by

f(x; μ, λ) �
λ

2πx3􏼠 􏼡

1/2

exp −
λ(x − μ)

2

2μ2x
􏼨 􏼩,

x> 0, μ> 0, λ> 0.

(1)

Here, μ is the location and λ is the shape
parameter. ,e IGD approaches the normal distribution
as λ⟶∞.
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A brief retrospective on the IGD is now proposed. To
begin, the author in [2] studied the inverse Gaussian as a
model to study Brownian motion. ,e author in first con-
sidered its basic features of statistical properties and found
certain similarities in its statistical analysis. ,e authors in
[3] proposed it as a lifetime model to be applied in situations
where the initial failure rate was high. ,e author in [4]
considered estimating the inverse Gaussian (μ, λ) model in a
Bayesian framework. He also discussed that the estimation
becomes very difficult when there is no natural conjugate
prior. ,e authors in [5] considered the parameterization
when ψ � 1/μ and λ and evaluated Bayes estimates using
uninformative reference and natural conjugate priors. ,e
authors in [6] indicated that in [5] approach, the posterior
mean of 1/ψ does not exist, so the Bayesian estimate of the
mean of the distribution is not available. ,e author in [7]
performed the estimation of the reliability function from the
work done on IG (μ, λ) parameterization. ,e authors in [8]
evaluated estimates for λ assuming Jeffreys’ prior and its
posterior density by using the Gibbs sampling technique
when μ is known.

Because of its shapes, the related density may also be
considered as a good competitor to the Gamma, Weibull,
and log-normal distributions. Various sampling theory in-
ferences with the IGD are studied by [9–12] among others.
,e authors in [13] treated some applications in marketing,
while applications of IG in life testing are considered
by [2, 3].

,e authors in [14] investigated Bayesian estimation for
the parameters of the IGD distribution.,ey emphasized the
MCMC technique and gave a complete implementation of
the Gibbs sampler algorithm. ,e author in [5] obtained
some Bayesian results for the inverse Gaussian family of
distributions with a noninformative reference prior as well
as the natural conjugate prior. ,e authors in [6] derived
Bayesian results for the IGD by using a proper prior under
reparameterization with reference to the distribution mean
and of the inverse of the squared variation coefficient, for
obtaining Bayes estimates as well as of their inverses. ,e
author in [9] presented a report on some statistical prop-
erties of the IGD distribution when the parameters are
confined to (0,∞). A good review of the advantages of using
Bayesian methods may be found in [15–23]. ,e posterior
distributions often have complex multidimensional forms
that require using Markov Chain Monte Carlo (MCMC)
methods to get results [16, 24–27]. In recent years, the use of
Markov Chain Monte Carlo (MCMC) methods has gained
much popularity [28–30]. Most recently, the author in [31]
has considered in detail the q-Weibull distribution for
classical and Bayesian analyses, which also serves as a
motivation to conduct this study. Keeping in view the ex-
tensive literature on the importance of Bayesian analysis and
the importance of the Wald distribution, we have attempted
to present the Bayesian analysis of the Wald distribution.
Jeffreys’ and uniform priors are used as noninformative
priors, while the exponential distribution is used as an in-
formative prior. ,e analysis comprises finding joint pos-
terior distributions, the posterior means, predictive
distributions, and credible intervals. To illustrate the entire

estimation procedure, we have used real and simulated
datasets, and the results thus obtained are discussed and
compared.

,e literature reveals that a lot of authors have studied
classical distributions, including the Wald distribution, in a
classical framework. We have observed a variety of appli-
cations of the Wald distribution and the capability of the
Bayes methods to incorporate the prior information of the
model parameters. To the best of our knowledge and belief,
the Wald distribution has not yet been studied in a Bayesian
framework despite its potential applications. ,erefore, to
cover this gap present in the literature, we have attempted to
perform the Bayesian analysis of the Wald distribution in
this article.

Here is the break-up of the study. Section 2 considers the
frequentist analysis of the inverse Gaussian distribution
using the MLE method and computes the standard errors
associated with the classical estimates. A numerical example
is presented in Section 3. Section 4 carries out the Bayesian
analysis of the IGD assuming the uniform, Jeffreys’, and
subjective informative priors. It is supposed that the pa-
rameters of the IGD follow exponential distribution(s). ,e
convergence diagnostic is given in Section 5. ,e predictive
inference of the inverse Gaussian distribution is presented in
Section 6. Comparison between the frequentist and Bayesian
approaches is performed in Section 7. ,e simulation study
is performed in Section 8 to justify the results.

2. Maximum Likelihood (ML) Estimation

Let x1, x2, . . . , xn constitute a random sample of size n from
the IGD. ,e likelihood function is

p(x | μ, λ) �
λ
2π

􏼠 􏼡

n/2

􏽙

n

i�1

1
x3

i

􏼠 􏼡

1/2

e
− λ/2μ2( )􏽐

n

i�1 xi− μ( )
2/xi( 􏼁􏼈 􏼉

.

(2)

,e logarithmic form of the likelihood function is

l � ln(p(x | μ, λ) �
n

2
ln(λ) −

n

2
ln(2π)

−
1
2

􏽘

n

i�1
ln x

3
i􏼐 􏼑 −

λ
2μ2

􏽘

n

i�1

xi − μ( 􏼁
2

xi

.

(3)

We differentiate this expression w.r.t the unknown
parameters μ and λ, and equating the resulting equations to
zero to maximize l, we get

􏽢μ �
􏽐

n
i�1 xi

n
� X, and, 􏽢λ �

n

􏽐
n
i�1 x

−1
i − nx

− 1. (4)

,ey are the required ML estimates of the parameter μ
and λ of the IGD.

2.1. Standard Errors of the ML Estimates. ,e main diagonal
elements of the inverted Fisher information matrix (FIM)
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designate the variances of the ML estimates. Hence, we can
find the standard errors of the ML estimates by calculating
the square roots of the diagonal elements as

s
􏽢μ,􏽢λ

�
1

������

I(􏽢μ, 􏽢λ)

􏽱 . (5)

We find the elements of the Hessian matrix as follows.
,e second derivative of l with respect to λ, μ, and (μ, λ) is
given as

z
2
l

zλ2
�

−n

2λ2
,

z
2
l

zμ2
�

−nλ
μ2

and
zl

zμ zλ
� −

􏽐
n
i�1 μ − xi( 􏼁

μ3
� 0.

(6)

Fisher’s information matrix (F.I.M) I(μ, λ) may be de-
fined as follows:

I(μ, λ) � −E

z
2
l

zμ2
z
2
l

zμ zλ

z
2
l

zμ zλ
z
2
l

zλ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where

I(λ) � −E
z
2
l

zλ2
􏼢 􏼣 �

n

2λ2
, I(μ) � −E

z
2
l

zμ2
􏼢 􏼣 �

nλ
μ2

and I(μ, λ)

� −E
z
2
l

zμ zλ
􏼢 􏼣 � 0.

(8)

Hence,

I(μ, λ) �

−E
z
2
l

zμ2
􏼢 􏼣 −E

z
2
l

zμ zλ
􏼢 􏼣

−E
z
2
l

zμ zλ
􏼢 􏼣 −E

z
2
l

zλ2
􏼢 􏼣
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. (9)

,e variance covariance matrix s2
􏽢μ,􏽢λ

is
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.

(10)

,e uncorrelated parameters are displayed in the above
matrix. ,e results are summarized in Table 1.

3. Numerical Example

A real dataset is considered in this section that is analyzed by
[14]. ,e dataset given in Table 2 denotes the active repair
times (in hours) for an airborne communication transceiver.

Using the data given above, the ML estimates along with
their variance are computed and are given in Table 3.

Here, we observe that the estimates are stable with very
small standard errors.

4. Bayesian Analysis

4.1.UninformativeBayesianAnalysisUsing theUniformPrior.
,e uninformative uniform prior for the both parameters
μ and λ is defined as

p(μ, λ)∝ 1, μ> 0, λ> 0. (11)

,e posterior distribution is given as

p(μ, λ | x)∝p(μ, λ).p(x | μ, λ). (12)

As μ and λ are considered independent, therefore, their
joint prior distribution will be the product of their individual
priors and may be defined as

p(μ, λ|x)∝p(μ).p(λ.p(x|μ, λ),

⇒p(μ, λ|x)∝ 1.1.
λ
2π

􏼠 􏼡

(n/2)

􏽙

n

i�1
􏽙

1
x3

i

􏼠 􏼡

(1/2)

e
− λ/2μ2( )􏽘

n

i�1
xi− μ( )

2/xi( 􏼁􏽮 􏽯
; μ> 0, λ> 0.

(13)

4.2. Uninformative Bayesian Analysis Using Jeffreys’ Prior.
,e positive square root of the determinant of the FIM is
known as Jeffreys’ prior.

pJ(μ, λ) �
�������������������������
det(Fisher informationmatrix)

􏽰
�

�������

|I(μ, λ)|

􏽱

.

(14)
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Here, pJ(μ, λ) denotes for Jeffreys’ prior. We carry on for
Jeffreys’ prior as follows:

,e determinant of the FIM of the IGD is

|I(μ, λ)| �

nλ
μ2

0

0
n

2λ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⇒ |I(μ, λ)| �
n
2

2λμ2
. (15)

Jeffreys’ prior pJ(μ, λ) for unknown parameters (μ, λ) is
given as follows:

pJ(μ, λ) �

����

n
2

2λμ2

􏽶
􏽴

⇒pJ(μ, λ)∝
������

λ− 1μ− 2
􏽱

� λ− 1/2μ− 1
.

(16)

Hence, for the unknown parameters μ and λ, the joint
posterior distribution is given by

pJ(μ, λ | x)∝pJ(μ, λ).p(x | μ, λ),

pJ(μ, λ | x)∝
���
1
λμ2

􏽳

.
λ
2π

􏼠 􏼡

n/2

􏽙

n

i�1

1
x3

i

􏼠 􏼡

1/2

e
− λ/2μ2( )􏽘

n

i�1
xi− μ( )

2/xi( 􏼁􏽮 􏽯
,

pJ(μ, λ | x) � K
− 1μ− 1λ(1/2)− 1+(n/2)

e
− λ/2μ2( )􏽘

n

i�1
xi− μ( )

2/xi( 􏼁􏽮 􏽯
; μ> 0, λ> 0,

(17)

where K is denoted as the normalizing constant. It may be
defined as

K � 􏽚
∞

0
􏽚
∞

0
μ− 1λ(1/2)− 1+(n/2)

e
− λ/2μ2( )􏽐

n

i�1 xi− μ( )
2/xi( 􏼁􏼈 􏼉 dμ dλ.

(18)

4.3. Informative Bayesian Analysis Assuming the Exponential
Prior. It is known that expert opinion can be incorporated
into the analysis using the informative prior of an unknown
parameter about a state of nature. To achieve this, we
suppose an exponential prior for both parameters of the
IGD.

4.3.1. 0e Exponential Prior. Here, we assume that the prior
distributions of both the parameters follow exponential
distributions and are defined as

p(λ) � λe
− h1λ, λ> 0, h1 > 0,

p(μ) � μe
− h2μ, μ> 0, h2 > 0.

(19)

Here, h1 and h2 are known as the hyperparameters.
So, the joint posterior distribution of the unknown

parameter μ and λ is

p(μ, λ | x)∝p(μ, λ).p(x | μ, λ). (20)

As μ and λ are supposed to be independent,

Table 1: Maximum likelihood estimators of the parameters with
variances.

Parameter Maximum likelihood
estimator

Variance of maximum
likelihood estimator

μ 􏽐
n

i�1xi

n
� X X

2

( 􏽐
n

i�1x− 1
i

− nx
−1􏼁

2

λ n

( 􏽐
n

i�1x−1
i

−nx
− 1􏼁

2( 􏽐
n
i�1 x−1

i − nx
− 1

􏼁
− 2

Table 2: Repair times (in hours) of 46 transceivers.
1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0
7.5 8.8 9.0 10.3 22.0 24.5 3.3 3.3 4.0 4.0
0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5
0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7
4.5 4.7 5.0 5.4 5.4 7.0 — — — —

Table 3: ML estimates and variances for the repair-time data.

Parameters Mean Variance
λ 1.65885 0.01692
μ 3.60652 0.00260
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p(μ, λ) � p(μ).p(λ). (21) So, the joint posterior distribution of the parameters μ
and λ is

p(μ, λ | x)∝p(μ).p(λ).p(x | μ, λ),

⇒p(μ, λ | x)∝ λe
− h1λ.μe

− h2μ.
λ
2π

􏼠 􏼡

n/2

􏽙

n

i�1

1
x3

i

􏼠 􏼡

1/2

e
− λ/2μ2( )􏽘

n

i�1
xi− μ( )

2/xi( 􏼁􏽮 􏽯
,

⇒p(μ, λ | x)∝ μe
− h2μ.λn/2+2− 1

.e
− λ h1+ 1/2μ2( )􏽘

n

i�1
xi− μ( )

2/xi( 􏼁􏽮 􏽯
; μ> 0, λ> 0.

(22)

Now, we observe that the two parameters of the IGD
have independent distributions. ,erefore, to make infer-
ences, we will derive their marginal distributions regarding
them. ,e marginal posterior distribution of μ may be
defined as

p(μ | x) � 􏽚
∞

0
p(μ, λ | x)dλ, 0≤ μ≤∞. (23)

Similarly, the marginal posterior distribution of λmay be
derived as follows:

p(λ | x) � 􏽚
∞

0
p(μ, λ | x)dμ, 0≤ λ≤∞. (24)

Some loss function is required to find the Bayesian es-
timates. So, we have considered the squared error loss
function (SELF), which describes the posterior means as the
Bayes estimates. ,at is,

􏽢μ � E(μ | x) � 􏽚
∞

0
μ.p(μ | x)dμ,

􏽢λ � E(λ | x) � 􏽚
∞

0
λ.p(λ | x) dλ.

(25)

Such expressions generally comprise complex structures,
so the numerical methods are required to solve them.
,erefore, to simulate data from the posterior

distribution(s), we have used the MCMC technique by using
OpenBUGS, and the resulting Bayes estimates, posterior
risks, and 95% highest posterior density regions are given in
Table 4.

,e results show that the posterior estimates produced
by the uniform, Jeffreys’, and exponential priors coincide a
lot and have small standard errors. ,e posterior marginal
densities of the model parameters are presented in Figure 1.

,e posterior marginal densities for the parameters of
the model show a slight positive skewness for both of the
parameters of the model.

5. Convergence Diagnostics

,e dynamic traces and time series plots are assessed to
check the convergence. ,ey are presented in Figure 2. ,e
simulated results confirm the convergence of the parameters
of the underlying posterior distribution.

6. Predictive Inference

We evaluate the predictive distributions to study the future
behaviour of data. Using the posterior distribution
p(μ, λ | x) based on the exponential distribution defined in
Section 4.3 and the Wald distribution p(y | μ, λ) as data
model, the predictive distribution can be expressed as

p(y | x) � 􏽚
∞

0
􏽚
∞

0
p(y | μ, λ).p(μ, λ | x) dμ dλ

� 􏽚
∞

0
􏽚
∞

0

λ
2πy3􏼠 􏼡

(1/2)

e
− λ(y− μ)2/2μ2y{ }μe

− h2μλ(n/2)+1
e

− λ h1+ 1/2μ2( )􏽘
n

i�1
xi− μ( )

2/xi( 􏼁􏽮 􏽯 dμ dλ

�
1
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􏽚
∞

0
􏽚
∞
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λ(n+3/2)μe

− h2μ e
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n

i�1
xi− μ( )

2/xi( 􏼁+ (y− μ)2/2μ2y( )􏽮 􏽯 dμ dλ

�
1

2πy3􏼠 􏼡

(1/2)

􏽚
∞

0
􏽚
∞

0
λ(n+3/2)μe

− h2μ e
− λ h1+ 1/2μ2( ) 􏽘

n

i�1
xi− μ( )

2/xi( 􏼁+ (y− μ)2/y( )􏽮 􏽯􏽨 􏽩 dμ dλ.

(26)
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Often, the predictive distributions do not follow the
baseline distributions and do not have closed forms. Here,
we observed that the predictive distribution is not in closed
form. So, we will require numerical methods to evaluate
multiple integrals to evaluate the above defined predictive
distribution. ,is is accomplished by using the numerical
procedures, and the resulting predicted and observed
datasets are summarized in Table 5 with graphical repre-
sentation made in Figure 3.

It shows that the predicted and observed datasets are
much identical to each other.

7. Comparison of the Frequentist and
Bayesian Approaches

To make a comparison of the Bayesian estimation method
with the frequentist maximum likelihood estimation
method, several model selection criteria, i.e., log-likelihood

Table 4: Bayes estimates of (μ, λ) under uniform, Jefferys’, and exponential priors.

Measures
Uniform prior Jeffreys’ prior Exponential prior

μ λ μ λ μ λ
Bayes estimates 3.60652 1.7324 3.60652 1.7324 3.60834 1.65762
Posterior risk 0.01254 0.1251 0.01254 0.1251 0.01254 0.1251
95% HDR (2.7548, 5.5698) (1.4822, 2.1077) (2.7548, 5.5698) (1.4822, 2.1077) (2.7548, 5.5698) (1.4822, 2.1077)
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Figure 1: ,e posterior densities of the model parameters.
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Figure 2: Dynamic traces and posterior densities of the parameters.
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Table 5: Summary of the predicted and real datasets.

Types of data Minimum 1st quartile Median Mean 3rd quartile Maximum
Observed 0.200 0.800 1.750 3.607 4.375 24.5
Predicted 0.2137 0.7696 1.0811 2.2513 2.4510 16.1022
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Figure 3: Histograms and boxplots of the predicted and real datasets. (a) Boxplot of predicted data. (b) Boxplot of real data. (c) Histogram of
real data. (d) Histogram of predicted data.

Table 6: Summary of comparisons of estimation methods.

Estimation methods Priors λ μ LL AIC BIC
ML — 1.659 3.607 −99.0477 202.0953 205.7526
UMVUE — 1.551 3.607 −99.0988 202.1976 205.8549
Bayes Lindley — 1.623 4.118 −99.2127 202.4255 206.0827

Bayes methods

λ ∼ gamma(3.3, 2), μ ∼ gamma(6.8, 1.9) 1.859 3.354 −99.2699 202.5399 206.1971
λ ∼ exp(0.6024), μ ∼ exp(0.2778) 1.620 4.008 −99.1577 202.3155 205.9728

Jeffrey’s prior 1.658 4.210 −99.2649 202.5299 206.1872
Uniform prior 1.668 5.346 −100.1742 204.3484 208.0057

Table 7: Estimates for 100000 simulations.

n 􏽢μ 􏽢λ E(􏽢μ) E(􏽢λ) SE(􏽢μ) SE(􏽢λ) LLμ ULμ LLλ ULλ
5 3.6065 1.6588 3.6020 4.1478 2.3738 9.7766 0.9565 9.8878 0.74251 17.158
10 3.6065 1.6588 3.6016 2.3724 1.6716 1.5068 1.3832 7.7839 0.8687 6.2250
20 3.6065 1.6588 3.6040 1.9492 1.1889 0.7164 1.8285 6.4351 1.0078 3.7305
50 3.60652 1.6588 3.6086 1.7657 0.7510 0.3729 2.3573 5.2891 1.1830 2.6334
100 3.6065 1.6588 3.6061 1.7100 0.5302 0.2487 2.6756 4.7476 1.2912 2.2630
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(LL), Akaike information criterion (AIC), and the Bayes
information criterion (BIC) are used. ,at is a vital part of
this study. ,e better the fit is, the lower the values of these
criteria are. ,e ML estimates, noninformative Bayesian
estimates, and informative Bayesian estimates with the
values of the model selection criteria are evaluated and
presented in Table 6.

,e results reveal that the values of the AIC and BIC
computed by Bayesian estimates are the smallest as com-
pared with those produced by frequentist estimates. It is
noted that the Gamma prior has minimum AIC and BIC
values for Bayes estimates as the expert opinion is also
involved in it.

8. Simulation Study

Simulation studies help us to understand the type and be-
haviour of the underlying distributions. So, we generate data
values for the parameters and estimate them based on the
generated data. Here, the same parametric values have been
used that are obtained by using the real dataset through R
codes, and the results are portrayed in Tables 7 and 8.

,e results show that the model will produce the same
results if it continues to run on a similar pattern in the
future. Moreover, the estimates become more stable if the
numbers of simulations are increased.

9. Conclusion and Recommendations

,e Bayesian inference for the parameters of the Wald
distribution has been performed in this study and also
compared the results with their classical counterparts. We
have evaluated the maximum likelihood estimates for the
comparison purpose. We used uniform and Jeffreys’ priors
as noninformative priors and the exponential distribution
as informative prior. We have also discussed the predictive
distribution as well. Simulation studies have also been
conducted to verify the results. It has been witnessed that
the results produced by using the Bayesian technique
produce better results by yielding smaller AIC and BIC
values. We have also witnessed close coordination between
the observed and predicted datasets, which indicates that
the Bayes methods are the potential replacements for their
classical counterparts. ,e Bayesian methods are best
suited for evaluating the lifetime data of any type of
product. Future perspectives of the research may be to
conduct such studies using other distributions that can
model a variety of natural phenomena. We may also extend
this study to include the generalized and multivariate
distributions as well.
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