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In this paper, the H∞ control problem is investigated for a class of time-varying state-saturated systems with both stochastic
parameters and nonlinearities under the stochastic communication protocol (SCP). -e sensor-to-controller network is con-
sidered where only one sensor can obtain access to the communication network at each transmission instant. -e SCP is adopted
to mitigate the undesirable data collision phenomenon. -e model transformation technique is employed to simplify the
addressed problem, and then, the completing squares method is carried out to obtain a sufficient condition for the existence of the
finite-horizon H∞ controller.-e controller parameters are characterized by solving two coupled backward recursive Riccati-like
difference equations. A simulation example is finally utilized to illustrate the effectiveness of the proposed controller
design scheme.

1. Introduction

Due to its advantages of easy sharing, strong flexibility, and
easy installation and maintenance, networked control sys-
tems (NCSs) have attracted a large number of scholars’
attention in recent years [1–4].

Most existing methods of the controller and the filter
design are only for infinite time-invariant controlled object. In
the actual NCSs, due to the operating point offset, equipment
aging, and environmental factors, many systems are time
varying.-erefore, it is of more practical significance to study
the transient characteristics of time-varying systems in the
finite horizon than the steady-state characteristics of time-
invariant systems. -e corresponding fuzzy control problem,
finite-time domain filtering problem, and envelope constraint
problem for continuous time-varying system, discrete time-
varying system, and discrete time-varying nonlinear system
are discussed in [5–7], respectively.

In NCSs, the bandwidth of communication network is
limited, which tends to cause data conflicts of control or
measurement signals in the process of network transmission,
resulting in packet loss and network-induced delay [8, 9]. If
multiple nodes in the network attempt to simultaneously
transfer data, these phenomena caused by nonideal networks
may be even more serious. -erefore, an effective way to
avoid data conflicts is to join the communication protocol to
manage the rights of each node to access the network.
Random communication protocols have been widely studied
and applied for their advantages of random access and
strong expansibility [10, 11]. In [12], the filtering problem of
a kind of linear time-invariant system under a random
communication protocol was studied, which described the
communication process between the sensor and the filter as
a Markov chain. In [13], the auxiliary vector and a new state
estimation structure were proposed to the problem of finite-
time state estimation of delayed artificial neural network
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under the random communication protocol. In [14], a
random pulse delay model was proposed under the con-
sideration of packet loss, network-induced delay, and ran-
dom communication protocol. Furthermore, an output
feedback controller was designed to ensure the stability of
the system in the mean square sense. In [15, 16], the sliding
mode control and robust finite-time stability problem with
time-varying delays were investigated.

It is important to note that the above literature implicitly
assumes that the system state is not saturated. However, in
practice, due to the physical limitations or protection
measures of the equipment, state saturation often occurs.
For example, mechanical systems with position and speed
limits, digital filters implemented in finite word length
formats, and neural networks with saturated transfer
functions [17, 18]. In these cases, the state of the system is
constrained within a bounded set. If state saturation is not
considered in the comprehensive analysis, the desired
performance of the closed-loop system cannot be guaran-
teed. Although the control and filtering of NCSs in infinite
time domain and random communication protocol have
been studied in depth, the control problem in finite-time
domain of state-saturated time-varying system has not
attracted attention under the influence of random com-
munication protocol, which arouses the author’s research
interest.

In summary, this paper is concerned with the control
problem of the state saturation system in the finite-time
domain based on the random communication protocol and
considering the influence of random parameters and ran-
dom nonlinearity. -e main contributions in this paper are
as follows: (1) both stochastic parameters and nonlinearities
under the stochastic communication protocol are consid-
ered in the design of the output feedback controllers
guaranteeing the desired H∞ performance, (2) a sufficient
condition is provided for an auxiliary index which is closely
related to the desired finite-horizon H∞ performance, and
(3) a suboptimal controller design scheme is provided by
solving two coupled backward recursive Riccati-like dif-
ference equations.

-e rest of this paper is organized as follows. Section 2
introduces the problem description. Sufficient conditions for
the H∞ performance analysis and controller design are
given in Sections 3 and 4. In Section 5, a numerical example
is presented. Finally, Section 6 concludes the paper.

Notations: the notations used in this paper are as
follows. Rn denotes the n-dimensional Euclidean space.
L2[0,N] is the space of square summable vectors. E ·{ } stands
for the mathematical expectation and Prob ·{ } means the
occurrence probability of the event. In symmetric block
matrices or complex matrix expressions, we use ∗ to
represent a term that is induced by symmetry and diag ·{ }

denotes the block diagonal matrix. If their dimensions are
not explicitly stated, they are assumed to be compatible for
algebraic operations. -e notation P> 0 (≥0) means that P
is a symmetric and positive definite (semidefinite) matrix. 0
and I represent the zero matrix and identity matrix with
compatible dimensions.

2. Problem Description

Consider the state-saturated random time-varying system in
the finite horizon k ∈ [0, N]:

xk+1 � σ Ak μk( 􏼁xk + f xk( 􏼁 + Bkuk + Dkwk( 􏼁,

yk � Ckxk + Ekvk,

zk � Lkxk,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where xk ∈ Rnx , uk ∈ Rnu , zk ∈ Rnz , and yk ∈ Rny , respec-
tively, represent system state, control input, controlled
output, and measured output vector before transmission
from the sensor-to-controller network. wk ∈L2[0,N] and
vk ∈L2[0,N] are process noise and measurement interfer-
ence of the system, respectively. -e matrices Bk,Dk, Ck, Ek,
and Lk are time-varying parameter matrices with known
appropriate dimensions. σ(·) is a saturation function,
Ak(μk) is a random parameter matrix, μk is a zero-mean
Gaussian white noise sequence with variance 1, and f(xk) is
a random nonlinear function of the system. -e random
parameter matrix Ak(μk) and the random nonlinear func-
tion f(xk) are independent of each other.

As [19] shows, the random parameter matrix Ak(μk) has
the following statistical characteristics:

E Ak μk( 􏼁􏼈 􏼉 � Ak,

Cov a
k
mu, a

k
st􏽮 􏽯 � Tak

mu,ak
st
,

(2)

where Tak
mu,ak

st
is a known parameter and ak

st is (s, t) th el-
ement of matrix Ak(μk), i.e., ak

st � Ak(μk)[s,t].
For all xk, the first moment and covariance of the

random nonlinear function f(xk) satisfy
E f xk( 􏼁|xk􏼈 􏼉 � 0, (3)

E f xk( 􏼁fT xj􏼐 􏼑|xk􏽮 􏽯 � 0, k≠ j, (4)

E f xk( 􏼁fT xk( 􏼁|xk􏽮 􏽯 � 􏽘

q

n�1
ℓn,kℓ

T
n,kx

T
kΓn,kxk, (5)

where q is a known nonnegative integer and ℓn,k and Γn,k(n �

1, 2, . . . , q) are known appropriate dimension matrices.
Define saturation function σ(·): Rnx⟶ Rnx :

σ xk( 􏼁 � σ1 x1k( 􏼁 σ2 x2k( 􏼁 · · · σnx
xnx

k􏼐 􏼑􏽨 􏽩
T
, (6)

σm xm
k( 􏼁 � sign xm

k( 􏼁min xm
k

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, xm

k,max􏽮 􏽯, m � 1, 2, . . . , nx,

(7)

where xm
k is the component of vector xk and xm

k,max > 0 is the
saturation level.

In order to solve the problem of network congestion and
data conflict caused by multiple transmission nodes using
the communication network at the same time, random
communication protocol is adopted in the network. Under
the SCP scheduling, only one node is allowed to access the
network and transmit data at each transport moment. ξk is
defined as the node that obtains access to the network at the
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instant k, and its value is determined by the Markov chain.
-e transition probability matrix is Pk � [p

ij

k ]ny×ny
, specif-

ically defined as

p
ij

k � Prob ξk+1 � j|ξk � i􏼈 􏼉, (8)

where p
ij

k ∈ [0, 1](i, j ∈ 1, 2, . . . , ny􏽮 􏽯) represents the tran-
sition probability of k moment from state i to state j and
satisfies 􏽐

ny

j�1 p
ij

k � 1.
Set the measurement output after transmission from the

sensor-to-controller network as yk � y1,k􏼂 y2,k. . .yny,k]
T, and

yi,k represents the measurement output of the i sensor node
received by the controller at the transmission time k. Zero
input processing strategy is adopted, and the updating rules
of yi,k are

yi,k �
yi,k, if i � ξk,

0, Others.
􏼨 (9)

On the basis of formula (9), there are

yk � Φξk
yk, (10)

where Φξk
� diag δ(ξk − 1), δ(ξk − 2), . . . , δ(ξk − ny)􏽮 􏽯 and

δ(ξk − i) is the Kronecker Delta function.
For system (1), the following output feedback controller

is designed:

uk � Kξk,kyk � Kξk,kΦξk
Ckxk + Kξk,kΦξk

Ekvk, (11)

where Kξk,k is the controller gain to be designed.
According to formula (2), Ak(μk) can be expressed as

Ak(μk) � Ak + 􏽥Ak(μk), and wk � wk vk􏼂 􏼃
T is defined for

ease of analysis. -e following closed-loop system is ob-
tained by substituting equations (10) and (11) into system
(1):

xk+1 � σ Ak + BkKξk,kΦξk
Ck􏼐 􏼑xk + 􏽥Ak μk( 􏼁xk + f xk( 􏼁 + Dk BkKξk,kΦξk

Ek􏽨 􏽩wk􏼐 􏼑,

yk � Φξk
yk,

zk � Lkxk.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

-e purpose of this study is to design a finite-time
domain output feedback controller (11) so that, for a given
disturbance suppression level c, positive definite matrix S,
and system initial state x0, the controlled output zk of the
system meets the following H∞ performance requirements:

J1 ≜E 􏽘

N

k�0
zk

����
����
2

− c
2

wk

����
����
2

􏼒 􏼓 − c
2xT

0 Sx0
⎧⎨

⎩

⎫⎬

⎭ < 0, ∀wk ≠ 0.

(13)

3.H‘ Performance Analysis

System (12) contains BkKξk,kΦξk
Ekvk, so to facilitate the

solution of controller gain Kξk,k, we define Dk �

Dk (εk)
− 1Bk􏽨 􏽩 and Wk � wk εkKξk,kΦξk

Ekvk􏽨 􏽩
T
. From

the definition of Wk, perturbation Wk ∈L2[0,N] rewrites
formulae (12) to (14). -e positive real number εk is in-
troduced to describe the scale of measurement interference
and to provide more degrees of freedom [20] for the design
of the controller:

xk+1 � σ Ak + BkKξk,kΦξk
Ck􏼐 􏼑xk + 􏽥Ak μk( 􏼁xk + f xk( 􏼁 + DkWk􏼐 􏼑,

yk � Φξk
yk,

zk � Lkxk.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

Next, similar to equation (13), for system (14), the fol-
lowing H∞ performance indicators are defined:

J2 ≜E 􏽘

N

k�0
zk

����
����
2

− c
2 Wk

����
����
2

􏼒 􏼓 − c
2xT

0 Sx0
⎧⎨

⎩

⎫⎬

⎭ < 0, ∀Wk ≠ 0.

(15)

Lemma 1. For performance indicators (13) and (14), if
(εk)2ET

kΦ
T
ξk
KT
ξk,kKξk,kΦξk

Ek ≤ I and J2 < 0 are satisfied, then
J1 ≤ J2 < 0.

Proof. Considering (εk)2ET
kΦ

T
ξk
KT

ξk,kKξk,kΦξk
Ek ≤ I and

J2 < 0, then

J1 − J2 � E 􏽘
N

k�0
c
2 Wk

����
����
2

− wk

����
����
2

􏼒 􏼓
⎧⎨

⎩

⎫⎬

⎭

� E 􏽘
N

k�0
c
2vT

k εk( 􏼁
2ET

kΦ
T
ξk
KT
ξk,kKξk,kΦξk

Ek − I􏼐 􏼑vk

⎧⎨

⎩

⎫⎬

⎭ ≤ 0.

(16)

So, J1 ≤ J2 < 0. Proving is completed. □

Lemma 2. For ∀xk ∈ Rnx , if the matrix F is a positive definite
symmetric matrix, σT(xk)Fσ(xk)≤ λmax F{ }xT

k xk is invariant,
where λmax F{ } represents the maximum eigenvalue of the
matrix F.

Proof. According to formula (7), |σm(xm
k )|≤ |xm

k | can be
obtained, and then, σT(xk)σ(xk) − xT

k xk � 􏽐
nx

m�1(|σm

(xm
k )| − |xm

k |)≤ 0, or σT(xk)σ(xk)≤ xT
k xk can be obtained.
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Because F is a positive definite symmetric matrix, then
σT(xk)Fσ(xk)≤ λmax F{ }σT(xk)σ(xk)≤ λmax F{ }xT

k xk. -e
proof is completed. □

Lemma 3 (see [21]). For giving nonzero matricesU,V, and
G, the optimal solution to minimize problem
minX‖UXV − G‖F is U†VG†, where U† and G† rep-
resent the Moore–Penrose pseudoinverse of U and G,
respectively.

Theorem 1. Consider the state-saturated system (1) over
finite-time domain k ∈ [0, N] and its SCP model parameter
ξk. Given the controller gain Ki,k, positive scalar εk, H∞
performance index c> 0, and positive definite matrix S, the
sufficient condition for the system to meet the H∞ perfor-
mance requirements is that the existence of positive definite
symmetric matrix Pi

k makes the following recursive Riccati-
like difference equations valid:

Pi
k � λP( 􏼁

2
Ak + BkKkΦξk

Ck􏼐 􏼑
T
Dk Δi

k􏼐 􏼑
− 1

D
T
k Ak + BkKi,kΦξk

Ck􏼐 􏼑 + λP Ak + BkKi,kΦξk
Ck􏼐 􏼑

T
·

Ak + BkKi,kΦξk
Ck􏼐 􏼑 + λP 􏽘

nx

m�1
Tam,k + λP 􏽘

q

n�1
Γn,ktr ℓn,kℓ

T
n,k􏼐 􏼑 + LT

kLk,
(17)

and subjects to constraints

Δi
k > 0,

Pi
0 ≤ c

2S,

εk( 􏼁
2ET

kΦ
T
ξk
KT

i,kKi,kΦξk
Ek ≤ I,

(18)

where λP � λmax P
i

k+1􏽮 􏽯, P
i

k+1 � 􏽐
ny

j�1 p
ij

k P
j

k+1, Δ
i
k � c2I−

λPD
T

k Dk, and Tak
ms,a

k
mt

is the (s, t) element of the symmetric
matrix Tam,k .

Proof. Define the following function:

Ji
k � E xT

k+1P
ξk+1
k+1xk+1 − xT

kP
i
kxk|i � ξk􏼚 􏼛. (19)

According to equations (14) and Lemma 2, it can be
obtained that

Ji
k � E σT

Ak + BkKi,kΦξk
Ck􏼐 􏼑xk + 􏽥Ak μk( 􏼁xk + f xk( 􏼁 + DkWk􏼐 􏼑Pi

k+1σ Ak + BkKi,kΦξk
Ck􏼐 􏼑xk􏼐 +􏼚

􏽥Ak μk( 􏼁xk + f xk( 􏼁 + DkWk􏼑 − xT
kP

i
kxk|i � ξk􏽯

≤E λP xT
k Ak + BkKi,kΦξk

Ck􏼐 􏼑
T

Ak + BkKi,kΦξk
Ck􏼐 􏼑xk + 2xT

k Ak + BkKi,kΦξk
Ck􏼐 􏼑

T
DkWk+􏼔􏼚

xT
k

􏽥A
T

k μk( 􏼁􏽥Ak μk( 􏼁xk + fT xk( 􏼁f xk( 􏼁 + WT
k D

T

k DkWk􏼕 − xT
kP

i
kxk|i � ξk􏼛.

(20)

According to properties of matrix covariance and trace,
equations (2)∼(5) can be obtained:

E xT
k

􏽥A
T

k μk( 􏼁􏽥Ak μk( 􏼁xk􏼚 􏼛 � xT
k 􏽘

nx

m�1
Tam,kxk,

E fT xk( 􏼁f xk( 􏼁􏽮 􏽯 � xT
k 􏽘

q

n�1
Γn,ktr ℓn,kℓ

T
n,k􏼐 􏼑xk.

(21)

-erefore, equation (20) is equivalent to

Ji
k ≤E x

T
k λP Ak + BkKi,kΦξk

Ck􏼐 􏼑
T

Ak + BkKi,kΦξk
Ck􏼐 􏼑 +􏼔􏼚

λP 􏽘

nx

m�1
Tam,k + λP 􏽘

q

n�1
Γn,ktr ℓn,kℓ

T
n,k􏼐 􏼑 − Pi

k
⎤⎦xk+

2λPx
T
k Ak + BkKi,kΦξk

Ck􏼐 􏼑
T
DkWk + λPW

T
k D

T

k DkWk|i � ξk}.

(22)

Add zero item ‖zk‖2 − c2‖Wk‖2 − ‖zk‖2 + c2‖Wk‖2 to the
right side of equation (22), and use perfect plane method to
change equation (22) into

4 Mathematical Problems in Engineering



Jik ≤E xT
k λP Ak + BkKi,kΦξk

Ck􏼐 􏼑
T

Ak + BkKi,kΦξk
Ck􏼐 􏼑+􏼔􏼚 λP 􏽘

nx

m�1
Tam,k +

λP 􏽘

q

n�1
Γn,ktr ℓn,kℓ

T
n,k􏼐 􏼑 + LT

kLk − Pi
k
⎤⎦xk + λPW

T
k D

T

k DkWk+

2λPx
T
k Ak + BkKi,kΦξk

Ck􏼐 􏼑
T
DkWk − c

2WT
kWk − zk

����
����
2

+ c
2 Wk

����
����
2
|i � ξk􏼛

� E xT
k λP Ak + BkKi,kΦξk

Ck􏼐 􏼑
T

Ak + BkKi,kΦξk
Ck􏼐 􏼑+􏼔􏼚 λP 􏽘

nx

m�1
Tam,k +

λP 􏽘

q

n�1
Γn,ktr ℓn,kℓ

T
n,k􏼐 􏼑 + LT

kLk − Pi
k
⎤⎦xk + WT

kΔ
i
kWk−

Wk − Wk( 􏼁
TΔi

k Wk − Wk( 􏼁 − zk

����
����
2

+ c
2 Wk

����
����
2
|i � ξk􏼛,

(23)

where Wk � λP(Δi
k)− 1D

T

k (Ak + BkKi,kΦξk
Ck)xk. According to the properties of conditional expectation,

inequality (23) is accumulated from 0 to N, and the dif-
ference equation (17) such as Riccati is obtained

E xT
N+1P

ξN+1
N+1xN+1 − xT

0P
i
0x0􏼚 􏼛

≤E − 􏽘
N

k�0
Wk − Wk( 􏼁

TΔi
k Wk − Wk( 􏼁 − 􏽘

N

k�0
zk

����
����
2

− c
2 Wk

����
����
2

􏼒 􏼓
⎧⎨

⎩

⎫⎬

⎭.

(24)

Considering Δi
k > 0, Pi

0 ≤ c2S, (εk)2ET
kΦ

T
ξk
KT

i,kKi,kΦξk

Ek ≤ I, and the matrix Pi
k+1 is positively definite symmetry, it

is not difficult to obtain

J2 ≤E xT
k Pi

0 − c
2S􏼐 􏼑xk − 􏽘

N

k�0
Wk − Wk( 􏼁

TΔi
k Wk − Wk( 􏼁

⎧⎨

⎩

⎫⎬

⎭ < 0.

(25)

-erefore, J1 ≤ J2 < 0; the system meets the H∞ perfor-
mance requirements. Proof is completed. □

4.H‘ Controller Design

-eorem 1 gives a sufficient condition for the closed-loop
system (1) to satisfy the H∞ performance index. Next, the
solution of controller gain matrix Ki,k under the worst
disturbance case of the system is Wk � Wk � λP(Δi

k)− 1

D
T

k (Ak + BkKi,kΦξk
Ck)xk. To do this, defineFk � λP(Δi

k)− 1

D
T

k (Ak + BkKi,kΦξk
Ck), uk � Ki,kΦξk

Ckxk, and the cost
function JWk

≜E 􏽐
N
k�0(‖zk‖2 + ‖uk‖2)􏽮 􏽯. Rewrite the closed-

loop system (14) as

xk+1 � σ Ak + BkKi,kΦξk
Ck􏼐 􏼑xk + 􏽥Ak μk( 􏼁xk + f xk( 􏼁 + DkFkxk􏼐 􏼑,

yk � Φξk
yk,

zk � Lkxk.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

Theorem 2. Considering the state saturation system (1) and
its SCP model parameter ξk on finite-time domain k ∈ [0, N]

and given the positive scalar εk, H∞ performance index c> 0,
and positive definite matrix S, the sufficient condition for the

system to meet the H∞ performance requirements is that
there are Ki,k and positive definite symmetric matrices Pi

k and
Qi

k, so the Riccati-like difference equation recursively can be
established as follows:

Mathematical Problems in Engineering 5



Pi
k � λP( 􏼁

2
Ak + BkKi,kΦξk

Ck􏼐 􏼑
T
Dk Δi

k􏼐 􏼑
− 1

D
T

k Ak + BkKi,kΦξk
Ck􏼐 􏼑 + λP Ak + BkKi,kΦξk

Ck􏼐 􏼑
T
·

Ak + BkKi,kΦξk
Ck􏼐 􏼑 + λP 􏽘

nx

m�1
Tam,k + λP 􏽘

q

n�1
Γn,ktr ℓn,kℓ

T
n,k􏼐 􏼑 + LT

kLk,

Qi
k � − λQ􏼐 􏼑

2
Ak + DkFk( 􏼁

TBk Δ
i

k􏼒 􏼓
− 1
BT

k Ak + DkFk( 􏼁 + λQ Ak + DkFk( 􏼁
T

·

Ak + DkFk( 􏼁 + λQ 􏽘

nx

m�1
Tam,k + λQ 􏽘

q

n�1
Γn,ktr ℓn,kℓ

T
n,k􏼐 􏼑 + LT

kLk.

(27)

And, it subjects to constraints

Δi
k > 0,

Δi

k > 0,

Pi
0 ≤ c

2S,

εk( 􏼁
2ET

kΦ
T
ξk
KT

i,kKi,kΦξk
Ek ≤ I.

(28)

At this point, the gain matrix of the controller can be
calculated by the following formula:

Ki,k � M
†
kNk Φξk

Ck􏼐 􏼑
†
, (29)

where λQ � λmax Q
i

k+1􏼚 􏼛, Q
i

k+1 � 􏽐
ny

j�1 p
ij

k Q
j

k+1, Δ
i

k � λQBT
k

Bk + IMk � λPλQ(Δi

k)− 1BT
k Dk(Δi

k)− 1D
T

kB
T
k + I, and Nk �

− λQ(Δi

k)− 1BT
k (λPDk(Δi

k)− 1D
T

k + I)Ak.

Proof. -eorem 2 ensures that -eorem 1 is true; it can be
known that the closed-loop system (1) meets the H∞ per-
formance requirements. Furthermore, under the worst in-
terference Wk � Fkxk, the following functions are defined:

J
i

k � E xT
k+1Q

ξk+1
k+1xk+1 − xT

kQ
i
kxk|i � ξk􏼚 􏼛. (30)

According to equation (26) and Lemma 2, it can be
obtained as

J
i

k � E σT
Ak + DkFk( 􏼁xk + 􏽥Ak μk( 􏼁xk + BkKi,kΦξk

Ckxk + f xk( 􏼁􏼐 􏼑Q
i

k+1σ Ak + DkFk( 􏼁xk( +􏼚

􏽥Ak μk( 􏼁xk + BkKi,kΦξk
Ckxk + f xk( 􏼁􏼑 − xT

kQ
i
kxk|i � ξk􏽯

≤E xT
k λQ Ak + DkFk( 􏼁

T
Ak + DkFk( 􏼁 + λQ 􏽘

nx

m�1
Tam,k +⎡⎣

⎧⎨

⎩

λQ 􏽘

q

n�1
Γn,ktr ℓn,kℓ

T
n,k􏼐 􏼑 − Qi

k
⎤⎦xk + λQx

T
kC

T
kΦ

T
ξk
KT

i,kB
T
kBkKi,kΦξk

Ckxk+

2λQx
T
k Ak + DkFk( 􏼁

TBkKi,kΦξk
Ckxk|i � ξk􏼛.

(31)

Add the zero term E 􏽐
N
k�0 J

i

k − 􏽐
N
k�0 J

i

k􏽮 􏽯 to the right of
the cost function JWk

, then define 􏽥uk � − λQ

(Δi

k)− 1BT
k (Ak + DkFk)xk, use the complete square for uk,

and combine equation (27) and constraint (28), and we
obtain

JWk
� E 􏽘

N

k�0
zk

����
����
2

+ uk

����
����
2

+ J
i

k􏼒 􏼓 + xT
kQ

i
0xk − xT

N+1Q
ξ(N+1)
N+1 xN|i � ξk

⎧⎨

⎩

⎫⎬

⎭

≤E 􏽘

N

k�0
uk − 􏽥uk( 􏼁

TΔi

k uk − 􏽥uk( 􏼁
⎧⎨

⎩

⎫⎬

⎭ + E xT
kQ

i
0xk􏽮 􏽯

≤E 􏽘
N

k�0
Ki,kΦξk

Ck + λQ Δi
k􏼐 􏼑

− 1
BT

k Ak + DkFk( 􏼁
�����

�����
2

F
Δi

k

�����

�����
2

F
xk

����
����
2⎧⎨

⎩

⎫⎬

⎭ + E xT
kQ

i
0xk􏽮 􏽯.

(32)
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It is noted that Fk � λP(Δi
k)− 1D

T

k (Ak + BkKi,kΦξk
Ck),

in order to reduce the cost function, the gain matrix of the
controller is selected as follows:

Ki,k � argmin
Ki,k

Ki,kΦξk
Ck + λQ Δi

k􏼐 􏼑
− 1
BT

k Ak + DkFk( 􏼁
�����

�����F

� argmin
Ki,k

M Ki,kΦξk
Ck􏼐 􏼑 − Nk

�����

�����.

(33)

-erefore, according to Lemma 3, equation (29) is the
optimal solution to the minimization problem (33). Proving
is complete.

Based on-eorem 2, the following H∞ controller design
algorithm on finite-time domain [0, N] is obtained (Algo-
rithm 1). □

5. Numerical Example

A state-saturated time-varying system (1) with random
parameters and random nonlinearity is considered in finite-
time domain k ∈ [0, 30], and its system matrix parameters
are shown as below [22]:

Ak μk( 􏼁 � Ak + 􏽥Ak μk( 􏼁

�
0.42 + sin(2k − 1) − 0.4

− 0.4 + e
− 5k 0.85

􏼢 􏼣 + μk

0.1 0

0 0.2
􏼢 􏼣,

Bk �
0.85

− 0.65
􏼢 􏼣,

Ck �
0.65 − 0.7

− 0.6 0.65
􏼢 􏼣,

Dk � − 0.02 0.015􏼂 􏼃
T
,

Ek � 0.01 0.01􏼂 􏼃
T
,

Lk � 0.2 0.2􏼂 􏼃.

(34)

-e random nonlinear function is

f xk( 􏼁 � 0.1 sign x
1
k􏼐 􏼑x

1
kμ1k + 0.2 sign x

2
k􏼐 􏼑x

2
k sin μ2k( 􏼁􏼐 􏼑

0.06

0.09
􏼢 􏼣,

(35)

where μk, μ1k, and μ2k are three Gaussian white noise se-
quences whose mean value is 0 and variance is 1, and it is not
difficult to verify that the random nonlinear function
satisfies

E f xk( 􏼁|xk􏼈 􏼉 � 0,

E f xk( 􏼁fT xk( 􏼁|xk􏽮 􏽯 �
0.06

0.09
􏼢 􏼣

0.06

0.09
􏼢 􏼣

T

xT
k

0.01 0

0 0.0173
􏼢 􏼣xk.

(36)

In addition, it is known that the initial state
x0 � 0.5 0.1􏼂 􏼃

T, x1k,max, x
2
k,max, and εk of the system is 1, the

state transition matrix of the random communication

protocol Pk �
0.4 + 0.1(− 1)

k 0.6 − 0.1(− 1)
k

0.75 0.25
􏼢 􏼣, and the

process noise and measurement interference of the system
are wk � 1.5 sin(k) and vk � 0.7 cos(0.7k), respectively.

On the premise that the algorithm in this paper has a
solution and the H∞ performance index is as small as
possible, the given values of c � 0.92, positive definite matrix
S � 0.2I, and Pi

N+1 andQ
i
N+1 are given as 0.01I. By using the

algorithm proposed in this paper, the gain matrix of the
controller is obtained, as shown in Table 1. -e corre-
sponding simulation results of the system are shown in
Figures 1–3. Figure 1 depicts the changes of sensor nodes
that obtain network permissions under the influence of
random communication protocol with the state transition
matrix. Figures 2 and 3, respectively, show the state response
curves of the open-loop system and the closed-loop system.
-e simulation results demonstrate the effectiveness of the
proposed algorithm for the finite-time domain controller
design.

In order to highlight the advantages of the controller
design algorithm proposed in this paper in the aspect of state
saturation system, the algorithm in [22] is compared with
the algorithm proposed in this paper. Regardless of random
parameters and random nonlinearity, only for the state
saturation system under the influence of random commu-
nication protocol, the parameters set are exactly the same as
those in the above simulation. It is worth noting that the
algorithm in [22] is not applicable to networked control
systems under the influence of random communication
protocols, so Pk and Qk in [22] need to be adjusted. -e
controller gain matrix Ki,k obtained according to the

Step 1. Set k � N, for all i ∈ 1, 2, . . . , ny􏽮 􏽯; given disturbance suppression level c> 0 positive definite matrices S, Pi
N+1 and Qi

N+1 are
appropriate positive definite symmetric matrices.
Step 2. Calculate Δi

k and Δi

k. If Δ
i
k > 0 and Δi

k > 0, go to the next step, otherwise go to Step 6.
Step 3. Mk and Nk were calculated, and controller gain matrix Ki,k was solved according to equation (29). If
(εk)2ET

kΦ
T
ξk
KT

i,kKi,kΦξk
Ek ≤ I, go to the next step, otherwise go to Step6.

Step 4. Pi
k and Qi

k were obtained by solving Riccati-like difference equation (27), and then, λP and λQ were obtained. If Pi
k > 0 and

Qi
k > 0, go to the next step, otherwise go to Step 6.

Step 5. If k≠ 0, make k � k − 1 and go to Step2; otherwise, judge whether Pi
0 ≤ c2S is established; then, the calculation terminates; if

not, then proceed to the next step.
Step 6. -e algorithm is unsolvable and the calculation is terminated.

ALGORITHM 1: H∞ controller design algorithm on finite time domain [0, N].
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algorithm proposed in this paper and the controller gain
matrix K∗i,k obtained according to the algorithm in [22] are
shown in Table 2. -e state response curves of the

corresponding closed-loop system are shown in Figures 4
and 5, respectively. It can be seen from Figure 4 that the
controller gain matrix Ki,k obtained based on the algorithm

Table 1: Gain matrix of H∞ controller in finite-time domain.

k 0 1 2 3 4
Ki,k − 0.0779 0􏼂 􏼃 0 0.7157􏼂 􏼃 − 0.5168 0􏼂 􏼃 − 0.259 0􏼂 􏼃 − 0.6535 0􏼂 􏼃

k 5 6 · · · 29 30
Ki,k − 0.5704 0􏼂 􏼃 0 0.2589􏼂 􏼃 · · · 0 0.1248􏼂 􏼃 − 0.0151 0􏼂 􏼃

N
od

e

1

2

5 10 15 20 25 300
Time step k

Selected nodes ξk

Figure 1: Changes of the selected sensor nodes.

0 5 10 15 20 25 30
Time step k
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Figure 2: -e state trajectories of the open-loop system with state saturation.
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Figure 3: -e state trajectories of the closed-loop system with state saturation.
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proposed in this paper makes the state-saturated system
enter a stable state at the 6th transmission moment. It can be
seen from Figure 5 that the controller gain matrix K∗i,k
obtained from [22] makes the system enter a stable state at

the 20th transmission moment. For this system, other pa-
rameters remain unchanged. On the premise that the
controller has a solution, c in this algorithm can be taken as
the minimum c � 0.88, and in [22], the minimum c can be

Table 2: Gain matrix of finite-time domain H∞ controller obtained by two algorithms.

k 0 1 2 3 4
Ki,k − 0.0793 0􏼂 􏼃 0 0.7189􏼂 􏼃 − 0.5201 0􏼂 􏼃 − 0.2631 0􏼂 􏼃 − 0.6605 0􏼂 􏼃

K∗i,k − 0.0478 0􏼂 􏼃 0 0.3120􏼂 􏼃 − 0.1680 0􏼂 􏼃 − 0.1779 0􏼂 􏼃 − 0.3010 0􏼂 􏼃

k 5 6 · · · 29 30
Ki,k − 0.5716 0􏼂 􏼃 0 0.2619􏼂 􏼃 · · · 0 0.1270􏼂 􏼃 − 0.0151 0􏼂 􏼃

K∗i,k − 0.1809 0􏼂 􏼃 0 0.1970􏼂 􏼃 · · · 0 − 0.0001􏼂 􏼃 0 0􏼂 􏼃

x 
(k

)

x1 (k)
x2 (k)
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Figure 4: -e state trajectories of the state-saturated system with gain matrix Ki,k.
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Figure 5: -e state trajectories of the state-saturated system with gain matrix K∗i,k.
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taken as c � 0.80. To sum up, for the state saturation system
under the influence of random communication protocol, the
algorithm proposed in this paper takes into account many
system factors, and the value of c is relatively large, but the
dynamic performance of the system is better.

6. Conclusion

In this paper, the finite-time domain H∞ control problem of
state-saturated time-varying systems with random param-
eters and random nonlinearity under the influence of
random communication protocol is studied. Firstly, a state
saturation system model with random parameters and
random nonlinearity is constructed. -en, in the sensor-
controller transmission network, random communication
protocol is added to avoid data conflict. -en, the sufficient
conditions for the system to meet the H∞ performance
requirements are obtained by using the model transfor-
mation technology and matching method. On this basis, the
controller design algorithm based on the reverse-recursive
Riccati difference equation technology is presented. Finally,
numerical simulation shows the effectiveness of the pro-
posed algorithm.
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