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In this study, we studied the effects of offset boosting on the memristive chaotic system. A system with symmetry and conditional
symmetry was constructed, by adding the absolute value function to an offset boosting system. It is proved that the symmetric
system or a conditionally symmetric system can be constructed with similar or the same dynamic characteristics by using certain
correction and offset boosting in an asymmetric system. In addition tomultiple stability, the memristive system can also realize the
amplitude and frequency control by introducing a parameter. )e simulation circuit verifies the amplitude modulation char-
acteristics of the system.

1. Introduction

As the fourth basic circuit element, the memristor has
attracted an extensive attention in the nonlinear field. In
1971, Chua proposed a memristor to represent the rela-
tionship between charge and flux from the view of symmetry
when analyzing the relation among the voltage, current,
charge, and flux. In 2008, HP laboratory released a TiO2
charged memristor [1], declaring that a memristor was
found. A large number of research studies on memristor
models and typical chaotic systems have been published,
making the memristor widely studied in secure communi-
cation [2, 3], cryptography [4, 5], image encryption [6, 7],
associative memory [8, 9], voice encryption [10], and rec-
ognition and sequencing application [11]. Wang et al. [12]
reported a special bursting behavior previously unobserved
in third-order autonomous memristive circuits. Wang et al.
[13] developed a simple scheme implementing a multiseg-
ment piecewise-linear Chua’s diode and an inductor-free
multiscroll Chua’s circuit. In addition, the application of the
memristor in artificial synapses has also been started, which
is expected to be used for memristor calculation or system
design. Many characteristics have also been widely studied,
such as hidden attractors [14–17], coexisting attractors [18],

multistability [19–21], symmetry [22, 23], amplitude control
[24, 25], and offset boosting [26–29]. In [30], a simple
parametric control scheme for generation of the multiscroll
chaotic attractor from the jerk system has been presented. In
[31], a modified Chua’s circuit with a 5-segment piecewise-
linear Chua’s diode is presented, in which hidden attractors
and coexisting attractors are identified.

Many scientists have shown that some signals do not
require additional peripherals to provide pretuning, such as
amplitude controllable, frequency controllable [32], and
conditional symmetric attractors [23, 33, 34] in an asym-
metric system, extremely multistability attractors [35–37],
and so on.

In [38], Li and Sprott researched on amplitude of a chaos
dynamical system. )e chaos dynamical system can be
controlled by the coefficient of one or more terms without
changing the dynamics. In [39], cosine function was in-
troduced to keep the polarity balance and conditional
symmetric coexisting chaotic attractors. It was found that
the initial condition can be used to change the starting
oscillation as well as the amplitude and frequency [40]. )e
output polarity of the signal can be adjusted by adding a DC
voltage source [41]. As is known to all, asymmetric systems
give coexisting attractors from different directions. Offset
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boosting can be used to construct conditional symmetry to
achieve polar balance.

In this study, an offset boosting chaotic system was
constructed with the following properties: being of condi-
tional symmetry, amplitude modulation, and frequency
modulation. In Section 2, the model of the memristive
chaotic system is introduced and its dynamical properties
are investigated. In Section 4, amplitude modulation and
frequency modulation are described. In Section 5, bifurca-
tion and coexisting attractors are analyzed. In Section 6,
circuit implementation is discussed. Section 7 gives con-
clusion and discussion.

2. System Model Description

2.1. Mathematical Model. A new chaotic system is obtained
based on the chaotic system variable boosting VB24 [42].
)e chaotic system (VB24) has only one linear term, one
constant term, and four quadratic terms. We added an
absolute value function to VB24. Its new system mathe-
matical model is expressed as

_x � az
2

− yz,

_y � z
2

− b,

_z � x − cz|z|,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where x, y, and z are the three dynamical variables, and a and
c are all positive parameters. b is a nonzero constant term. In
system (1), an absolute value memristor is introduced to
construct a four-dimensional memristor chaotic system (2).

_x � az
2

− yz,

_y � z
2

− b + W(w)|z|,

_z � x − cz|z|,

_w � 0.5z − w.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

)e variable constraint relation of memristor is as
follows:

W(w) � −0.2 +|w|,

_w � 0.5z − w.
􏼨 (3)

)e parameters of the system (3) are a� 1.5, b� 0.7,
c� 0.5, and initial condition (IC) is (1 0 0 0). )e Lyapunov
exponents are LE1� 0.117031, LE2� 0.000306,
LE� −0.401139, and LE4� −1.190722, when time step is 1 s
and time length is 500 s. Numerical simulation software
MATLAB is used to numerical simulation, and the phase
trajectories of each plane are shown in Figure 1.)e attractor
of system (1) is asymmetric attractor; it has no symmetry
about any coordinate axis and does not have reflection
symmetry, rotation symmetry, and inversion symmetry.

2.2. Dynamical Analysis. With conventional dynamical
analysis tools, such as bifurcation diagram and Lyapunov
exponent spectrum, the dynamical behavior of the chaotic
system are explored under the varying parameters a, b, and c.

Under the conditions of the fixed parameters b� 0.7,
c� 0.5, and the fixed initial value, Lyapunov exponent and the
corresponding bifurcation diagram of the state variable w are
shown in Figure 2, when the parameter a increases gradually
from 0 to 5. Both the unstable and stable regions obtained by
the Lyapunov exponent spectrum are consistent with those
obtained by the bifurcation diagram in Figure 2. In the interval
a∈ [0, 2.9], the system is mainly in a chaotic state and there is a
small window of the periodic orbit. )e attractor gradually
transitions fromdouble to a single scroll attractor. For example,
when a� 0.3, the system is double scroll, a� 1.5, the system is
single scroll, and a� 0.9, the negative scroll become weaker.
When a∈ [2.95, 3.8]∪ [4.2, 4.3]∪ [4.8, 5], the system is a limit
cycle. For example, when a� 3.5, the system is periodic of cycle
1, a� 4.5, the system is periodic of cycle 2, and a� 4.4, the
attractor become sink. For different values of a, several typical
phase diagrams of the x − w plane with respect to parameter a
are shown in Figure 3.

When c varies from 0 to 3 and other parameters are
unchanged under the initial condition (1, 0, 0, 0), the bi-
furcation diagram of the state variable w and the corre-
sponding Lyapunov exponent spectrum are shown in
Figure 4, respectively. As shown in Figure 4(a), the system is
chaotic when c ∈ [0, 1.1]∪ [2.85, 3], and the largest Lyapunov
exponent is positive. When c ∈ [1.4, 1.5]∪ [1.7, 1.8]∪ [2, 2.8],
system (2) is periodic. When c ∈ [1.2, 1.35]∪ [1.8, 2], the
system drops into an interval of chaotic and periodic states
alternate with each other. For different values of c, several
typical phase diagrams of the x − w plane with respect to
parameter a are shown in Figure 5.

3. Symmetry and Conditional Symmetry

3.1. Symmetry. By using z|z| to replace z2 in x-dimension, a
new four-dimensional memristive chaotic system is
designed, and its state equation is

_x � az|z| − yz,

_y � z
2

− b +(−0.2 +|φ|)|z|,

_z � x − cz|z|,

_w � 0.5z − w.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

After the transformation of
(x, y, z, w)⟶ (−x, y, −z, −w), system (4) has a three-di-
mensional inversion symmetry property relative to
x − w − z. )e two attractor phase orbital diagrams with
inversion symmetry are shown in Figure 6.

3.2. Conditional Symmetry. Here, the absolute value func-
tions F(x) and F(y) are introduced to replace the variables x
and y. )e new system can be described as

_x � az
2

− F(y)z,

_y � z
2

− b +(−0.2 +|w|)|z|,

_z � F(x) − cz|z|,

_w � 0.5z − w.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)
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)e new absolute value function F(x) � |x| − d meet
F(x + d) � −F(x) and F(y) � |y| − e meet
F(y + e) � −F(y). )e increase of two absolute value
functions not only does not change the dynamic charac-
teristics of the original system but also brings additional
conditional symmetry properties. Figure 7 shows two cha-
otic attractor phase diagrams with conditional symmetry
under the transformation of x⟶ x + d, y⟶ y + e,
z⟶ − z, and w⟶ − w, when a� 1.5, b� 0.7, c� 0.5,
d� 35, and e� 50. )e original asymmetric system now has
symmetry, but it is different from other systems where two
attractors are in two systems. System (5) only needs to
change the initial state of the system to achieve the coex-
istence symmetry.

4. Amplitude Modulation and
Frequency Modulation

)e system (5) is scaled by x⟶ x/k, y⟶ y/k, z⟶ z/k,
w⟶ w, t⟶ kt, and b⟶ k2b, and the scale transfor-
mation is carried out. )e phase diagrams of system (6) at
different scales of k� 1, 3, 5, and 8 with initial values IC� (1,
1, 1, 3), a� 1.5, b� 0.7, and c� 0.5 are shown in Figure 8.)e
signals x and z are the bipolar signals, so their amplitude
changes in both positive and negative directions, but their
average value is zero.)e output signal y is a unipolar signal,

and its amplitude changes positively, and the mean value
increases with the change of parameter k. )e output signal
w is a bipolar signal, but it is not regulated. Its mean value is
zero, and its amplitude is almost unchanged. )e waveform
shows the change in the amplitude of signals caused by the
correction of parameter k and the effect on the oscillation
frequency of the system. )e waveforms and average values
of x(t), y(t), z(t), and w(t) with parameter k are shown in
Figure 9.

_x � az|z| − yz,

_y � z
2

− k
2
b + k(−0.2 +|w|)|z|,

_z � kx − cz|z|,

_w � 0.5z − kw.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

5. Bifurcation Analysis

When the parameters a� 1.5, b� 0.7, d� 15, e� 10, and c ∈
[0, 3], system (5) has other coexisting attractors, as shown in
Figure 10, where the red trajectory corresponds to the initial
condition (1 1 0 3) and the blue trajectory corresponds to the
initial condition (−1 1 0 −3). It can be seen that the system is
periodic when c� 2.5 and chaos when c� 1.5. )e negative
and positive bifurcations show the same Lyapunov exponent
except in the region c� (2.42, 2.55). )e system is chaotic
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Figure 1: Phase trajectory diagram of system (2).
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when c ∈ [0.23, 2.42], and the largest Lyapunov exponent
spectrum is positive at the initial values (1, 1, 0, 3). )e
coexistence period window of different structures appears in
a small range near c� 2.5. )e system drops into a periodic
window, while c ∈ (2.42, 2.55) at the initial values (−1, 1, 0,
−3). )e bifurcation diagram of the state variable x and the
corresponding Lyapunov exponent are shown in Figure 10.

6. Circuit Implementation

In order to verify the chaotic behavior of the system,
according to equation (6), the circuit equation is designed as
equation (7) and the designed analog circuit diagram is
shown in Figure 11. )e circuit is composed of four
channels, realize the integration, addition, and subtraction
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Figure 2: Lyapunov exponent spectrum and bifurcation diagram of the system (2) under different values of the parameter a. (a) Lyapunov
exponent. (b) Bifurcation diagram.
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of state variables x, y, z, and w. )e operational amplifier 741
performs the addition and integration, and the analog
multiplier AD633 performs the nonlinear product
operation.

Cx

dvx

dt
�

vz vz

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

R1
−

vyvz

R8
,

Cx

dvy

dt
�

vzvz

R6
−

V1

R9
+ −

V2

R27
+

vw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

R27
􏼠 􏼡 vz

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Cz

dvz

dt
�

vx

R10
−

vz vz

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

R7
,

Cw

dvw

dt
�

vz

R20
−

vw

R21
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where vx, vy, vz, vw, respectively, indicate the voltage of x, y,
z, and w. Let t� τRC, where τ is the dimensionless time.)e

amplitude modulation method in system (6) is used for the
scale transformation of the circuit. )e parameters are taken
as follows: C1 � C2 � C3 � C4 �1 nF, R2 � R3 � R4 � R5
� R6 � R8 � R28 � R32 �R� 100 kΩ, R1 �R/a, R1 �R/a,
R9 �R/(k2∗b), R27 �R/k, R7 �R/c, R10 �R/k, R20 � 2R,
R21 �R/k, R11 � R12 � R18 � R19 � R22 � 10 kΩ.

)e corresponding phase trajectories of system (6) when
k is equal to 1/3, 1, and 2, predicted by Multisim simulation
are shown in Figure 12. By comparing Figures 12 and 8, it
can be seen that the phase diagram of Multisim and
MATLAB is basically the same. )e difference between the
amplitude of the corresponding circuit simulation and the
MATLAB numerical simulation is mainly due to the satu-
ration distortion caused by the voltage range of the simu-
lator, which can be solved by scaling the whole system. In
this study, in order to verify the appearance of amplitude
modulation, amplitude control is realized only by changing
the parameter k. )e results and discussion may be pre-
sented separately or in one combined section and may
optionally be divided into headed subsections.
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Figure 11: )e circuit schematic of system (6).
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7. Conclusions

In this study, an offset boosting chaotic systemwas constructed.
)e dynamical behavior of the system is demonstrated by
phase trajectories, Lyapunov exponents, and bifurcation dia-
grams. )e following conclusions are obtained. (1) Absolute
value function is introduced in the chaotic systemwith variable
boosting. A chaotic system of conditional symmetry is con-
structed and analyzed. It is proved that a symmetric system or a
conditionally symmetric system can be constructed by using
offset boosting. (2) )e dynamic characteristics of the new
system generated by scale change are the same as that of the
original system, but a nonbifurcation parameter can be formed
to adjust the amplitude and frequency of system (3). )e
simulation circuit verifies the amplitude modulation charac-
teristics of the system.
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