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A rock bolt refers to a reinforcing bar used commonly in geotechnical engineering. Also, defect identification of bolt anchorage
system determines the safe operation of the reinforced structures. In the present paper, to accurately extract defect information, a
CNN model based on time-frequency analysis is proposed, covering both time-domain and frequency-domain information. 1e
effect of the number of convolution kernels on the defect identification results is discussed. By laboratory experiments, the
performances of STFT-based CNN with those of time-domain input or frequency-domain input-based 1D CNN are compared,
and the results demonstrate that the proposed method showed enhanced performance in identification accuracy.

1. Introduction

A rock bolt refers to a reinforcing element used commonly
in engineering to ensure the safe operation of reinforcing
structures. Rock bolts for reinforcing the underground mine
roofs have been increasingly used in the mining and tun-
neling sectors [1–3], having acted as the primary support
system in underground mines. 1e performance of the bolt
anchorage system is vital for both the safety of personnel and
the productivity of the operation. Each year, millions of rock
bolts are installed all over the world, and a feasible method is
required for monitoring their integrity, especially assessing
whether the bolt has experienced any breakage and will pose
a safety risk.

Various signal-based algorithms have been proposed
for the identification of the anchorage system. For the
signal-based algorithms, identification accuracy is deter-
mined by the features sensitive to the fault. 1e process of
feature extraction can be achieved by computing statistics
metrics in time, frequency, or time-frequency domain of
the signal representation [4–7].1e authors of [8] proposed
a new time-frequency analysis method, nonlinear sparse
mode decomposition (NSMD), which is proved to be a
feasible signal decomposition method and an effective fault
diagnosis method for planetary gearbox fault diagnosis. In

[9], 17 time-domain and frequency-domain features were
taken to build the characteristic matrix, and the feature
with larger cumulative contribution was adopted as the
input of SVM to achieve the identification of bolt anchor.
However, the designing of appropriate features is a critical
task, and it is highly dependent on extensive domain ex-
pertise and prior knowledge. To achieve such design, re-
searchers should understand the structure and the principle
of the anchorage system very well, making new features
difficult to mine. Besides, due to the effect of environment
vibration and noise, considerable noise signals are mixed in
real signals, leading to necessary information missed or
detected by mistake. 1us, a novel approach oriented to the
original acquisition signal as much as possible should be
developed to maintain the defect features and reduce the
effect of noise.

As fueled by the extensive advancement of deep learning,
numerous studies are being conducted on feature extraction.
1is method has the primary advantage of its ability to mine
representative information and sensitive features from raw
data. High-level abstractions of data can be modeled well
based on the complex deep structures, through which feature
extraction can be more efficient, as compared with the
shallow networks. In [10], a 1D deep convolutional neural
network was proposed for feature extraction of vibration
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signals. In [11], a deep multistream CNN was proposed to
learn deep features for writer identification. In [12], three
deep neural networks (deep Boltzmann machines, deep
belief networks, and stacked autoencoders) were employed
for feature extraction to identify the fault condition of rolling
bearing. In [13], deep learning was adopted to forecast stock
data. Benefited from the feature learning characteristic, deep
learning has been extensively used in visual recognition and
language understanding, and such feature learning ability
has also become its critical advantage [14–18]. Obviously, the
advantage of the feature learning ability of deep learning just
satisfies the requirements of an adaptive feature extraction
method. 1e use of deep learning and its feature learning
ability for defect identification of bolt anchorage systems has
bright prospect, and it is highly demanded.

Convolutional neural network (CNN), one of the most
successful network architecture in deep learning method,
has been applied with great success to learn features from
raw data and adopted as the dominant approach for almost
all recognition and detection tasks [19–24]. 1is paper de-
velops a CNN model to learn features directly from the raw
acceleration signals and tests the performance of feature
learning from combined time-frequency data.1e raw signal
is converted into a time-frequency map using STFT. Sub-
sequently, the time-frequencymap acts as input to CNN. For
comparison, three different inputs (time-domain, fre-
quency-domain, and time-frequency map) are adopted as
input to CNN. 1e results suggest that compared with the
other two methods, the proposed method can achieve higher
identification accuracy.

Compared with SVM, the BP neural network, and de-
cision tree, the proposed model has the following apparent
advantages:

(1) 1e model automatically extracts and recognizes the
deep features that are embedded in the bolt signal
without designing special feature extraction methods

(2) Compared with the single time-domain or fre-
quency-domain feature, the model mines the time-
frequency characteristics of the bolt signal, which
provides more abundant information for the accu-
rate identification of subsequent defects

1e rest of this paper is organized as follows. In
Section 2, how to build a suitable CNN model for the
defect identification of bolt anchorage system is discussed.
In Section 3, the experimental results for three different
inputs are illustrated. Lastly, in Section 4, some conclu-
sions are drawn.

2. Time-Frequency-Based Deep Model

2.1. Convolutional Neural Network. Convolutional neural
networks (CNNs) were first proposed by LeCun [25] for
image processing, characterized by two key properties
(spatially shared weights and spatial pooling). CNN aims to
learn abstract features by alternating and stacking con-
volutional layers and pooling layers. 1e architecture of
typical CNN is shown in Figure 1, as structured by series of
stages. 1e first few stages consist of two combined types of

layers (convolutional layers and pooling layers), while the
last stage of the architecture consists of a fully connected
layer and a conventional classification model. In CNN, the
convolutional layers (convolutional kernels) convolve
multiple local filters with raw input data and generate
translation invariant local features and the subsequent
pooling layers extract features with a fixed-length over
sliding windows of the raw input data following several rules
(e.g., average and max).

2.2. Analysis of Input Representations for CNN. CNNmodels
have achieved various successful computer vision applica-
tions where input data are usually 2D data [26–28]. 1e 1D
(one dimensional) CNN model (only time-domain infor-
mation is considered) has been studied for the anchorage
defect identification, exhibiting better identification accu-
racy than shallow learning. Now, both time-domain and
frequency-domain information are considered, which is
expected to achieve better recognition rate than that of 1D
CNN.

1e DHDAS dynamic test device is employed to collect
the acceleration signals for the normal reinforced bolts and
three types of reinforced anchor bolts with different defects.
1e signal acquisition process is illustrated in Figure 2.
Anchorage models are classified into four types, which are
rebar, cement, mortar, C45 concrete, and PVC tube (see
Figure 3).

1e experimental operation process is as follows: firstly,
an excitation signal is applied to the tip of the anchor bar
with a small hammer, producing the stress wave signal, and
the reflected wave is received by the IEPE piezoelectric
acceleration sensor. 1en, the acceleration signal is collected
and stored with the DH5923N dynamic signal test and
analysis device, where the sampling frequency is 10 kHz.

1e major specifications of the anchorage models are
listed in Table 1, where No.1 denotes the normal reinforced
bolt, and Nos. 2–4 are reinforced bolts with different defects.
1e corresponding tangent diagrams are given in Figure 4.
Besides, a set of acceleration signals collected in the ex-
periment are shown in Figure 5.

During the experiment, 260 sets of acceleration signals
are collected for each type of anchorage models. If all the
sample points are adopted as the CNN input, the training
time will be very long, and the data features will be re-
dundant, thus reducing the recognition rate of the anchorage
defects. Figure 5 suggests that the acceleration signals vary
obviously between 0.02 s and 0.04 s, which reflects the dif-
ferent characteristics of the anchorage systems. Accordingly,
sampling points between 0.02 s and 0.04 s are used for ex-
perimental analysis.

In actual engineering, the anchor bolt is interfered by
construction or natural conditions, which will cause the
collected signals of anchor bolts with the same type to be
slightly different. In order to enhance the generalization
ability of the established identification model, the generative
adversarial network (GAN) is introduced to enhance the
data of the dataset. 1e principle of the GAN is shown in
Figure 6.
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Figure 1: 1e architecture of typical CNN.

Figure 2: Schematic of signal acquisition.

Figure 3: 1e four types of anchorage models.
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In the experiment, the GAN network is used to generate
740 data for each type of bolt, which are combined with the
original samples collected to form a data set. 1e data set is
randomly disrupted, taking 3300 data for training set and
700 for testing.

1e short-term Fourier transform (STFT) has been a
feasible method to analyze frequency information over time.
STFT is based on the Fourier transform of short fragments
which are sampled bymoving a window, which is commonly
a Hamming window or Gaussian window. In the
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Figure 4: 1e tangent diagram of (a) No. 1, (b) No. 2, (c) No. 3, and (d) No. 4.

Table 1: 1e parameters of anchorage models with different types (Unit:mm).

Types
1e length of bolt

1e diameter
of rebar

1e diameter of
anchorage section

1e length of
defect

1e distance between the defect and
the top interface of the anchorFree

section
Anchorage
section

Total
length

No. 1 500 1500 2000 20 50 0 0
No. 2 500 1500 2000 20 50 100 330
No. 3 500 1500 2000 20 50 100 700
No. 4 500 1500 2000 20 50 110, 120 520, 1080
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Figure 5: 1e collected acceleration signals of anchorage bolts in experiment.
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Figure 6: 1e principle of the GAN.
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experiment, a Hamming window with a window size of 128
and overlapping samples of 64 is employed to transform the
acceleration signals into time-frequency spectrogram using
STFT, and the results are presented in Figure 7. Figure 8
illustrates that, to reduce the amount of calculation and
optimize the training of CNN, grayscale processing is per-
formed on the spectrogram.

2.3.*e Architecture of CNN Based on STFT. In this section,
the architecture of CNN is discussed to make it suitable for
bolt defect identification. Since a CNN is capable of in-
putting the original image directly, the time-frequency
spectrogram after grayscale processing is taken as the input
of CNN.

To avoid overfitting, a CNN model is built with 2
convolutional layers and 2 pooling layers (see Figure 9).
1e convolution kernel size is set as 5× 5, and the stride of
pooling is 2. To simplify the network, the number of
convolution kernels of the second convolutional layer is set
as twice that of the first convolutional layer. 1e defect
identification results of bolt anchorage system at the
number of convolution kernels of the two convolutional
layers set as (2, 4), (3, 6), (4, 8), (5, 10), (6, 12), (7, 14), and
(8, 16), respectively, are listed in Table 2, where No.1
represents structure (2, 4), and the rest, etc.

Table 2 indicates that, as the number of convolution
kernels is upregulated, the defect identification rate rises first
and then falls. 1e reason is that when the number of
convolution kernels is very small, the network cannot learn
the internal characteristics of the data well, resulting in lower
identification rate. While the number of convolution kernels
is too large, the extracted characteristics will be redundant,
leading to the decrease in the identification rate. With the
increasing complexity of the CNN network structure, the
training time is prolonged. Given the defect identification
rate, mean square error, and training time, the model adopts
the network structure of 5 and 10 convolution kernels in the
first convolutional layer and in the second convolutional
layer, respectively.

From the discussion above, the CNN model for bolt
defect identification is illustrated in Figure 9, comprising of
input layer, 2 convolutional layers, 2 pooling layers, and
output layer.

In Figure 9, five 5× 5 convolutional kernels are employed
to convolute the 64× 64 input feature map. Five feature
maps, at a size of 60× 60, are obtained. 1e general form of
the convolution operation is expressed by

xl
j � f 

i∈Mj

xl−1
i ∗W

l
j + b

l
j

⎛⎜⎝ ⎞⎟⎠, (1)

where, ∗ denotes the operator of two-dimensional discrete
convolution; xl

j is jth output feature map of lth layer; xl−1
i is

ith feature map of l-1th layer; Wl
j is the jth convolution

kernel of lth layer; and bl
j is the jth bias of lth layer, re-

spectively. f(·) denotes the activation function. Convolu-
tional and pooling layers appear alternately. Pooling
operation can reduce the resolution of the output feature

map and still maintain the features extracted from the high-
resolution feature maps. 1e commonly adopted pooling
operations cover max and average pooling expressed as
follows:

xl
j � g down xl

j  + b
l
j , (2)

where down(·) denotes the pooling function and g(·) is the
activation function of pooling layer, respectively. Average
pooling is adopted here, taking the average of all values of
sampling window as the eigenvalue, as shown in Figure 10.

As shown in Figure 9, the five 60× 60 feature maps are
obtained by the convolution of input feature maps. 1e five
30× 30 feature maps are obtained after pooling, so the di-
mension of the feature maps is downregulated.1ere are two
sets of convolutional and pooling layers—the 2nd con-
volutional layer performs convolution on the output of the
first pooling layer using 10 filters with size 5× 5 to produce a
total of 10 feature maps. After average pooling, ten 13×13
feature maps are yielded. Softmax is taken as the activation
function in the output layer, taking a vector of arbitrary real-
valued scores and squashing it to a vector of values between
zero and one. As discussed above, the convolution + pooling
layers act as feature extractors from the input image, while
output layer serves as a classifier.

3. Results and Discussion

In this section, three different data formats are adopted as
input to the CNN for the defect identification of bolt an-
chorage system. For the time-domain representation, the
original acceleration signal collected from the experiment
directly serves as input to the CNN model. For the fre-
quency-domain representation, the original acceleration
signal processed by FFT is adopted as the input to the CNN
model. Also, for the time-frequency spectrum format, the
original acceleration signal processed by STFT is taken as the
input of CNN model.

Shallow learning models, such as SVM, BP neural net-
work, and decision tree model are also applied to the defect
identification of bolt anchorage system. Among them, the
input of SVM and BP neural network is the 3-layer wavelet
decomposition coefficient of the time-domain signal, and
the input of the decision tree is the combination of time and
frequency-domain features. 1e corresponding identifica-
tion results are listed in Table 3.

Table 4 shows identification results of the CNN model
with different inputs.

Tables 3 and 4 show that, compared with SVM, BP, and
the decision tree, the defect recognitionmethod based on the
CNN model obtained a higher recognition rate. 1e reason
is that SVM, BP, and decision tree need to use artificial
feature extractors for feature extraction before identifying
the type of defects, which cannot fully excavate the new
internal features of the anchor bolt signal, thus limiting the
improvement of the recognition rate. However, the CNN-
based recognition method does not require manual feature
extraction, which mines the representative information of
the original signal automatically and forms higher-level
features for identification.

6 Mathematical Problems in Engineering



No. 1

0

1000

2000

3000

4000

5000
Fr

eq
ue

nc
y 

(H
z)

0.02 0.025 0.03 0.035 0.04
Time (s)

(a)

No. 2

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)

0.02 0.025 0.03 0.035 0.04
Time (s)

(b)

No. 3

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)

0.02 0.025 0.03 0.035 0.04
Time (s)

(c)

No. 4

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y 
(H

z)

0.02 0.025 0.03 0.035 0.04
Time (s)

(d)

Figure 7: 1e time-frequency spectrogram for 4 kinds of anchorage models.
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Figure 8: Continued.
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Figure 8: 1e corresponding grayscale spectrogram for 4 kinds of anchorage models.

Input
64∗64

C1
5@60∗60 S2

5@30∗30

C3
10@26∗26 S4

10@13∗13 Output
4∗1

Convolutions Pooling Convolutions Pooling

Softmax

Expand

Figure 9: 1e architecture of CNN for bolt defect identification.

Table 2: Identification results with different convolution kernel numbers.

No. Identification rate (%) Mean square error Training time (s)
1 90.43 4.79×10−2 411.5
2 92.65 3.05×10−2 603.4
3 95.12 1.29×10−2 887.3
4 96.03 1.16×10−2 1058.7
5 95.21 1.24×10−2 1289.1
6 91.92 4.21× 10−2 1436.6
7 87.96 6.39×10−2 1680.4
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Figure 10: 1e schematic of average pooling.
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Table 4 shows that the CNN model with the time-
frequency spectrogram as input has the highest recog-
nition accuracy of 98.98%, which is 0.84% and 14.85%
higher than the recognition rate of the CNN model with
time domain and frequency domain input, respectively.
1e reason is that the time-frequency spectrogram covers
both time domain and frequency domain information,
with more information included than single time-domain
data or frequency-domain data. For the CNN model with
time-frequency spectrogram, mean square error is the
smallest, while the training time is the longest. 1ough the
test time is longer than the other two models, it is within
an acceptable range. 1e analysis results suggest that the
CNN recognition model based on STFT obtains better
recognition results by consuming more training time.

4. Conclusions

Since 1D CNN model can only learn the time-domain in-
formation or frequency-domain information, a CNN model
based on STFT for defect identification of bolt anchorage
system is built. Based on analyzing the effect of the number
of convolution kernel on the recognition results, the optimal
structure of CNN model based on STFT is built, and
compared with the other two CNN models with time-do-
main input and frequency-domain input. 1e experimental
results suggest the following:

(1) For the number of convolution kernel, it is not the
more the better. 1e optimal structure of the net-
work is associated with the input data type, the size of
the data set, and the specific problem solved.

(2) When the time-frequency spectrogram is adopted as
the CNN input, the model obtains a higher recog-
nition rate, whereas the training time is prolonged,
suggesting that the model is at the expense of
training time in exchange for recognition rate.
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