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Large-scale social graph data poses significant challenges for social analytic tools to monitor and analyze social networks. .e
information-theoretic distance measure, namely, resistance distance, is a vital parameter for ranking influential nodes or
community detection. .e superiority of resistance distance and Kirchhoff index is that it can reflect the global properties of the
graph fairly, and they are widely used in assessment of graph connectivity and robustness. .ere are various measures of network
criticality which have been investigated for underlying networks, while little is known about the corresponding metrics for mixed
networks. In this paper, we propose the positive walk algorithm to construct the Hermitian matrix for the mixed graph and then
introduce the Hermitian resistance matrix and the Hermitian Kirchhoff index which are based on the eigenvalues and ei-
genvectors of the Hermitian Laplacian matrix. Meanwhile, we also propose a modified algorithm, the directed traversal algorithm,
to select the edges whose removal will maximize the Hermitian Kirchhoff index in the general mixed graph. Finally, we compare
the results with the algebraic connectivity to verify the superiority of the proposed strategy.

1. Introduction

Network science has been an emerging area in big data,
cyberspace security, and artificial intelligence [1–4]. Many
real-world networks are mixed, such as citation networks,
web page link networks, e-mail networks, and information
diffusion networks. Mixed networks, just like the underlying
one, emerge in the fields of multiagent systems [5, 6], bi-
ology [7], and society [8]. Many efficient algorithms have
been proposed to resolve the function and topological
structure of mixed networks, such as decentralized opti-
mization [9], node anomaly detection algorithm [10], em-
bedding algorithm [11], and magnetic Laplacian [12].
Undoubtedly, further analysis of mixed networks has be-
come an indispensable topic in the research of network
science and interdisciplinary.

1993, Klein and Randić first proposed resistance distance
[13]. Xiao and Gutman [14] uncovered some properties of a
resistance matrix. Combining the normalized Laplacian
matrix and the transition probability matrix, Chen and
Zhang [15] proposed a new degree-Kirchhoff index. Atik

et al. [16] extended the resistance distance to the weighted
graph. Up to this day, resistance distance has many im-
portant applied areas, such as phase transition [17], silicate
network [18], electrical network [19, 20], and complex
networks [21]. Compared to the calculation of eigenvalues
and eigenvectors, the advantage of resistance distance as a
metric is that it better reflects the overall nature of the
network, and it can reduce the computational complexity in
a large-scale network. To the best of my knowledge, the
research of resistance distance is mainly carried out in the
unweighted and undirected networks..ere are few research
studies about the resistance distance in mixed networks,
which is the motivation of this paper. .e focus in this paper
is to establish a new resistance distance metric for the mixed
networks.

As it is known to all, the study of the resistance distance is
inseparable from matrix theory. Matrix theory, including
Hermitian adjacency matrix [22, 23], Laplacian matrix
[24, 25], nonnegative matrix factorization [26], and condi-
tional probability matrix [27], is a powerful tool to deal with
graph topology structure and function because it can
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transform complex calculations into a series of four opera-
tions, which are easy to improve computational performance.
On the basis of [23], Mohar [28] proposed the Hermitian
matrix of the second kind. Yu et al. [29–31] have been devoted
to the study of Hermitian spectral theory for mixed graphs.
.e extension from the underlying graph to the mixed graph
is actually an extension from the real field to the complex
field. .e importance of the Hermitian matrix is becoming
increasingly prominent. .e matrix construction depends on
the graph direction, so how to give the graph direction that
meets the conditions is also an urgent problem to be solved.
With the development of the Hermitian matrix, more and
more models and strategies have been put forward [32–34].
.e Randic index has been widely used in network centrality,
clustering algorithm, network connectivity, and robustness
[35–37]. Meo et al. [38] estimated graph robustness through
the Randic Index. Along the direction of the Hermitian
matrix, we attempt to introduce the Hermitian resistance
matrix and the Kirchhoff index of the general mixed graph to
estimate robustness of the mixed graph.

In this paper, analogue to pseudoinverse matrix of the
Laplacian matrix for underlying graph, we extend the cor-
responding invertible matrix XH for mixed graph. Our main
contributions are as follows:

(1) We propose the Hermitian resistance matrix and the
Hermitian Kirchhoff index for positive mixed graph
and then establish a formula for the determinant and
the inverse of the Hermitian resistance matrix

(2) We propose a positive walk algorithm for the general
mixed graph

(3) Robustness of the general mixed graph is evaluated
by the modified directed traversal algorithm based
on the Hermitian Kirchhoff index

.e remainder of the paper is organized as follows.
Section 1 presents related work of the resistance matrix and
the Kirchhoff index. Section 2 introduces the Hermitian
Laplacian matrix. In Section 3, we define the Hermitian
resistance matrix RH and compute its determinant in the
positive mixed graph. In Section 4, we derive formulae for
inverse of the Hermitian resistance matrix. Section 5
characterizes the Hermitian Kirchhoff index in the positive
mixed graph. .e statistical experimental analysis in the
general mixed graph is shown in Section 6. Section 7
concludes the paper.

2. Hermitian Laplacian Matrix

Let G be a mixed graph with a finite vertices set V(G) and a
subset E(G)⊆V(G) × V(G). .e edge set E(G) is the union
of undirected edges and the directed edges. For convenience,
we define the undirected edge as vi↔vj and the directed edge
is vi⟶ vj if the orientation is from vi to vj. .e diagonal
matrix D � diag(d1, d2, . . . , dn) is the degree matrix, where
di is the degree of vi of the underlying graph Ω(G). We
denote H∗ � (H)T. .en, H is a Hermitian matrix if
H∗ � H. .e Hermitian adjacency matrix of a mixed graph
is the matrix H ∈ CV×V [22, 23], whose element

ηij �

1, if vi↔vj,

i, if vi⟶ vj,

−i, if vi←vj,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

.e value of a mixed walk T � v1v2, . . . , vk in G is
η(T) � η12η23, . . . , η(k−1)k. A mixed walk is positive (nega-
tive) if η(T) � 1 (η(T) � −1).

Lemma 1 (see [30]). A mixed graph G is positive if and only
if, for any two vertices v1 and v2, all mixed paths from v1 to v2
have the same value.

Lemma 2 (see [31]). Let G be a connected mixed graph on
vertices v1v2, . . . , vn. If LH � D − H is a positive semidefinite
matrix and singular, then 0 is a simple eigenvalue with an
eigenvector:

1H � 1, η T2( 􏼁, η T3( 􏼁, . . . , η Tn( 􏼁􏼐 􏼑
T
, (2)

where Ti is a 1− i-walk in G.

.e Hermitian Laplacian eigenvalues and orthogonal
eigenvectors will be denoted by λi and
ui � (ui1, ui2, . . . , uin)T, respectively. Denote the unitary
matrix:

UH � u1, u2, u3, . . . , un( 􏼁, (3)

where un � 1/
�
n

√
1H.

.en, we have

U
∗
HLHUH � diag λ1, . . . , λn−1, 0􏼂 􏼃, (4)

and

UHU
∗
H � U

∗
HUH � I, (5)

i.e.,

􏽘

n

k�1
ukiukj � 􏽘

n

k�1
uikujk �

1, if i � j,

0, if i≠ j.
􏼨 (6)

3. Hermitian Resistance Matrix in Positive
Mixed Graph

In this section, we establish the relationship between the
Hermitian resistance matrix and the Hermitian Laplacian
matrix in the positive mixed graph.

Lemma 3 (see [22]). Let G be a mixed graph. 2en, the
following are equivalent:

(1) G is a positive
(2) G ∼ Gu

Lemma 4 (see [30]). Let G be a positive mixed graph. 2en,
the following statements hold:
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(1) SPH(G) � SPA(Gu), where SPA(Gu) is the spectrum
of the adjacency matrix of Gu

(2) SPLH
(G) � SPL(Gu), where SPL(Gu) is the spectrum

of the Laplacian matrix of Gu

By Lemma 3 and Lemma 4, we give the definition of
n × n orientation matrix OH ∈ C:

OH �

1

η T2( 􏼁

⋱

η Tn( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

.en, we establish the relationship between the Her-
mitian matrix and the corresponding matrix in the un-
derlying graph by the orientation matrix OH.

Lemma 5 (see [22]). Let G be a positive mixed graph on n

vertices andH and A be the Hermitian adjacency matrix and
the adjacency matrix, respectively. For a diagonal matrix
OH � diag(1, η(T2), . . . , η(Tn)), we have

O
∗
HHOH � A. (8)

Corollary 1. Let G be a positive mixed graph on n vertices,
LH be the Hermitian Laplacian matrix, and L be the Lap-
lacian matrix of the underlying graph. For the orientation
matrix OH � diag(1, η(T2), . . . , η(Tn)), we have
O∗HLHOH � L.

Now, we denote
JH � 1H1∗H. (9)

.erefore,

U
∗
HJHUH � U

∗
H1H( 􏼁 U

∗
H1H( 􏼁

∗
� diag[0, 0, . . . , n].

(10)

By equations (4) and (10), we have

U
∗
H LH +

1
n

JH􏼒 􏼓UH � diag λ1, . . . , λn−1, 1􏼂 􏼃. (11)

.ematrix LH + 1/nJH is nonsingular, and we define its
inverse

XH � LH +
1
n

JH􏼒 􏼓
− 1

. (12)

Similarly, we have the following corollary.

Corollary 2. Let G be a positive mixed graph on n vertices
and X � (L + 1/nJ)− 1, where J denote the square with all
entries equal to 1. 2en, XH is Hermitian and

O
∗
HXHOH � X. (13)

Now, we apply this process to the resistance matrix.

Theorem 1. Let G is a positive mixed graph and R is the
resistance matrix of the underlying graph; then, the Hermitian
resistance matrix is

RH � OHRO
∗
H. (14)

Proof 1. By .eorem 3 and the definition of resistance
matrix, we have

OHRO
∗
H �

x11
⋱

xnn

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠OHJO
∗
H

+ OHJO
∗
H

x11
⋱

xnn

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − OHXO
∗
H

�

x11
⋱

xnn

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠JH + JH

x11
⋱

xnn

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − XH

� RH,

(15)

where xii is the diagonal member of X. □

In view of .eorem 1, we have
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U
∗
HR
∗
HUH � U

∗
H

x11

⋱

xnn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
JH + JH

x11

⋱

xnn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 2XH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
UH , (16)

RH

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

−
2
λ1

0 . . . 0
�
n

√
􏽘

n

i�1
u1iη Ti( 􏼁xii

0 −
2
λ2

. . . 0
�
n

√
􏽘

n

i�1
u2iη Ti( 􏼁xii

⋮ ⋮ ⋱ ⋮ ⋮

0 0 . . . −
2

λn−1

�
n

√
􏽘

n

i�1
u2n−1,iη Ti( 􏼁xii

�
n

√
􏽘

n

i�1
u1iη Ti( 􏼁xii

�
n

√
􏽘

n

i�1
u2iη Ti( 􏼁xii . . .

�
n

√
􏽘

n

i�1
un−1,iη Ti( 􏼁xii 2 􏽘

n−1

i�1

1
λi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�

−
2
λ1

0 . . . 0
�
n

√
􏽘

n

i�1
u1iη Ti( 􏼁xii

0 −
2
λ2

. . . 0
�
n

√
􏽘

n

i�1
u2iη Ti( 􏼁xii

⋮ ⋮ ⋱ ⋮ ⋮

0 0 . . . −
2

λn−1

�
n

√
􏽘

n

i�1
u2n−1,iη Ti( 􏼁xii

0 0 . . . 0 SH + 2 􏽘
n−1

i�1

1
λi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

(17)

where

SH �
n

2
􏽘

n−1

i�1
λi 􏽘

n

k�1
uik η Tk( 􏼁xkk

⎛⎝ ⎞⎠ 􏽘

n

t�1
uitη Tt( 􏼁xtt

⎛⎝ ⎞⎠

�
n

2
􏽘

n

k�1
􏽘

n

t�1
η Tk( 􏼁xkkη Tt( 􏼁xtt 􏽘

n−1

i�1
uitλiuik

⎛⎝ ⎞⎠

�
n

2
􏽘

n

t�1
􏽘

n

k�1
η Tt( 􏼁xttη Tk( 􏼁xkk LH( 􏼁tk

�
n

2
xii, x22, . . . , xnn( 􏼁D

∗
HLHDH xii, x22, . . . , xnn( 􏼁′.

(18)

.erefore, we have

RH

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � (−1)

n− 1 2n− 1

􏽑
n−1
i�1 λi SH + 2 􏽘

n−1

i�1

1
λi

⎛⎝ ⎞⎠ � (−1)
n− 1 2

n− 1

nt(G)
SH + 2 􏽘

n−1

i�1

1
λi

⎛⎝ ⎞⎠,
(19)
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where t(G) is the number of spanning trees of the G.

4. Inverse of the Hermitian Resistance Matrix

In this section, we will show that the Hermitian resistance
matrices are nonsingular and derive a formula for the in-
verse of them.

For i � 1, 2, . . . , n, we define the n × 1 vector
ω � (ω1,ω2, . . . ,ωn)T, such that

ωi � 2η Ti( 􏼁 − 􏽘
j ∼ i

η Tj􏼐 􏼑rH(i, j). (20)

Theorem 2. Let G be a positive mixed graph on n vertices and
LH be the Hermitian Laplacian matrix associated with G. If
the 􏽥XH � diag(x11, x22, . . . , xnn) and ω are defined as above,
then

ω � LH
􏽥XH1H +

2
n
1H. (21)

Proof 2. Let di be the degree of vertex i. According to
(LH + 1/nJH)X∗H � I, we have

dixii − η Ti( 􏼁 􏽘
j ∼ i

η Tj􏼐 􏼑xij +
1
n
η Ti( 􏼁 􏽘

n

j�1
η Tj􏼐 􏼑xij � 1.

(22)

.en,

diixii − η Ti( 􏼁 􏽘
j ∼ i

η Tj􏼐 􏼑xij +
1
n

� 1. (23)

.us,

􏽘
j ∼ i

η Tj􏼐 􏼑xij � η Ti( 􏼁diixii + η Ti( 􏼁
1
n

− η Ti( 􏼁. (24)

Now, for i � 1, 2, . . . , n, we have

ωi � 2η Ti( 􏼁 − 􏽘
j ∼ i

η Tj􏼐 􏼑rH(i, j)

� 2η Ti( 􏼁 − 􏽘
j ∼ i

η Tj􏼐 􏼑rH(i, j)

� 2η Ti( 􏼁 − 􏽘
j ∼ i

η Ti( 􏼁xii + η Ti( 􏼁xjj − 2η Tj􏼐 􏼑xij􏼒 􏼓

� 2η Ti( 􏼁 − η Ti( 􏼁dixii − η Ti( 􏼁 􏽘
j ∼ i

xjj + 2 􏽘
j ∼ i

η Tj􏼐 􏼑xij

� η Ti( 􏼁dixii − η Ti( 􏼁 􏽘
j ∼ i

xjj +
2
n
η Ti( 􏼁 [By (24)].

(25)

Hence, ω � L∗H
􏽥XH1H + 2/n1H. □

Now, by .eorem 2, we have

1∗Hω �
2
n
1∗H1H � 2. (26)

Theorem 3. Let G be a positive mixed graph on n vertices. Let
LH and RH be the Hermitian Laplacian matrix and the
Hermitian resistance matrix, respectively. If the n × 1 vector
􏽦xH � 􏽦XH1H, then

ω∗RHω � 2􏽦xH

∗
LH

􏽦xH +
8
n
trace L

†
H􏼐 􏼑. (27)

Proof 3. By .eorem 2, we have

ω∗RHω � 1∗H 􏽦XHL
∗
H +

2
n
1∗H􏼒 􏼓RH LH

􏽦XH1H +
2
n
1H􏼒 􏼓

� 1∗H 􏽦XHL
∗
HRHLH

􏽦XH1H +
2
n
1∗HRHLH

􏽦XH1H

+
2
n
1∗H 􏽦XHL

∗
HRH1H +

4
n
21
∗
HRH1H.

(28)

In view of .eorem 1, we obtain

L
∗
HRHLH � −2L

∗
HXHLH � −2L

∗
HL

†
HLH � −2LH. (29)

.at is,

1∗H 􏽦XH L
∗
HRHLH( 􏼁 􏽦XH1H � −2􏽦xH

∗
LH

􏽦xH . (30)

.en,
2
n
1∗H 􏽦XHL

∗
HRH1H � 2􏽦xH

∗
LH

􏽦xH. (31)

In a similar way,
2
n
1∗HRHLH

􏽦XH1H � 2􏽦xH

∗
LH

􏽦xH. (32)

Finally,
4
n
21
∗
HRH1H �

8
n

trace 􏽦XH − 1􏼐 􏼑 �
8
n
traceL†

H. (33)

Applying equations (32)–(35), we obtain

ω∗RHω � 2􏽦xH

∗
LH

􏽦xH +
8
n
trace L

†
H􏼐 􏼑. (34)

Obviously, ω∗RHω is a positive definite matrix. □

Next, we show that the Hermitian resistance matrix is
nonsingular and establish the inverse of them.

Theorem 4. Let G be a positive mixed graph on n vertices. Let
LH and RH be the Hermitian Laplacian Matrix and the
Hermitian resistance matrix, respectively. 2en, RH is non-
singular and

R
−1
H � −

1
2
LH +

1
ω∗RHω

ωω∗. (35)
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Proof 4. By .eorem 1, we have

L
∗
HRH + 2I � L

∗
H

􏽥XHJH +
2
n

JH � ω1∗H,

L
∗
HRH + 2I( 􏼁

∗ω � ω1∗Hω � 2ω.

(36)

.en,

L
∗
HRHω � 0. (37)

By .eorem 1, RHω is nonzero. In view of L∗H1H � 0,
there exists a nonzero scalar β such that

RHω � β1H,

β �
1
2
ω∗RHω.

(38)

.at is,

RHω �
ω∗RHω

2
1H. (39)

Hence,

−
1
2
L
∗
H +

ωω∗

ω∗RHω
􏼠 􏼡RH � −

1
2
L
∗
HRH +

ωω∗RH

ω∗RHω

� −
1
2
L
∗
HRH

+
ω1∗H

ω∗RHω
ω∗RHω

2
[By (39)]

� −
1
2
L
∗
HRH +

1
2
ω1∗H

� I. [By (36)].

(40)

.erefore, the matrix RH is nonsingular, and
R−1
H � −1/2LH + 1/ω∗RHωωω∗. □

5. Hermitian Kirchhoff Index in Positive
Mixed Graph

In this section, we establish the Hermitian Kirchhoff index in
terms of the spectrum of LH in a positive mixed graph.

Theorem 5. Let G be a positive mixed graph on n vertices.
2en, the Hermitian Kirchhoff index is

Kf � 􏽘
i< j

η Ti( 􏼁η Tj􏼐 􏼑rH(i, j) � n 􏽘
n−1

k�1

1
λk

. (41)

Proof 5. By .eorem 1, we have

Kf � 􏽘
i< j

η Ti( 􏼁η Tj􏼐 􏼑rH(i, j)

�
1
2

􏽘

n

i�1
􏽘

n

j�1
r(i, j)

� n 􏽘
n−1

k�1

1
λk

.

(42)

□

6. Experimental Analysis of Hermitian
Kirchhoff Index in General Mixed Graph

According to Lemma 5, we propose a positive walk algo-
rithm (see Algorithm 1) to give a positive direction for a
given undirected graph G.

In the real world, not all mixed graphs are positive. If LH

is nonsingular, we compute the Hermitian resistance matrix
by the Moore–Penrose generalized inverse L† of the Her-
mitian Laplacian matrix of the mixed graph:

rH(i, j) � L
†
H􏼐 􏼑

ii
+ L

†
H􏼐 􏼑

jj
− L

†
H􏼐 􏼑

ij
− L

†
H􏼐 􏼑

ji
. (43)

We establish the Hermitian Kirchhoff index in terms of
the Hermitian resistance matrix in a mixed graph.

Theorem 6. Let G be a mixed graph on n vertices. 2en, the
Hermitian Kirchhoff index is

Kf � 􏽘
i< j

rH(i, j).
(44)

.ere is a close relationship between the Kirchhoff index
and the robustness of network, for example, the bigger the
Kirchhoff index, the lower the ability of network to function
in an emergency situation. .e Kirchhoff index and the
robustness of the network are negative correlation. Further
more, algebraic connectivity is also widely used to measure
the robustness of networks; however, algebraic connectivity
is positively correlated with robustness. .at is to say, al-
gebraic connectivity is negatively correlated with the
Kirchhoff index. Next, we will use Hermitian algebraic
connectivity and Hermitian Kirchhoff index to measure the
robustness of the general mixed graph, as a comparison of
different robustness measures. In order to verify the ratio-
nality and applicability of our suggestion, we propose a
directed traversal algorithm (see Algorithm 2) to obtain the
edge set Emax whose removal from a mixed graph G will
maximize the Hermitian Kirchhoff index..en, we compare
it with the results of algebraic connectivity. Peng et al. [39]
investigated the robustness of undirected mesh graphs. We
generalize mixed mesh graphs to random graphs.

We take two E-R mixed graphs as examples. A mixed
graph of 12 points is established as in Figure 1 and a mixed
graph of 34 points is established as in Figure 2. .en, we use
the directed traversal algorithm (see Algorithm 2) to cal-
culate Emax in the graphs, and we show the result in Table 1.
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Figure 1: A mixed graph of 12 points.

Input: .e adjacency matrix An×n

Output: .e Hermitian adjacency matrix Hn×n

(1) Let O be a null matrix
(2) Let T � −1, 1, −i, i{ }

(3) Let O00 � 1.
(4) Randomly select an element of T\ −1{ } for O11
(5) for each i in (2, n) do
(6) Randomly select an element of T for Oii

(7) for each j in (0, i) do
(8) if Ojj � −Oii and Aij � 1 then
(9) T\ Oii􏼈 􏼉

(10) Randomly select an element of T for Oii

(11) end if
(12) end for
(13) end for
(14) H � OAO∗

ALGORITHM 1: .e positive walk algorithm.

Input: .e mixed graph G

Output: Edge set Emax
(1) Random select an edge e0 of the mixed graph G

(2) Obtain the Hermitian resistance matrix H of G − e0
(3) Calculate the K(G − e0) and initialize Kmax � K(G − e0)

(4) for each edge e ∈ E(G) do
(5) remove e from G

(6) calculate K(G − e)

(7) if K(G − e)>Kmax then
(8) Kmax � K(G − e)

(9) Emax � e{ }

(10) else
(11) if K(G − e) � Kmax then
(12) Emax � Emax ∪ e{ }

(13) end if
(14) end if
(15) end for

ALGORITHM 2: .e directed transversal algorithm.

Mathematical Problems in Engineering 7



7. Conclusion

Many strategies of community detection in social networks
have been developed, among them the spectral clustering
based on the resistance matrix is widely used in community
detection. In this paper, we focus on the Hermitian re-
sistance matrix for positive mixed graphs and general
mixed graphs. .e Hermitian resistance matrix is a gen-
eralization for the resistance matrix in underlying graphs.
In addition, we derive the formulae for the determinant,
inverse of the Hermitian resistance matrix, and obtain the
Hermitian Kirchhoff index. In order to show the practi-
cability of the Hermitian matrix, we utilize the Hermitian
Kirchhoff index to analyze the robustness of general mixed
networks. Furthermore, we put forward the positive walk
algorithm and the directed graph traversal algorithm. Our
future work will apply the Hermitian matrices on algo-
rithms for mining key nodes of directed networks and
community detection.
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Figure 2: A mixed graph of 34 points.

Table 1: Data statistics of the Hermitian Kirchhoff index after the edge is removed.

Mixed graph Removed edge Kmax λmin

G12 (5, 8) 139.2550 0.1381
G34 (17, 7) 470.9381 0.5091
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for the Randić index with given domination number,”Applied
Mathematics and Computation, vol. 375, Article ID 125122,
2020.

Mathematical Problems in Engineering 9



[36] C. T. Mart́ınez-Mart́ınez, J. A. Méndez-Bermúdez,
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