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A convex polytope is the convex hull of a finite set of points in the Euclidean space R”. By preserving the adjacency-incidence
relation between vertices of a polytope, its structural graph is constructed. A graph is called Hamilton-connected if there exists at
least one Hamiltonian path between any of its two vertices. The detour index is defined to be the sum of the lengths of longest
distances, i.e., detours between vertices in a graph. Hamiltonian and Hamilton-connected graphs have diverse applications in
computer science and electrical engineering, whereas the detour index has important applications in chemistry. Checking whether
a graph is Hamilton-connected and computing the detour index of an arbitrary graph are both NP-complete problems. In this
paper, we study these problems simultaneously for certain families of convex polytopes. We construct two infinite families of
Hamilton-connected convex polytopes. Hamilton-connectivity is shown by constructing Hamiltonian paths between any pair of
vertices. We then use the Hamilton-connectivity to compute the detour index of these families. A family of non-Hamilton-
connected convex polytopes has also been constructed to show that not all convex polytope families are Hamilton-connected.

1. Introduction and Preliminaries

All graphs in this paper are simple, loopless, finite, and
connected.
A graph G is an ordered pair G = (V (G), E(G)) with
V (G) as its vertex set (i.e., set of points called vertices) and
V(G)
2

E(G)c ( ) as its edge set (i.e., set of lines connecting

points called edges). The number of vertices, say
n: = |V(G)|, is called the order of G and the number of
edges, say m: = |E(G)|, is called the size of G. For two
vertices x, y € V(G), we write x ~ y if both x and y are
adjacent, i.e., they are connected by an edge. For UCV (G)

and x,yeV(G), if U={uy:1<i<p}, then xo
{u;: 1<i<p}eoy means that x ~u; and u, ~ y and adja-
cency in the rest of u;’s (2<i<p) stays the same. For a
positive integer v € Z*, we write ¥|2 (resp. v{2) if v is even
(resp. odd).

A Hamiltonian cycle Cy(x) in a connected graph G
starting and finishing at the vertex x is a cycle traversing all
the vertices of G. Similarly, a Hamiltonian path Py (x, y)
between vertices x and y is the one covering the entire graph
without missing any vertex. A graph comprising a Hamil-
tonian path (resp. Hamiltonian cycle) is called traceable
(resp. Hamiltonian). Every Hamiltonian graph, by defini-
tion, is traceable, whereas the converse is not true in general.
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For instance, the so-called Petersen graph does not contain
any Hamiltonian cycle and, thus, is not Hamiltonian.
However, you can easily find a Hamiltonian path between
two of its vertices, which makes it traceable but not Ham-
iltonian. Graphs comprising Hamiltonian paths between
every pair of its vertices are called Hamilton-connected.
They were introduced and studied in 1963 by Ore [1].
Trivalent Hamiltonian graphs and their canonical repre-
sentation were studied by Frucht [2]. Hamilton-connectivity
and Hamiltoniancity possess some extensive available lit-
erature. See, for example, [3-7].

By preserving the vertex-edge incidence relation in
convex polytopes, their graphs are constructed. Baca [8-10]
was among the first researchers to consider these families of
geometric graphs. In [10] (resp. [9]), Baca studied the
problem of magic (resp. graceful and antigraceful) labeling
of convex polytopes, whereas in [8], the problem of face
antimagic labeling of convex polytopes was studied. Miller
et al. [11] studied the vertex-magic total labeling of convex
polytopes. Imran et al. [12-15] computed the minimum
metric dimension of various infinite families of convex
polytopes. In particular, they showed that these infinite
families of convex polytopes have constant metric dimen-
sion. Malik and Sarwar [16] also constructed two infinite
families of convex polytopes having constant metric di-
mension. Other closely related infinite families of graphs
with constant metric dimension are studied in [17]. Kratica
et al. [18] studied the strong metric dimension of certain
infinite families of convex polytopes by constructing their
doubly resolving sets. The fault-tolerant metric dimension
(resp. mixed metric dimension) of convex polytopes was
studied by Raza et al. [19] (resp. Raza et al. [20]). The binary
locating-dominating number of convex polytopes is studied
by Simic¢ et al. [21] and Raza et al. [22]. The open-locating-
dominating number of certain convex polytopes has recently
been studied by Savi¢ et al. [23]. Hayat et al. [24] studied
Hamilton-connectivity and detour index in convex
polytopes.

For a graph G, let £(x, y) be the length of the longest path
(i.e., detour) between vertices x and y of G. The detour index
[25] is defined to be the sum of the lengths of the detour
between unordered pairs of vertices in G. The detour index
of a graph G is usually denoted by w (G).

w@G= )

{xy}cv(G)

2(x, y). (1)

In chemistry, the detour index has diverse applications.
Lukovits [26] put forward its QSAR/QSPR applications.
Trinajsti¢ et al. [27] presented some more of its chemical
applications and compared its predictive potential in cor-
relating the normal boiling points of benzenoid hydrocar-
bons with the performance of Wiener index. Riicker and
Riicker [28] presented more of its rigorous applications for
correlating the boiling points of acyclic and cyclic alkanes.
The calculation of the detour index for a given graph has
been shown an NP-complete problem in [29].

Mahmiani et al. [30] proposed the edge versions of the
detour index and studied their mathematical properties.
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Zhou and Cai [31] proved some upper and lower bounds on
the detour index of graphs. Qi and Zhou [32] studied
minimum uncyclic graphs with respect to the detour index.
Du [33] studied the minimum detour index of bicyclic
graphs. Fang et al. [34] characterized the minimum detour
index of some families of tricyclic graphs. Karbasioun et al.
[35] studied the applications of the detour index in infinite
families of nanostar dendrimers. Wu and Deng [36] com-
puted the detour index for a chain of C20 fullerenes.
Kaladevi and Abinayaa [37] studied spectral properties of
the detour index in relation with the Laplacian energy of
graphs. Recently, Abdullah and Omar [38] introduced the
restricted edge version of the detour index and studied it for
some families of graphs. Tang et al. [39] studied Zagreb
connection indices of some operation of graphs.

Let S, denote the v-dimensional star graph on v+1
vertices. We end this section with an important and well-
known result bounding the detour index in terms of its
order.

Theorem 1 [40]. Let G be an v-vertex graph with v>3 and
w (G) be its detour index. Then,
2
(v— I)ZSw(G)Sw, (2)
with left equality if and only if G = S,, and right inequality
holds if and only if G is Hamilton-connected.

2. A Family of Non-Hamilton-Connected
Convex Polytopes

Baca [10] introduced the graph of convex polytope D, for
y>4. It is a family of convex polytopes comprising 2v
pentagonal faces. See Figure 1 for the v-dimensional family
of convex polytopes D,

Mathematically, the vertex set of D, consists of four
layers of vertices, i.e., w,, X, ¥,, and z,,. That is to say that
V(D,) = {wp,xp,yp,zp: ISPSV}. Accordingly, the edge
set of D, is as follows:

E(D,) ={WpWpi1>ZpZ pi1> WpX ps XY s X i1 Vo ¥ pZp' 1

p<vh

IN
IN

(3)

The subscripts are to be considered modulo v. The layer
of vertices comprising w,, is called the inner layer, whereas
the layer comprising z,, is called the outer layer of D,. The
vertices x, and y,, 1 < p<v form the middle layers.

The following result shows that the infinite family D, of

convex polytopes is not Hamilton-connected.

Proposition 1. The v-dimensional convex polytope D,, with
v >4, is non-Hamilton-connected.

Proof. It is enough to show that there exist two vertices in
the v-dimensional convex polytope D, such that no Ham-
iltonian path exists between them.
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FiGure 1: The graph of convex polytope D,.

It is easy to see that, between every pair of vertices at
distance two on the outer layer, ie., between z, and
Zp2 (1< p<v-—1), there exists no Hamiltonian path be-
cause of the two pentagonal layers of faces. This shows that
the v-dimensional convex polytope D, is non-Hamilton-
connected. |

3. Hamilton-Connectivity and the Detour
Index of H,

In this section, we show that the graph of v-dimensional
convex polytope H, is Hamilton-connected. Then, we use its
Hamilton-connectivity to find a formula for its detour index.
This family of convex polytopes was introduced by Imran
and Siddiqui [14].

Mathematically, the vertex set of H, consists of four
layers of vertices, i.e., v, Wy, X,, ¥, and z,,. That is to say

that V(H,) = {vp,wp,xp,yp,zp: l<p< v}. Accordingly,
the edge set of H, is as follows:

E(H,) ={Vpu1: Vptlp WyVpy1> Wplpy1s WX pp Xp Xy

XpYp> VpXpt1o Y pY pi1> VpZp> ZpZpst 1SPSV}'

(4)

The subscripts are to be considered modulo v. See
Figure 2 to view the v-dimensional convex polytope graph
H,.
The following is the main result of this section.

Theorem 2. The graph of v-dimensional convex polytope H,,
with v>5, is Hamilton-connected.

Proof. We prove this result by definition. For this, we have
to show that there exist Hamiltonian paths between any pair
of vertices of H,,.

Let Py (u,v) be a Hamiltonian path between vertices u
and v in H,. Let V(H,)=ZUYUXUWUYV such that

Z={z1,2.. 52}, Y ={y ¥ b X ={x1,x5 ...,
x}h W={w,w,...,w,}, and V={v,v,,...,v,} (see
Figure 2).

Case 1: u' =z, and v/ = z,,2<p<v

Subcase 1.1: 2< p<v -2

Py, V)u' =z,0{z, ; 0<q<v-p-1}e{y, . 0<q<p-2}o{x;: 3<q<p+1}o

{quq: p+2£q§v}oy1x1wlo{vq: ISqS‘u}o{w%q: Oquv—Z}oxzyzo{zq: ZSqu} =v.

Subcase 1.2: p=v-1:

U

Py V) u =zz,y,y 5w, o{yq: Iquv}o{wv_q: qusv—Z}o

Subcase 1.3: p = »:

(5)

6

{xq: qus”}“{)’v—q: ISqu—Z}O{zq:2§q£v—1}:v’, (©)
< o _0<g<y—-2tfo

q<’V} {qu q<1} (7)

Py V) v =z y,x0w, o{v (1<

q
{xq: 2Sq§v}0{

Case 2: u' =z, and V' =ypl<p<y

Subcase 2.1: 1< p<y-1:
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FIGURE 2: The v-dimensional convex polytope H,,.

Py (' V') :{zq: Ingv}o{yv_q: 0<q<v-p- l}o{xq: p+1§q$v}o

8
{wv,q: OSqu—Z}o{vq: 2Squ}ov1wlo{quq: Iqup}zv’. ®
Subcase 2.2: p =
Py (u',v'): u':zlo{zv_q:Ongv—Z}o{yq:qusv—l}o
9
{x,,_q: 0Sq§v—2}o{wq: ZSqu}o{vv_q: OSqu—l}owlxlylyv:v’. ©
Case 3: u' =z, and V' = Xpl<p<y Subcase 3.1: 1< p<v—1:
Py(u',v): ' ={z; 1<q<v}ely, ; 0<q<v—plo{x,: p+1<q<v}o (
10
{wy,q:Oquv—Z}o{vq 2Sq£v}ov1wlo{quq: ISqu—l}oxp=v'. :
Subcase 3.2: p=»:
Py (u',v'): u'={zq:ISqu}o{yy,q:OSqu—l}o o
11
{xq: Iquv—l}o{wv,q: Iquv—l}o{vq: 1£q§v}owyxv=v'.
Case 4:u' =z, and v =w,, 1< p<v Subcase 4.1: 1<p<vy-1:
Py (u'V): u':{zq: ISqu}o{yv_q:OSqu—l}o{xq: ISqu}o
12
{wv_q:OSqu—p— o Vgt PHISqSyiovw,: 1<q£p}—v'. (12

Subcase 4.2: p =
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Py (' V') :{zq: ISqu}o{yv,q: 0<g<v- 1}oxlo

{xv,q: OSqu—Z}O{wq: 2<q<y— l}o{v,,,q: 0<g<v- l}ovlwyzv’.

Case 5:u' =z, and v' = v, 1< p<v

Py(u',v): v ={z; 1=q<v}oly, ;s 0<g<v—1}o{x,: 1<g<v}o
{wv_q: OSqu—p}o{vq: p+1§q§v}o{vqwq: lgqu—l}ovpzv'.

Case 6: u' = y, and v' = Z,1<p<y Subcase 6.1: 1< p<v—1:

Py V) u = ylxlwlo{vq: Ingv}o{wV_q: OSqu—Z}o{quq: 2§q£p}o

[xg p+1<qsvfely, s 0<q<v—p-1}elz: p+1<q<v}olz: 1<q<p} =V

Subcase 6.2: p = »:

Py, v'): =ylo{zq: ISqSV—l}o{y%q: ISqu—Z}o

{xq: qusv}o{wv,q: OSqu—Z}o{vq: ZSqu}ovlwlxlyvzy =v.

Case 7:u' =y, and v' = y,,2< p<v Subcase 8.1: 2<p<v-1:

Py(u',v):u' =y ofz; 12q<vfoly, s 0<g<v—p-1}o{x; p+1<gsv}o
{wy_q: 0Sq§v—2}o{vq: Zquv}ovlwlxlo{quq: 2Sq§p} =,

Subcase 8.2: p =

Py(u',v):u' = yiz0{z, ; 0<q<v-2}o{y,: 2<g<v—1}o

{%—qi 1§q§v—1}o{wq: I<g<v- 1}°{Vv—q1 I<g<v- 1}ovq,w1,x1,y,, =v'.

Case 8: u' = y, and V' = Xpl<p<y Subcase 8.1: p =1:

Py v =ylzlo{z,,,q: OSqSV—Z}o{yq: ZSqu}o

{xv,q: OSqu—Z}o{wq: 2$q§v}o{vv,q: 0Sq$v—2}°V1w1x1 =v.

Subcase 8.2: 2<p<y-1:

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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Py(u' V) :ylo{zq: ISqSV}o{yv,q: OSqu—p}o{xq: p+ ISqu}O

20
{wy,q:OSqu—Z}o{vq:ZSqSV}ovlwlxlo{quq:ZSqu—l}oxpzv'. 20
Subcase 8.3: p =
Py(u',v):u' = yz,0{z, ; 0<q<v-2}o{y,: 22g9<v}o
21
{xq: Iquv—l}o{wv_q: I<g<v-1 o{vq: 1Sq§v}owvxv:v'. 20
Case 9: u' = y; and V' =w,,1<p<y Subcase 9.1: 1< p<v—1:
Py(u'v):u' = yz0{z, ; 0<q<v-2}o{y,: 2<g<v}ofx,: 1<g<v}o )
22
{w, ;0<q<v—-p-1}e{v: p+ri<q<v}o{vuw,: 1<q<p}=".
Subcase 9.2: p = »:
Py (u',v): u'=ylzlo{z,,,q OSqSV—Z}o{yq 2£q<v} {xv q:0<q<v—l}
23
{wq l<g<v-1 o{vy,q: l<g<v-1tevw,="v. -
Case 10: ' = y, and v' = v, 1< p<v Subcase 10.1: 1< p<v—1:
Py(u',v):u = yiz0{z, ; 0<q<v-2}e{y,: 2<g<vfo{x, 1<g<v}o
24
{wv_q: OSqu—p}o{vq: p+1§q§v}ovlo{quqH: Iqup—l} = 24
Subcase 10.2: p = »:
Py(u',v):u' = yz 0z, 0<q<v—2}o{y: 2<g<v}ofx,: 1<g<v}o (25)
25

{wv_q: Oquv—l}o{vq: 1§q§v} =,
Case 11: u' = x; and v = z,, 1< p<yv Subcase 11.1: 1< p<v-1:

Py (', v =x1w1vlo{vv,q: OSqSV—Z}o{wq: ZSqSV}o{xv,q: 0<gq<v-p- l}o

!

[Vpa¥pa 0<q<p-2foy oly, s 0<qsv—p-1}efz: p+1<q<r}o]z,: 1<q<p}=".
(26)

Subcase 11.2: p = »:
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Case 12: u' = x; and v/ = y,,2< p<v Subcase 12.1: 1< p<v-1:
Py V') :xlwlvlo{vqwq: 1Sq£v}o{xv_q: 0<g<v-p- 1}o{yq: p+ lgqgv}o
{zy_q: Oquv—l}oylo{xqvq: 2§qsp} =v.

Subcase 12.2: p = »:

Py (u',v): u' = xywv o fvwy: 2<q<v}o{x, s 0<g<v-2}o{y,: 1<g<v-1}o

{2z, g 1<q<v—1}oz,y, =V,

Case 13: u' = x; and v/ = x,2< p<v Subcase 13.1: 2< p<v—1:

Subcase 13.2: p = »:

Py(u',v):u' =xy,0{z,: 12q<vfely, s 0<q<v-2}o{x 25q<v-1}0

{wv_q: 1<gq<v- l}o{wq: ISqu}owvxv =,

Case 14: u' = x; and V' = wy, 1< p<y Subcase 14.1: 1< p<v—1:
Py(u',v): v = x,y 0 {z: 1<q<v}e{y, s 0<g<v—2}o{x,: 2<q<}o
{w, ;0sg<v—p-1}e{v: pr1<qsv}efvw,;: 1<q<p}=+.

Subcase 14.2: p = »:

Py, ) u =x1ylzlo{zv,q: OSqu—Z}o{yq: ZSqu}o{xv,q: OSqSV—Z}o

{wq: 25q57’_1}°{1/1,,q2 0<g<v- l}owlwy =,

Case 15: u' = x; and v/ = v, 1< p<v Subcase 15.1: 1< p<v-1:

(27)

(28)

(31)

(32)

(33)
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Py (v v'): :xlylo{zq: ISqu}O{y%q: Oquv—Z}O{xq: ZSqu}o

34
{wv,q:OSqSV—p}o{vq:p+1$q£v}o{vqwq:ISqSP—l}ovpzv'. Gy
Subcase 15.2: p = »:
PH(u',v'):u':xlylo{zq:1§qsv}o{yv_q:Oquv—Z}o{xq:Zngv}o
35
{wv_q:Oquv—l}o{vq:ISqu}:v'. ()
Case 16: u' = w, and v' = Zp,1<p<y Subcase 16.1: 1< p<v—1:
PH(u',v'):u'=w1v1°{v1,_q:OSqSV—Z}o{wq:ZSqu}o{xv_q:Oquv—p}o (36)
36
{yg pasvlelxy12q<p-1}efz, s 1<q<p-1}e{z, 0<g<v-p}=v"
Subcase 16.2: p = »:
Py (u',v): u'=wlo{vq:ISqSV}o{wv,q:OSqSV—Z}o xq:2£qu}o 37
37

xlo{y%q: 05‘157—1}°{qu ISqu}=v’.

Case 17: v/ =w, and v' = y,, 1< p<v Subcase 17.1: 1< p<v—1:

Py (u' V') =w1vlo{vv_q: OSqu—Z}o{wq: Zquv}o{xv_q: OSqSV—p}o

!

papq 12asp-1}ely, 2 0<qsv-p-1}elz;: p+1<gsvfefz,: 1<q<ploy, =V,

(38)
Subcase 17.2: p = »:
PH(u’,v’):u/:wlvlo{vv_q:0<qgv—2} wq:ZSqu}o{xv_q;()SqS,,_l}o
(39)
{yv—q O—qSV_1}°{Zq ISQS‘V}:VI.
Case 18: u' =wy and v/ = x, 1< p<v Subcase 18.1: 1< p<v—1:
PH(HI)V’): u'=w1v10{v1,7q:0£q£v—2}o{wq:ZSqu}o{x%q;osqSV_p_l}o (40)

{yg pri<qsv-1}elz, ;1<q<v—1}oezy,o{x,y; 1<q<p—1}ox, ="

Subcase 18.2: p = »:
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Py V) u =w, o{vq: ISqSV}o{w
1

{yv,q: 1<g<v-

Case 19: v’ =w, and V' = w,,2< p<v Subcase 19.1: 2< p<v-1:

Py v'): :wlxlylo{zq ISqSV}o{yv_q: OSqu—Z}o{xq: 2<g<vto
v—p- !

{wv_q:OSqS 1}o{vq:p+1£q§v}o{vqwq:1£q§p}:v.

Subcase 19.2: p = »:

Py(u',v): v =wx, 9,2, 0{z, s 0<q<v -2} o{y,: 2<q<v}o{x, s 0<q<v-2}o

{wy2sq<v-1fe{v, ; 0sqsv-1fevw, =v.

Case 20: ' =w, and V' =v,, 1< p<» Subcase 20.1: p = 1:

Vp

Py (u' v :wlxlylo{zq: Ingv}o{yv_q: OSqu—Z}o{xq: ZSqSV}o

{wv,q: OSqu—Z}O{Vq: ZSqSV}OVI =

Subcase 20.2: 2<p<v - 1I:

Py (u' v :wlxlylo{zq: ISqu}o{yv_q: OSqu—Z}o{xq: ZSqu}o

!

{wv_q: qugv—p}o{vq: p+1£q£v}0{vqwq: lgqu—l}ovpzv.

Subcase 20.3: p =»:

Py v'): =wlo{vq: I<g<v- 1}o{w1,_q: Oquv—Z}o{xq: 2<gq<v- 1}0

{yv_q: 1<g<v- 1}o{zq: 1Sq§v} 0 Y, X X, W, v, = V.

Case 21: u' = v, and v' =z, 1< p<v Subcase 21.1: p = 1:

Subcase 21.2: 2< p<y-1:

(41)

(42)

(44)

(45)

(46)

(47)
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Py (' V') :{vq: ISqu}o{wy,q: 0<g<v—1ljoix,y, Iqup—Z}o{xq: p—lSqu}o

48
{yig0<q<v-p+i}efz, s 12q<p-1}o]z, :0<g<v—p}=+. 4
Subcase 21.3: p = »:
PH(u’,v'):u':{vq:1Sq§v}o{wv_q:OSqu—l}o{xq:lgqgv}o
49
{yv_q:OSqu—l}o{zq:1Sq£v}:v'. )
Case 22: u' = v, and V' = Ypl<p<y Subcase 22.1: 1< p<v—1:
PH(u',v'):u'={vq:1Sq§v}o{wv_q:OSqu—l}o{quq:1Sq§p—1}o{xq:quSv}o (50)
50
{yrg 0<qsv—p-1}e{z;: p+1<g<rfeiz;: 1<q<p}=""
Subcase 22.2: p = »:
PH(u',v’):u’z{vq:ISqu}o{wv,q:OSqSV—l}o{xv,q:OSqSV—l}o -
{yq:lgqgv—l}o{zv,q:ISqS‘u—l}oz,,yV=v'.
Case 23: ' =v, and v/ = x,, 1< p<w Subcase 23.1: 1< p<v-1:
PH(u',v/):u/:vlo{vv_q:OSqu—Z}o{wq:lngv}o{xv_q:OSqSV—p—l}o -
52
{yq:pgqsv—l}o{zv_q:lngv—l}ozvyvo{quq:lgqu—l}oxpzv'.
Subcase 23.2: p =
PH(u',v'):u'={vq:Iquv}o{wv_q:OSqu—l}o{xq:ISqu—l}o (53)
53
{yv_q:ISqu—l}o{zq:ISqu}oyvxv=v'.
Case 24: u' = v, and V' =w,, 1< p<v Subcase 24.1: 1< p<v-1:
PH(u',v':u'={vqwq:ISqu—l}o{vq:quSV}o{wv,q:OSqSV—p—l}o (0
54

!

{xq: p+ ISqSV}o{yy,q: OSqSV—Z}O{Zq: ZSqSV}ozlylo{xq: ISqu}owp =v.

Subcase 24.2: p = »:
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Py (u' V') :vlo{vv,q: OSqu—Z}o{wq: I<g<v- l}o{x%q: 0<g<v- 1}0

Case 25: u' =v, and v/ = v, 2<p<v

Py(u',v): ' =viwx,y, oz, 1<q<vfely, s 0<q<v-2}o]x

Subcase 25.2: p = »:

Py V) u = vlwlxlylo{zq: 1§q§v}o{y1,_q: qusv—Z}o{xq: ZSqu}o

{w, ; 0<q<v-2}ofv:2<q<v} ="

The existence of the Hamiltonian path between every
pair of vertices of the H, completes the proof.

Using Theorems 1 and 2, the following proposition
computes the detour index of H,.

11

(55)
{yq: l<g<v- l}o{zv,q: l<g<v- 1} °0Z, Y, X, W, = V.
Subcase 25.1: 2< p<v—1:
g 25q<v}o
(56)
{wv_qvv_q: 0<g<sv-p- 1}o{wp_q: Ongp—Z}o{vq: ZSqu} =v'.
(57)
E (G‘V) = {wpwp+1’ prp+1’ ypypﬂ’ zpzp+1’ wp‘xp’ xpyp’
YpXpi1s Y pZpt 1<p<yv- 1}.

(59)

Corollary 1. Let G = H,, where v > 4. Then, the detour index
of G is
5v(5v — 1)

0(G) = ——— (58)

Proof. 'The number of vertices in the graph G is 5v.
Replacing 5v with n in Theorem 1 gives the proposition. [

4. Hamilton-Connectivity and the Detour
Index of G,

In this section, we show that the graph G, is Hamilton-
connected. Afterwards, we use the Hamilton-connectivity to
find the analytical exact expression of the detour index of the
graph G,.

The vertex set of G, consists of four layers of vertices, i.e.,
Wy, X, Yp and z,. That is. to say that V(G,) =
{wp, Xpy VprZpt 1SP< v}. Accordingly, the edge set of G, is
as follows:

The subscripts are to be considered modulo ». Figure 3
presents the v-dimensional convex polytope G, with proper
labeling of vertices which will be used to show its Hamilton-
connectivity.

The following is the main result of this section.

Theorem 3. The graph v-dimensional convex polytope G,,
with v>5, is Hamilton-connected.

Proof. We prove this result by definition. For this, we have
to show that there exist Hamiltonian paths between any pair
of vertices of G,

Let Py (u,v) be a Hamiltonian path between vertices u
and v in G, Let G,=ZUYUXUW such that
Z=Az1, 2.2} Y={y1 0 b X={x,%5...,
x,}, and W = {w,,w,, ..., w,} (see Figure 3).

Case l:u=2z, and v=2,,2<p<v

Subcase 1.1: 2< p<y—2:

Py (u,v): u:zlo{zv_q: 0<g<v-p- l}o{yp_qﬂz Ongp—Z}o{xq: 3<q<p+ 1}0

{quq: p+2§qsv}oy1x1wlo{wv_q: OSqu—Z}oxzyzo{zq: Zngp} =

Subcase 1.2: p=v—1:

(60)
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Py (u,v): uzzlzvo{yv_q: 03q£v—3}o{xq: 3sq3v}o{wv_q: OSqS‘V—l}O

(61)
xlylxzyzo{zqzzgqgv—l}zv.
Subcase 1.3: p = »:
PH(u,v):u:zlylxlwlo{wv,q:OSqSV—Z}o{xq:ZSqu}o (62)
62
{yv,q:OSqu—Z}o{zq:ZSqSV}:v.
Case 2: u=z,andv=y,1<p<vy Subcase 2.1: 1< p<v—1:
PH(u,v):u:{zq:Iquv}o{yv_q:qusv—p—l}o{xq:p+1§q§v}o
63
{wv_q:OSqu—l}o{quq:1§q§p}:v. (©?
Subcase 2.2: p = »:
PH(u,v):uzzlo{zy,q:Osqu—Z}o{yq:qusv—l}o{xv,q:lgqgv—z}o (64)
64
ylxlo{wq: lgqgv}oxvyv =
Case 3: u=z; and v=1x,1<p<v Subcase 3.1: 1< p<v-1:
PH(u,v):u=zlo{zq:ZSqSV}o{yv,q:OSqu—p}o{xq:p+1§q£v}o (65)
65
{wv_q:OSqu—l}o{quq:2$q§p—1}oxp:v.
Subcase 3.2: p = »:
PH(u,v):u:{zq:lgqgv}o{yv_q:Oquv—l}o{xq:lgqgv—l}o (66)
66

{wv_q: 1<g<v- l}owvxv: V.
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Case 4 u=z; and v=w,1<p<v Subcase 4.2: 2< p<:
Subcase 4.1: p=1:
Py (u,v): u:{zq: ISqu}o{yv_q: 0<g<v- 1}
o{xq: ISqSV}o
{wv_q: 0<g<v- 1} =

(67)

Py (u,v): uz{zq: ISqu}o{yv,q: 0<g<sv-p+ l}o{xq: quSV}o

(68)
{quq:lqup—Z}oxp,lo{wp,q:ISqu—l}o{w%q:Ongv—p}zv.
Case 5: u=y and v=2z,1<p<v Subcase 5.1: 1< p<v—1:
Py (u,v): u:ylxlwlo{wv_q: OSqu—Z}o{quq: ZSqu}o{xq: p+1§qsv}o (69)
[y, 0<qsv-p-1}efz;: p+1<g<v}efz,: 12q<p} =
Subcase 5.2: p = »:
PH(u,v):uzylo{zq:ISqSV—l}o{y,,_q:lgqgv—z}o{xq:ZSqu—l}o (70)
70
{wv_q: I<g<v- 1} oW, X, X1 V)2, = V.
Case 6: u=y and v=y,2<p<v Subcase 6.1: 2<p<y-—1:
PH(u,v):u=ylo{zq:ISqu}o{yv,q:OSqSV—p—l}o{xq:p+1£q£v}o 1)
{w,,,q:OSqSV—l}oxlo{quq:Zqup}zv.
Subcase 6.2: p = »:
PH(u,v):u:ylzlo{zv_q:qugv—z}o{yq:ZSqSV—I}o{xV_q:lgqgv—l}o
72
{wq:Ingv}oxvyV:v. 72
Case 72u=y and v=x,1<p<vy Subcase 7.1: p = 1:
PH(u,v):u=ylo{zq:Ingv}o{y,,_q:OSqu—Z}o{xq:2Sq§v}o 73)
73

{wv_q: 0<g<v- l}ox1 =
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Subcase 7.2: 2<p<v-1:

Py (u,v): uzylo{zq: ISqSV}o{yv,q: OSqSV—p}o{xq: p+1£q£v}o

{wv,q: 0<g<v- l}oxlo{quq: 2<q<p- l}oxp =

Subcase 7.3: p = »:

Py (u,v): u:ylzlo{zv_q: qugv—z}o{yq: qugv}o{xq: l<g<v- l}o

{wv_q: I<g<v- l}owvxv =W

Case 8: u=y and v=w,, 1<p<v Subcase 8.1: p = 1:

Py (u,v): u=y1zlo{z1,_q: OSqu—Z}o{yq: ZSqSV}o{xq: lgqgv}o
{wv,q: OSqu—l} =

Subcase 8.2: 2<p<v-1:

Py (u,v): u:ylxlo{quq: ZSqu}o{zp,q: 0<g<p- l}o{zv,q: 0<g<v-p- l}o
{yq: p+1$q£v}o{xy,q: OSqSV—p—l}o{wq: p+ Iquv}o
{wq: Iqup} =W

Subcase 8.3: p = »:

Case 9:u=x, andv=2,1<p<v Subcase 9.2: p =

Subcase 9.1: 1< p<vy-1:

Py (u,v): u:xlo{w : ISqu}o{x

PH(u,v):u:xlo{wq: Ingv}o{xv,q:Oquv—p—l}o ”
{Vp-gpg 0<asp -2}y,
o{y,,,q:Oquv—p—l}o

{2y p+1<qsveiz 12q<p}=v. Case 10: u=x, and v =y, 1<p<v

(79) Subcase 10.1: 1< p<v—1:

{yq: ZSqu}oylo{zq: ISqu} =

(74)

(75)

(76)

(77)

(78)

vt 0q<v=2}0
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Py (u,v): u:xlo{wq: ISqu}o{xv,q: OSqu—p—l}o{yq: p+1£q§v}o

(81)
{zv,q:OSqu—l}oylo{quq:23q$p}=v.
Subcase 10.2: p = »:
Py (u,v): u:xlo{wq: 1§q§v}o{x1,_q: 0Sq£v—2}o{yq: ISqu—l}o (82)
82
{zv_qzlgqsv—l}ozvyv:v.
Case 11: u = x; and v = x,,2< p<v Subcase 11.1: 2< p<v—1:
Py (u,v): u=xlo{wq: 1Sq§v}o{xy_q: 0<g<v-p- }o{yq: quSv}o (83)
{z,,,q:Oquv—l}o{yq,lxq:ZSqu}= .
Subcase 11.2: p = »:
PH(u,v):ulewlo{w,,,q:OSqSV—Z}o{xq:ZSqSV—l}o{yv,q:ISqu—l}o (84)
84
{zq: 1£qsv}oyvx1,=v.
Case 12: u = x; and v=w,, 1 < p<v Subcase 12.2: 2<p<v-1:
Subcase 12.1: p = 1:
PH(u,v):u:xlylo{zq:Ingv}o{yv_q:Oquv—Z}o
{xq:Zquv}o{wv,q:OSqu—l}:v.
(85)
PH(u,v):u=xlo{yq_1xq:ZSqu—l}o{wp_q:lgqsp—l}o{wv_q:OSqu—p—l}o
{xq:p+1§qsv}o{y,,,q:qusv—p}o{zq:qugv}o (86)
{zq: I<g<p- l}oyp_lxpwp =
Subcase 12.3: p = »:
PH(u,v):u=xlo{wq:ISqu—l}o{xv,q:Ingv—Z}o{yq:ISqu—l}o (7)
87

{zv,q: I<g<v- 1}°Zv)’vwiv =

Case 13: u=w; andv=2,,1<p<»

Subcase 13.1: 1< p<v-1:
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Py (u,v): u:{wq: 1Sq§v}o{xv,q: 0<g<sv-p- l}o{yp,qxp,q: 0<g<p- l}o

88
{y,g 0<g<v—p—1}e{z: p+1<q<vfefz: 1<q<p}=v. .
Subcase 13.2: p = »: Case 14: u=w; and v=y,, 1<p<v
Py (u,v): u={wy: 1<q<v}ofx, s 0<sq<v-1} Subcase 14.1: 1< p<v—1:
o{y, 4 0<q<v-1}e
{zq: 15q£v}=v.
(89)
PH(u,v):uz{wq ISqSV}o{xV_q:O_qgv—p}o{yp_qxp_q: 1£q£p—l}o (0)
{yv,q Oquv—p—l}o{zq: p+1§qsv}o{zq: Iqup}oypzv.

Subcase 14.2: p = »: Subcase 15.1: p = 1:
Py (u,v): u ={wq: 1Sq<v}o{xy_q: 0<g<v- 1} Py (u,v): u ={wq: lquv}o{xv_q: OSqSV—Z}
o{yq: ISqSV—l}o o{yq:23q§v}o
{zv_q I<g<v- l}ozvyv = {zv_q: 0<g<v- l}oylx1 =
(91) (92)

Case 15: u = w, and v = x,, 1< p<v Subcase 15.2: 2< p<v-1:

Py (u,v): u:{wq: ISqu}o{xy,q: 0<g<sv-p- l}o{yq: quSV}o

(93)
{zv,q: 0<g<v- 1}oy1xlo{quq: 2<q<p- 1}oxp =
Subcase 15.3: p = »: Case 16: u = w; and v=w,,2<p<v
Py (u,v): u=w, o{wy,q: 0sq§v—2} Subcase 16.1: 2< p<v—1:
o{xq: 2$q$v—1}o{yv,q: lsqu—l}o
{zq: Iquv}oyvxlx,, =w
(94)
Py (u,v): u:wlo{wv_q: 0<g<v—-p- 1}o{quq: p+1§q§v}ox1ylzlo
{z,g 0<q<v-2}e{y, 22q<p}ofx, ; 0<q<p-2}o (95)

{wq: ZSqu} =

Subcase 16.2: p = »:
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PH(u,v):u:{w 1<q§v—1}o{xv,q 1<q<v—1}
o{y;1q<v-1}e
{ZHI ISqSV—l}ozvyvxywvzv
(96)

The existence of the Hamiltonian path between every
pair of vertices of the G, completes the proof.

Using Theorems 1 and 3, the following proposition
computes the detour index of G,.

Corollary 2. Let G = G,, where v > 4. Then, the detour index
of G is

_ -1’ (97)

w(G) 5

Proof. 'The number of vertices in the graph G is 4v.
Replacing 4v with n in Theorem 1 gives the proposition. [

5. Conclusions and Future Work

Computing the detour index of a graph is NP-complete and
checking if a graph is Hamilton-connected is also NP-
complete. In this paper, we construct three infinite families
of Hamilton-connected convex polytope networks. Fur-
thermore, we construct an infinite family of non-Hamilton-
connected convex polytope networks. The later construction
shows that not all convex polytope networks are Hamilton-
connected. More importantly, we compute exact analytical
expressions for the detour index of the families of Hamilton-
connected convex polytope networks.

In view of the work by Alspach and Liu [41], we propose
the following conjectures [41]:

Conjecture 1.

(i) The generalized Petersen graph GP(v,4)v>9 is
nonbipartite Hamilton-connected

(ii) The generalized Petersen graph GP(v,5)v>11 is
nonbipartite Hamilton-connected if v|2 and bipartite
Hamilton-laceable if v+2
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