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0is paper investigates the geolocation for an over-the-horizon (OTH) transmitter observed by widely separated arrays. We
propose a maximum likelihood (ML) based direct position determination (DPD) method to directly locate the transmitter in a
single step by exploiting the position information embedded in azimuth angles. 0e Monte Carlo importance sampling (IS)
technique is employed to find an approximate global solution to this DPD problem, where the importance function analogous to
Gaussian distribution is derived.0is enables the transmitter to be precisely located with low complexity in a noniterative manner.
Additionally, we derive the Cramér–Rao bound (CRB) expression for the investigated problem. 0e simulation results cor-
roborate the superior localization performance of the proposed method with respect to the conventional two-step approaches and
the iterative DPD method.

1. Introduction

Passive transmitter localization with antenna arrays is a
significant task in various fields such as signal processing,
wireless communication, navigation, and radio astronomy
[1]. Over-the-horizon (OTH) geolocation has many appli-
cations, such as navigation and the long-range reconnais-
sance and surveillance [2]. Here, we consider the scenario of
OTH geolocation of a high-frequency (HF: 2MHz to
30MHz) transmitter observed by widely separated arrays.
0e geolocation system with widely separated arrays has
been developed and extensively applied for civil and military
purpose during some considerable time. It can be used as the
reserve navigation system for ships and airplanes [3], or as
the reconnaissance and surveillance backup in the satellite-
challenged environments [4].

Traditional OTH geolocation methods by widely sepa-
rated arrays involve two-step processing [5]. In the first step,
each observer array enables the estimation of the azimuth
and elevation angles of the non-line-of-sight (NLOS) HF
signal paths. Hereby, the well-known multiple signal

classification (MUSIC) method [6] is usually used. In the
second step, one kind of methods embeds the estimated
azimuth and elevation angle measurements into the
mathematical models of the ionosphere layers to obtain the
location of the transmitter [7, 8]. 0e authors in [7]
addressed the joint estimation of the OTH target location
and height by employing the diversity of multipath signal
and structure of a 2D array. However, the atmospheric
refraction effects and inaccuracies in the ionosphere model
[9] that are frequently encountered will generate the larger
location errors. To deal with the atmospheric refraction
effects, the vertical atmospheric refractivity profile was
modeled with a quadratic polynomial of the altitude [8] and
then used to locate the target. Note that the refractivity
parameters of this model are determined using known
position information of auxiliary targets. Compared with
these aforementioned methods, another kind of method is
more practical and less complex in structure, which uses
azimuth angles to locate the transmitter via a suitable
bearings-only localization (BOL) algorithm [10] without the
precise knowledge of the current ionosphere model. To

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 5574110, 10 pages
https://doi.org/10.1155/2021/5574110

mailto:wang_ding814@aliyun.com
https://orcid.org/0000-0002-8651-869X
https://orcid.org/0000-0001-6533-9206
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5574110


further improve the performance, cooperative positioning
has been studied with user collaboration [11, 12], where the
factor graph is often used to perform the location based on
direction-of-arrival (DOA) and time-of-arrival (TOA)
measurements. In cooperative positioning, the sensor nodes
are synchronous and can communicate with each other
through wireless links. However, in the OTH geolocation for
long-range reconnaissance and surveillance, the sensors or
observers are widely located, yielding the difficulty of
communication between sensors and time synchronization.
Note that the aforementioned two-step location methods
cannot guarantee high localization precision as they extract
measurements at each observer separately and indepen-
dently, thus ignoring the constraint that the measurements
correspond to the same transmitter location.

In contrast to the conventional two-step methods, direct
position determination (DPD) exploits this constraint to
improve performance. It uses the sampling data without
estimating the intermediate parameters and ends with a cost
function that relies on the locations of transmitters. 0e
subspace data fusion (SDF) based DPD estimators were
proposed in [13, 14], in which the positions of multiple
sources can be directly estimated from a cost function fusing
the noise subspaces of all observer arrays. Another alter-
native of SDF-based DPD is the minimum-variance dis-
tortionless response (MVDR) based DPD method [15, 16].
0ese two kinds of DPD algorithms can localize multiple
sources via a low-dimensional search, but their performance
will be greatly degraded at low SNRs. As maximum likeli-
hood (ML) estimators can approach the associated
Cramér–Rao bounds (CRBs), many ML-based DPDs can be
found in [5, 17, 18], where the location accuracy has shown
to be significantly higher than that of the two-step methods,
especially under low signal-to-noise ratio (SNR) conditions.
However, when solving ML estimators without known
waveforms, a large number of parameters yield a significant
computation effort. Hence, an iterative decoupled algorithm
for ML-based DPD was proposed for multiple sources to
reduce the complexity [19], but it still requires a 2D-di-
mensional or 3D-dimensional search of the position. In
order to make the DPD method more computationally ef-
ficient, an iterative scheme for DPD problem using Taylor-
series method was developed in [20] to solve the position
rather than the commonly used grid search. It is noteworthy
that iterative solutions cannot guarantee to converge without
an efficient initialization or under large noises.

0e importance sampling (IS) technique, a powerful
Monte Carlo tool, has attracted great interest recently due to
its superior performance on parameter estimation, such as
time-difference-of-arrival (TDOA) and joint DOA-Doppler
estimation and, more recently, the two-step location
[21–25]. It can maximize the ML function in a computa-
tionally efficient manner by applying the global maximi-
zation theorem of Pincus [26]. In light of this, the IS
technique can offer an efficient way to solve the ML-based
DPD problems.

0is paper investigates a DPD method using the IS
technique for OTH geolocation of a transmitter observed by
widely separated arrays. To the best of our knowledge,

existing passive DPD methods do not consider the OTH
geolocation by widely separated arrays. Our study employs
the DPD technique to enhance the OTH geolocation of a HF
transmitter and thus has considerable practical significance.
Under the general assumption that the transmitter is placed
on the ground and the signal waveforms are unknown, we
formulate an ML-based function in terms of the transmitter
position and elevation angles at all observers. As most
existing DPDs are accomplished via an exhaustive grid
search with high computation complexity or via iteration
suffering from convergence problem, to make our method
computationally attractive, we employ the IS technique to
achieve an approximate global solution to the prescribedML
function, and parameters of interest are efficiently estimated
in a noniterative manner. As our DPD method uses the IS
technique to directly solve the transmitter position and
elevation angles from the sampling data received by several
observer arrays, which is more complicated compared with
previous study, we derive an importance function analogous
to Gaussian distribution, and therefore the required IS re-
alizations can be easily generated according to this Gaussian
distributed probability density function (PDF). Finally, we
derive the CRB expression for the OTH DPD problem and
test the localization performance of the proposed method
through computer simulations.

2. Signal Model and Problem Formulation

Consider L stationary observers placed at positions
ul ∈ R3(l � 1, 2, . . . , L), each of which is equipped with an
antenna array composed of M isotropic sensors. A trans-
mitter on the ground is assumed to radiate narrowband HF
signals in the far field of the arrays. 0e signals are reflected
by the ionosphere and received by the arrays. For simplicity,
we only consider one dominant NLOS path component in
our work since others may be heavily attenuated and can be
ignored in some cases [27]. 0is scenario is described
schematically in Figure 1. Let the ground plane be the Z
plane, and thus the position of the transmitter can be
denoted by a 3×1 vector of coordinates 􏽥p � [pT, 0]T, whose
Z-coordinate equals to zero as the transmitter is placed on
the ground.

Assuming that the time duration T is sufficiently short
during which the signal path remains unchanged, the ob-
servation rl(t), containing complex envelopes of the signals
collected by the lth observer array at time 0≤ t≤T, is
expressed as

rl(t) � al θl,φl( 􏼁sl(t) + nl(t), l � 1, 2, . . . , L, (1)

where sl(t) is the source signal at the input of the lth observer
array, and the channel fading has been incorporated in sl(t).
nl(t) ∈ CM×1 is the circularly white Gaussian noise vector
mixed through the sensors. 0e sources and noises are as-
sumed to be uncorrelated and to have a mean of zero.
al(θl,φl) ∈ C

M×1 is the array steering vector, where θl and φl

represent the arrival azimuth and elevation angles of the
signal at the lth observer array.
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After being downconverted to the base band and sam-
pled at t� nTs where Ts is the sampling period, the nth
sample of rl(t) can be expressed as

rl(n) � al θl,φl( 􏼁sl(n) + nl(n), n � 1, 2, . . . , N, (2)

where N represents the number of samples. sl(n) and nl(n)

are the nth samples of sl(t) and nl(t), respectively. Without
apriori information of the ionosphere model, the elevation
angle has no evident relationship with the position, whereas
the azimuth angle is still a function of the observer and
transmitter positions:

θl � arctan
p(2) − ul(2)

p(1) − ul(1)
, l � 1, 2, . . . , L. (3)

0erefore, we can parameterize al(θl,φl) by p and φl and
thus rewrite (2) by

rl(n) � al p,φl( 􏼁sl(n) + nl(n), n � 1, 2, . . . , N. (4)

Given the signal model above, the problem that we
address now is to efficiently estimate the position vector p
comprising the X-coordinate and Y-coordinate in a single
step from the samples rl(n) without explicitly computing the
azimuth angles.

3. Proposed DPD

In this section, we first formulate an ML-based function for
the OTH geolocation and then apply an efficient IS algo-
rithm to solve the prescribed ML function.

3.1. Optimization Model. According to (4), we get the ML-
based function by a sum over NL terms, which is shown as
follows:

fML(p,φ, s) � 􏽘
L

l�1
􏽘

N

n�1
rl(n) − al p,φl( 􏼁sl(n)

����
����
2
, (5)

where φ � [φ1,φ2, . . . ,φL]T consists of the arrival elevation
angles at L observers and s contains all the sampled signals

received by L observers. 0erefore, the joint ML estimate of
p,φ, and s can be given by

􏽢p, 􏽢φ,􏽢s􏼈 􏼉 � argmin
p,φ,s

fML(p,φ, s). (6)

We first estimate s by minimizing the cost function and
hence obtain

􏽢sl(n) � a†l p,φl( 􏼁rl(n). (7)

After substituting the estimated 􏽢sl(n) to (5), the cost
function is reduced to

fML(p,φ) � 􏽘

L

l�1
􏽘

N

n�1
Π⊥al

p,φl( 􏼁rl(n)
�����

�����
2
. (8)

Here, Π⊥al
(p,φl) � IM − a†l (p,φl)al(p,φl) is the orthog-

onal projector onto the space of al(p,φl) with IM being the
M × M identity matrix.

We then concatenate the observed vectors and projectors
at all observer arrays and thus form

r(n) � rT
1 (n), rT

2 (n), . . . , rT
L (n)􏽨 􏽩

T
,

Π⊥(p,φ) � blkdiag Π⊥a1 p,φ1( 􏼁,Π⊥a2 p,φ2( 􏼁, . . . ,Π⊥aL
p,φL( 􏼁􏽮 􏽯.

(9)

Consequently, the ML-based function is expressed in a
more compact form:

fML(p,φ) � 􏽘
N

n�1
Π⊥(p,φ)r(n)

����
����
2
. (10)

We notice that the solution to this function is not simple
because of the stray parameter φ and nonlinearity of un-
knowns in this function. Considering that exhaustive search
is impractical, we resort to the IS technique to solve our DPD
problem.

3.2. Choice of Importance Function for DPD. To avoid direct
maximization, we come to introduce the global optimization
based on Pincus theorem [26], which provides a means of
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Figure 1: Scenario of the OTH transmitter observed by multiple arrays.
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performing the nonlinear optimization and can guarantee to
find the global maximum. According to the Pincus theorem
[26], the global minimizer of the ML estimator in (10) can be
implemented by

􏽢ηi � lim
λ⟶∞

􏽒 · · · 􏽒 ηi exp −λfML(η)􏼈 􏼉dη
􏽒 · · · 􏽒 exp −λfML(η)􏼈 􏼉dη

, (11)

where η � [pT,φT]T ∈ R(L+2)×1 contains the estimated pa-
rameters. Let us define

p(η) �
exp −λfML(η)􏼈 􏼉

􏽒 · · · 􏽒 exp −λfML(η)􏼈 􏼉dη
(12)

as a pseudo-PDF, and thus (11) can be rewritten as

􏽢ηi � lim
λ⟶∞

􏽚 · · · 􏽚 ηip(η)dη. (13)

In practice, it is difficult to directly evaluate the
(2 + L)-dimensional integrals. To make it tractable, we trade
this problem by using the IS technique. Assuming that q(η)

is an importance function with respect to η, the integral in

(13) can be approximated by the following averaging
[21–24]:

􏽢ηi � lim
λ⟶∞

􏽚 · · · 􏽚 ηi

p(η)

q(η)
q(η)dη ≈ 􏽘

K

k�1
ηk􏼂 􏼃i 􏽥w ηk( 􏼁, (14)

where 􏽥w(η) � w(η)/􏽐
K
k�1 w(ηk) is the normalized impor-

tance weight with w(η) � p(η)/q(η). ηk is the kth realization
of η distributed according to q(η), and K is the realization
number. Usually, we want to choose q(η) as a simple
function of η so that the realization of η can be easily
generated. Moreover, q(η) should be chosen close to p(η) to
improve the efficiency of IS sampling [23]. Inspired by this,
to find an appropriate importance function for our DPD
problem, we will derive an importance function analogous to
Gaussian distribution, thus making IS realizations easily
generated according to the Gaussian distributed PDF.

To begin with the derivation, initial estimates of the
transmitter location and elevation angles are given, which
are denoted by 􏽢η(0). 0en, using the conclusion in [28], we
can approximate Π⊥(η)r(n) by the first-order Taylor ex-
pansion as follows:

Π⊥(η)r(n) ≈ Π⊥ 􏽢η(0)
􏼐 􏼑r(n) + Gn 􏽢η(0)

􏼐 􏼑 η − 􏽢η(0)
􏼐 􏼑 + o η − 􏽢η(0)

�����

�����
2

􏼒 􏼓

≈ Gn 􏽢η(0)
􏼐 􏼑η − hn 􏽢η(0)

􏼐 􏼑 + o η − 􏽢η(0)
�����

�����
2

􏼒 􏼓,

(15)

where Gn(η) � (z Π⊥(η)r(n)􏼈 􏼉/zηT), hn(η) � Gn(η)η−

Π⊥(η)r(n), and o(‖η − 􏽢η(0)‖2) signifies the infinitesimal
term of ‖η − 􏽢η(0)‖2.

Applying (15) to (10) leads to

fML(η) � 􏽘
N

n�1
Gn 􏽢η(0)

􏼐 􏼑η − hn 􏽢η(0)
􏼐 􏼑

�����

�����
2

+ o η − 􏽢η(0)
�����

�����
2

􏼒 􏼓.

(16)

Defining G(η) � [GT
1 (η),GT

2 (η), . . . ,GT
N(η)]T and

h(η) � [hT
1 (η), hT

2 (η), . . . , hT
N(η)]T, we discard the terms

that result in contributions of o(‖η − 􏽢η(0)‖2) and thus obtain

fML(η) ≈ G 􏽢η(0)
􏼐 􏼑η − h 􏽢η(0)

􏼐 􏼑
�����

�����
2
. (17)

As we attempt to construct an importance function
q(η)with respect to the real parameter η, we should
transform the terms in fML(η) to be real-valued. 0erefore,
(17) is represented as

fML(η) ≈ Re G 􏽢η(0)
􏼐 􏼑􏽮 􏽯η − Re h 􏽢η(0)

􏼐 􏼑􏽮 􏽯
�����

�����
2

+ Im G 􏽢η(0)
􏼐 􏼑􏽮 􏽯η − Im h 􏽢η(0)

􏼐 􏼑􏽮 􏽯
�����

�����
2

≈ 􏽥G 􏽢η(0)
􏼐 􏼑η − 􏽥h 􏽢η(0)

􏼐 􏼑
�����

�����
2
,

(18)

with 􏽥G(􏽢η(0)) � [ReT G(􏽢η(0))􏽮 􏽯, ImT G(􏽢η(0))􏽮 􏽯]T and 􏽥h(􏽢η(0))

� [ReT h(􏽢η(0))􏽮 􏽯, ImT h(􏽢η(0))􏽮 􏽯]T. Because it is desired to
find q(η) that is close to p(η) in (12), according to the above
approximation, the importance function can be constructed
as

q(η) �
exp −λ1(􏽥Gη − 􏽥h)

T
(􏽥Gη − 􏽥h)􏽮 􏽯

􏽒 · · · 􏽒 exp −λ1(􏽥Gη − 􏽥h)
T
(􏽥Gη − 􏽥h)􏽮 􏽯dη

, (19)

where 􏽥G and 􏽥h are short for 􏽥G(􏽢η(0)) and 􏽥h(􏽢η(0)). As

(􏽥Gη − 􏽥h)
T
(􏽥Gη − 􏽥h) � η − 􏽥G

T 􏽥G􏼒 􏼓
− 1

􏽥G
T􏽥h􏼢 􏼣

T

􏽥G
T 􏽥G􏼒 􏼓 η − 􏽥G

T 􏽥G􏼒 􏼓
− 1

􏽥G
T􏽥h􏼢 􏼣 + 􏽥h

T􏽥h − 􏽥h
T 􏽥G 􏽥G

T 􏽥G􏼒 􏼓
− 1

􏽥G
T􏽥h, (20)
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substituting (20) to (19) leads to

q(η) � α exp −λ1 η − 􏽥G
T 􏽥G􏼒 􏼓

− 1
􏽥G

T􏽥h􏼢 􏼣

T

􏽥G
T 􏽥G􏼒 􏼓 η − 􏽥G

T 􏽥G􏼒 􏼓
− 1

􏽥G
T􏽥h􏼢 􏼣

⎧⎨

⎩

⎫⎬

⎭, (21)

where α � (exp −λ1(􏽥h
T􏽥h − 􏽥h

T 􏽥G(􏽥G
T 􏽥G)− 1 􏽥G

T􏽥h􏼚 )}/􏽒 · · · 􏽒 exp

−λ1(􏽥Gη − 􏽥h)T(􏽥Gη − 􏽥h)􏽮 􏽯dη) can be regarded as a constant
because its expression has no unknowns. As we attempt to
generate η distributed according to q(η), q(η) is a kind of
PDF, whose integral should be equal to one. By comparing
(21) with the expression of Gaussian PDF, we make

α � (1/(2π)L/2+1
�����������������

det ((􏽥G
T 􏽥G)− 1/2λ1)􏼚 􏼛

􏽲

), and thus q(η) is

equivalent to a Gaussian PDF:

q(η) �
1

(2π)
L/2+1det R1/2

􏽮 􏽯
exp −

1
2
(η − η)

TR− 1
(η − η)􏼚 􏼛,

(22)

whose mean and covariance matrix are given by

η � 􏽥G
T 􏽥G􏼒 􏼓

− 1
􏽥G

T􏽥h,

R �

􏽥G
T 􏽥G􏼒 􏼓

− 1

2λ1
.

(23)

We observe that λ1 is a parameter to adjust the co-
variance of the Gaussian distribution and then impacts the
dispersion degree of the IS samples. Given the conclusion in
[24] which reveals that the choice of λ1 appears to be suf-
ficiently robust to the SNR when the performance ap-
proaches the optimum, we just choose λ1 � 0.5.

Considering that the magnitudes and units of the po-
sition and angles are quite different, it is reasonable to
decouple them because their importance weights have dif-
ferent effect on the final results. 0erefore, we divide q(η)

into two parts. 0e importance function for the transmitter
position is constructed as

qp(p) �
1

2πdet R1/2
p􏽮 􏽯

exp −
1
2
(p − p)

TR−1
p (p − p)􏼚 􏼛, (24)

with

p � [η]1: 2,

Rp � [R]1: 2,1: 2,
(25)

and the importance function for the elevation angles is
constructed as

qφ(φ) �
1

(2π)
L/2det R1/2

φ􏽮 􏽯
exp −

1
2
(φ − φ)

TR−1
φ (φ − φ)􏼚 􏼛,

(26)

with

φ � [η]3: 2+L,

Rφ � [R]3: 2+L,3: 2+L.
(27)

It should be noted that the choice of the above Gaussian
distributions enjoys the following features:

(1) 0ey are determined only by means and covariances,
and therefore p and φ can be generated easily and
separately

(2) 0e joint PDF of p and φ is similar to the function
p(η), which reduces the variance of the IS estimates

3.3. DPD Using Importance Sampling. After p and φ are
generated based on the derived qp(p) and qφ(φ), according
to w(η) � p(η)/q(η), the importance weights for the
transmitter position and elevation angles can be computed
by

wp ηk( 􏼁∝ exp −λfML ηk( 􏼁 +
1
2
pk − p( 􏼁

TR−1
p pk − p( 􏼁􏼚 􏼛,

wφ ηk( 􏼁∝ exp −λfML ηk( 􏼁 +
1
2
φk − φ( 􏼁

TR−1
φ φk − φ( 􏼁􏼚 􏼛,

(28)

where pk and φk are the kth samples from their Gaussian
importance functions. To avoid the overflow since both the
numerator and denominator are exponentials, we can re-
place wp(ηk) and wφ(ηk) with wp′(ηk) and wφ′(ηk) as follows:

wp′ ηk( 􏼁 � exp −λfML ηk( 􏼁 +
1
2
pk − p( 􏼁

TR−1
p pk − p( 􏼁 − max

l�1,2,...,K
−λfML ηl( 􏼁 +

1
2
pl − p( 􏼁

TR−1
p pl − p( 􏼁􏼚 􏼛􏼨 􏼩,

wφ′ ηk( 􏼁 � exp −λfML ηk( 􏼁 +
1
2
φk − φ( 􏼁

TR−1
φ φk − φ( 􏼁 − max

l�1,2,...,K
−λfML ηl( 􏼁 +

1
2
φl − φ( 􏼁

TR−1
φ φl − φ( 􏼁􏼚 􏼛􏼨 􏼩.

(29)
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Denote the normalized wp′(ηk) and wφ′(ηk) by 􏽥wp′(ηk)

and 􏽥wφ′(ηk), respectively. Applying 􏽥wp′(ηk) and 􏽥wφ′(ηk) to
(14), the position and elevation angles can be estimated by

􏽢p � 􏽘
K

k�1
pk 􏽥wp′ ηk( 􏼁,

􏽢φ � 􏽘

K

k�1
φk 􏽥wφ′ ηk( 􏼁.

(30)

Remark 1. Based on the Pincus theorem, the global opti-
mum can be obtained when λ⟶∞, but this is impossible
to achieve in practice. Fortunately, we can approximate λ to
a sufficiently large value. Simulations will show that the
location performance is not sensitive to the value of λ as long
as it is sufficiently large and does not lead to numerical
problem.

Remark 2. Note that we have performed the first-order
linearization using Taylor expansion to find an importance
function which approximates the pseudo-PDF related with
ML-based function, and this will not have negative effect on
the estimation performance since the objective function (i.e.,
ML-based function) is not approximated, which still plays a
significant role as used in the importance weight (see (29)).
Furthermore, our method differs greatly from the iterative
methods like Taylor-series method [29], where the Taylor
expansion is used to directly linearize the objective function
and thus estimate the final result in an iterative manner.

4. Deterministic CRB

Relying on the considered model as shown in (4), we in-
troduce the parameter vector ρ comprising all the unknown
real parameters for this DPD problem:

ρ � ηT
,ReT s{ }, ImT s{ }, σ2n􏽨 􏽩

T
, (31)

where σ2n denotes the noise power. 0e likelihood function
for the N samples received by the L observers is expressed as

f(ρ) �
1

πσ2n􏼐 􏼑
MLN exp −

1
σ2n

􏽘

L

l�1
􏽘

N

n�1
rl(n) − al p,φl( 􏼁sl(n)

����
����
2⎧⎨

⎩

⎫⎬

⎭.

(32)

0en, according to the conclusion in [17], the CRB for
parameter ω � [ηT,ReT s{ }, ImT s{ }]Tis given by

CRB−1
ω �

2
σ2n

􏽘

L

l�1
􏽘

N

n�1
Re

zal p,φl( 􏼁sl(n)

zωT
􏼨 􏼩

H
zal p,φl( 􏼁sl(n)

zωT

⎧⎨

⎩

⎫⎬

⎭.

(33)

For the convenience of derivation, we define a new
vector x(ω) � [aT

1 (p,φ1)s1 (n), . . . , aT
L (p,φL)sL(n), . . . , aT

1
(p,φ1)s1(N), . . . , aT

L (p,φL)sL(N)]T, and thus rewrite (33)
by

CRBω �
σ2n
2
Re− 1 zx(ω)

zωT
􏼨 􏼩

H
zx(ω)

zωT

⎧⎨

⎩

⎫⎬

⎭

�
σ2n
2
Re− 1 ΣH

ω Σω􏽮 􏽯,

(34)

in which Σω � (zx(ω)/zωT), and it can be divided into

Σω � Ση,ΣRe s{ },ΣIm s{ }􏽨 􏽩 � Ση,ΣRe s{ }, jΣRe s{ }􏽨 􏽩, (35)

where Ση, ΣRe s{ }, and ΣIm s{ } are defined similar to Σω.
As the unknown waveforms are stray parameters in our

study, to reduce the CRB of stray parameters and thus to
obtain a more compact CRB matrix, we apply the scheme of
the CRB derivation in [30]. Although the scenario consid-
ered in [30] is different, where the known signals are as-
sumed to propagate in multipath environments and are
observed by a single array, we can follow the steps similar to
those in [30] and get the CRB for the transmitter position
and elevation angles as

CRBη �
σ2n
2
Re− 1 ΣH

η Π
⊥
ΣRe s{ }

Ση􏼚 􏼛, (36)

where Π⊥ΣRe s{ }
is the orthogonal projector onto the space of

ΣRe s{ }.

5. Results and Discussion

0e purpose of this section is to examine the performance of
the proposed DPD method by comparing with the two
conventional two-step localization methods and the DPD
approach using the iterative scheme proposed in [20]. 0e
simulated two-step methods first estimate azimuth and el-
evation angles at each observer independently using the 2-
dimensional (2D) MUSIC algorithm and then determine the
source positions based on the estimated azimuth angles at all
observers using Taylor-series (TS) method [29] and pseudo-
linear weighted least square (PLWLS) method [10], re-
spectively. 0e initial values for the proposed and TS
methods are provided by the PLWLS estimator.

0e simulations are conducted upon the application of
three stationary observers. Without loss of generality, we
assume that three observers are located on the ground, whose
positions are [−1000, 1000, 0]T (km), [1000,1000,0]T (km),
and [1000,−1000,0]T (km), respectively. Each observer is
equipped with a uniform circular array (UCA) comprising
M� 9 sensors in the X-Y plane.0e radius of the UCA is 1.5λ,
where λ denotes the wavelength.0e HF transmitter is placed
at [200, 500, 0]T [km].0e transmitted signals are reflected by
the ionosphere and arrive at observers with elevation angles
φ � [50, 55, 70]T (degree). 0e baseband signal waveforms
are generated as narrowband signals, and channel fading is
inversely proportional to the squared distance. We collect
N� 200 samples of signals to implement the location, and
each simulation performed 500 Monte Carlo runs.

As λ and λ1 are significant parameters in the IS method,
we first come to examine the effect of their values on the
performance of the proposed method, and thus the choices
of λ and λ1 can be determined. 0e realization number
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K� 1000 is employed in the IS method. At SNR� 0 dB and
λ1 � 0.5, we vary the value of λ from 0 to 2000 and depict the
root mean square error (RMSE) of the transmitter position
and the average RMSE of three arrival elevation angles in
Figure 2. It can be seen that the RMSEs diminish dramat-
ically for λ< 200, whereas the performance remains almost
unchanged as λ becomes sufficiently large. 0is confirms the
analysis in Remark 1. Inspired by this result, we choose
λ� 1000 in the following simulations. Under the same SNR,
we fix λ at 1000 and change λ1 from 0.1 to 3.3. 0e cor-
responding results are illustrated in Figure 3, which shows
that the performance of the proposed algorithm is not ev-
idently sensitive to different values of λ1. On this basis and
without loss of generality, the choice of λ1 � 0.5 is used in our
study.

0en, as the SNR varies from −12dB to 10dB, we compare
the estimation accuracy of our method with those of the two-
step and the iterative DPD methods. 0e corresponding results
are shown in Figure 4, where the derived CRBs are presented as
the benchmark. We notice that the proposed DPD not only
performs better than the TS and PLWLS methods in terms of
location RMSE but also outperforms the 2D MUSIC algorithm
in terms of the average RMSE of elevation angles at low SNRs.
With an increase in SNR, our method can reach the associated
CRB. Moreover, it can be seen from Figure 4 that our method
using the IS technique has greater robustness performance than
the iterative DPD method in the low SNR region. 0is may be
due to the fact that our method solves the ML problem in a
noniterative manner, whereas the iterative DPDmethod cannot
guarantee to converge when the noise is sufficiently large.
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Figure 2: RMSEs of the proposed method with different values of λwith λ1 � 0.5. (a) Location RMSE. (b) Average RMSE of elevation angles.
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Figure 3: RMSEs of the proposed method with different values of λ1 with λ� 1000. (a) Location RMSE. (b) Average RMSE of
elevation angles.
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For different SNRs, we evaluate the average computer
running time using a laptop with a 2.5GHz Intel Core CPU.
Each prescribed location method and the exhaustive search
implementation of the investigated problem is examined. As

shown in Table 1, the complexity of the proposed DPD is
much lower than those of the exhaustive search and the two-
step methods. It significantly decreases the computational
cost compared with the exhaustive search due to the
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Figure 4: Comparison of RMSEs and CRB versus SNR. (a) Location RMSE. (b) Average RMSE of elevation angles.

Table 1: Average running time in seconds for different SNRs.

Proposed DPD Exh. search Iterative DPD MUSIC+TS MUSIC+PLWLS
SNR� −10 dB 0.4512 91.0401 1.1498 4.6603 4.3123
SNR� 0 dB 0.4276 90.7398 0.3268 4.6208 4.3289
SNR� 10 dB 0.4184 90.5612 0.1363 4.5398 4.3326
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Figure 5: Comparison of RMSEs and CRB for different elevation angles. (a) Location RMSE. (b) Average RMSE of elevation angles.
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application of the IS technique and the derived Gaussian
importance function. Although the proposed DPD costs
more time than the iterative DPD when the SNR is larger
than 0 dB, the running time of our method using the IS
technique is not affected by the SNRs, whereas the iterative
DPD requires more iterations and thus much longer time at
low SNRs.

Finally, we test the localization performance for different
arrival elevation angles. When the SNR is −5 dB, the RMSE
curves as well as the CRB curve are displayed in Figure 5 with
each elevation angle changing from 10 to 80 degrees. We see
that both the location RMSEs and the average RMSEs of
elevation angles are altered with different arrival elevation
angles. Specifically, the location RMSEs get smaller when
elevation is low but larger when elevation is high, whereas
the average RMSEs of elevation angles are opposite. 0is can
be explained by the fact that all the simulated methods
explicitly or implicitly exploit the information in the azi-
muth angles and the estimation of azimuth angles relies on
the values of elevation angles. Notice that the RMSE of
elevation angle estimated by iterative DPD deteriorates
dramatically when the elevation angles are lower than 20
degree, but our algorithm still exhibits superior location
performance over other methods at each elevation angle.

6. Conclusion

In this paper, we have proposed a single-step geolocation
method for an OTH transmitter observed by widely sepa-
rated arrays. 0e proposed method directly estimates the
transmitter position and elevation angles without the need
for prior information of the ionosphere model. IS technique
is employed in its solution instead of the commonly used
grid search and iteration scheme, which makes our method
practically attractive. Simulation results demonstrate that
our method outperforms the conventional two-step ap-
proaches as well as the iterative DPD, and it asymptotically
reaches the corresponding CRB as the SNR increases.

For the OTH geolocation, we can obtain better results if
an ellipsoid model is used to describe the shape of the Earth.
0is can be achieved by adapting the proposedmethod to the
geocentric coordinate system, and we defer it to the extended
version of this paper. In this paper, the boldface italic upper
case letter denotes the matrix and the boldface italic lower
case letter signifies the vector. For convenience, we list the
notations used in this paper.

Abbreviation

OTH: Over-the-horizon
NLOS: Non-line-of-sight
HF: High-frequency
MUSIC: Multiple signal classification
DOA: Direction-of-arrival
TOA: Time-of-arrival
BOL: Bearings-only localization
DPD: Direct position determination
ML: Maximum likelihood
SNR: Signal-to-noise ratio

IS: Importance sampling
TDOA: Time-difference-of-arrival
PDF: Probability density function
CRB: Cramér–Rao bound
TS: Taylor series
PLWLS: Pseudo-linear weighted least square
RMSE: Root mean square error.
Notation
[·]T: Transpose
[·]H: Conjugate transpose
[·]†: Moore–Penrose inverse
blkdiag[·]: Composition of block diagonal matrix
‖ · ‖: Euclidean norm
RN×M: Sets of the N × M real-valued matrix
CN×M: Sets of the N × M complex-valued matrix
Re ·{ }: Real part
Im ·{ }: Imaginary part
det ·{ }: Determinant
Π⊥[·]: 0e orthogonal projector matrix onto the null

space of the matrix
[·]n: 0e nth element of the vector.
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