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-e accuracy of time series forecasting is more important and can assist organizations to take up-to-date decisions for better
planning andmanagement. Several classical econometrics and computational approaches show promising results for the ordinary
time series forecasting tasks, but they are not satisfactory in crude oil price forecasting. Ensemble empirical mode decomposition
(EEMD) not only resolves the problem of nonlinearity and nonstationarity of time series prediction but also creates some
problems (i.e., mood mixing and splitting). In this study, we proposed a new hybrid method that combines the median ensemble
empirical mode decomposition and group method of data handling (MEEMD-GMDH) to reduce mood splitting problems and
forecast crude oil price. MEEMD is achieved by replacing the mean operator with the median operator during the EEMD process.
For testing and validation purposes of the different models, the two-seat stamp benchmarked crude oil price data are used (i.e.,
Brent and West Texas Intermediate (WTI)). To check the proposed model performance, different evaluation measures are used
including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Diebold-Mariano (DM) test. All the forecasting accuracy measures confirmed that our proposed model performs well in crude oil
prices forecasting as compared to other hybrid models.

1. Introduction

-e global market price fluctuates dramatically and increases
in the long term. Commodity prices’ fluctuation causes a
massive impact on the global economy, for example, soaring
the cost of imports, stimulating inflation, sluggish growth in
the economy, and decreasing the efficacy of macroeconomic
policy. -us, analyzing the characteristics of international
market variations in goods in order to forecast the price and
pattern is critical for the world economy. Goods are vital for
global growth from the perspective of nations and govern-
ments and have a significant strategic effect on national
economic stability. If consumer prices can be more reliably
estimated, goods can be imported at low prices to significantly

relieve imported inflation pressures. As import prices drop,
government subsidies to businesses may be lowered and fiscal
policy stability increases. Moreover, the currency reserves of a
nation could be used to accommodate the flexibility of ex-
change rates to improve the resilience of monetary policies
regardless of the decline of foreign exchange spending.

In the opinion of producers, goods are raw materials for
the aviation, shipping, and food processing sectors. -ey are
also items for the oil mining industry and nonferrous
metallurgy businesses. Fluctuations of product markets
influence the costs and earnings of companies. -e effective
fluctuation of the value of goods helps farmers to accurately
schedule production, minimize the cost, and achieve greater
profitability. As for exchange firms, sharp commodity price
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swings are also the result of significant losses.-e probability
of market volatility is therefore underdetermined due to the
lack of an analysis team, operational team, and the required
decision-making process. In fact, the expected price con-
trasts considerably with the real price when dealing with
product prospects. By creating a model of projection for
consumer goods and a method of mitigation fluctuations in
prices, trading firms are able to avoid risks and lower trade
losses. In general, it is important and urgent to study
commodity price predictions to provide rational support for
the government and business decision-makers.

Crude oil is one of the core major natural products, with
demand and supply exceeding 80 million barrels per day,
because it covers two-thirds of the world’s direct energy
consumption [1]. Oil assumes an undeniably important role
in the global economy since about 66% of the world’s energy
utilization comes from unrefined petroleum and gasoline.
Sharp oil price value improvements are most likely going to
shake aggregate economic activity, especially since Jan 2004,
the world’s oil cost has been rising rapidly and is creating
striking fluctuations for the world economy. Consequently,
unss oil prices are a source of major zeal for many analysts,
research experts, and organizations. -e price of crude oil is
essentially dictated by its demand and supply but is more
clearly affected by numerous unpredictable past/present/
future occurrences, such as climate change, stock levels,
GDP development, and political perspectives. -ese realities
lead to a distinctly varying and nonlinear market and the
basic component of maintaining the intricate dynamic is not
understood.

In 2019, global oil consumption reached 1,0075 million
barrels per day considering data from the International
Energy Agency (IEA). Oil indeed plays the most important
role in fulfilling global energy needs. Asian emerging-
market countries have become the key contributors to the
rising demand for crude oil. -e fast economic develop-
ment led them to dramatically raise the demand for crude
oil. -e crude oil demand has increased due to the expe-
ditious economic growth. China’s oil consumption, for
instance, has risen from an average of 69,700 barrels per
day in 2005 to 145,100 barrels per day in 2019. As a demand
factor, rising crude oil prices would result in higher pro-
duction costs for the nonoil companies and a shrink in
profit [2]. As crude oil is a very critical commodity to the
global economy, many leading governments, investors, and
scholars have invested a lot of effort in building models to
predict fluctuations in their prices and important prop-
erties. Given its complexity, price charts are susceptible to
factors such as supply and demand, speculative activities,
competition between suppliers, development of technol-
ogy, and endless war [3, 4].

Due to the nonlinear and complex nature, it is difficult
for humans to understand the high volatility in crude oil
prices. In the past, crude oil prices for the West Texas
Intermediate (WTI) peaked in July 2008 at USD 145.31 per
barrel. But the price fell sharply to USD 30.28 per barrel due
to the financial crisis, which was about 80 percent from the
high at the end of 2008. Prices climbed to $113 per barrel in
April 2011, when the economy boomed, but in February

2016, it dropped again to $27 per barrel, owing to certain
political causes and demand and supply variations [5].
From different perspectives, the impact of crude oil price
fluctuations on the national economy is reflected in two
aspects. In the first aspect, soaring crude oil prices have
seriously affected the economic empowerment of oil-
importing economies. -e second aspect is that the decline
in crude oil prices (such as the decline in 1998) has caused
serious budgetary deficit problems for oil-exporting
countries [6]. Since crude oil price series are generally
considered to be nonlinear and nonstationary time series,
they can be accurately influenced by several factors;
therefore, accurately predicting the price of oil can be quite
challenging. Since the oil price pattern displayed nonlinear,
nonstatic, or multiscaling elements, researchers started to
analyze oil price volatility by using multiscale techniques,
such as the wavelet analysis and the analytical decompo-
sition mode (EMD). -ese techniques have a strong time
and frequency resolution and can increase the regularity of
the variations. -ere are several methods of analyzing and
predicting oil prices developed by researchers that can be
separated approximately into single models and mixed
models. Single models include observational approaches,
methods for causal inference, times, and math. Combined
models are made according to such laws by integrating
single models.

In the past decades, future observation and prediction
based on time series data have attracted great attention in
many research fields. To predict the future behavior of a
particular phenomenon, many techniques have been de-
veloped to address this issue, such as cointegration analysis,
vector error correction model (VECM), vector autore-
gression (VAR), linear-regression (linR), random walk
model, GARCH, and ARIMA models. Other than that,
computational approaches such as empirical mode de-
composition (EMD), artificial neural network (ANN), and
ensemble empirical mode decomposition (EEMD) have also
been used. Gülen [7] used a cointegration methodology to
predict the WTI crude oil price. Lanza et al. [8] utilized the
error correction model (ECM) to predict crude oil prices.
Another famous methodology is the GARCH model; like-
wise, [9] used the GARCH properties to predict Brent crude
oil price. Mohammadi and Su [10] applied the ARIMA-
GARCH model on weekly crude oil spot prices in eleven
international markets, to forecast the conditional mean and
volatility. ANN and ARIMAmodels were used to predict the
future price of WTI crude oil [11]. -ey documented a
comparative analysis between the ANN and ARIMAmodels
to show the techniques with the best results based on the
forecasting accuracy measures including Mean Absolute
Error (MAE), Mean Square Error (MSE), and Mean Ab-
solute Percentage Error (MAPE). -e scholars concluded
that the ANN had better prediction results than the ARIMA
model. Mirmirani and Li [11] investigated US oil prices
using vector autoregression (VAR) and ANN and concluded
that BPN-GA attains the best results. Ahmad [12] predicted
the Oman crude oil prices using the ARIMA model and
proved that ARIMA (1, 1, 5)∗(1, 1, 1) achieved the best
results. Aamir et al. [13] used the complete ensemble
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empirical mode decomposition with adaptive noise
(CEEMDAN) hybrid model to forecast crude oil prices for
both Brent and WTI markets. -ree-layer feedforward
neural network (FNN) was incorporated by [14] for fore-
casting short-term crude oil price. -e authors [15, 16]
forecast the crude oil price by using a support vector ma-
chine (SVM) and contrasted the results with back-
propagation neural network (BPNN) and ARIMA models.
-eir findings indicated that SVM outperformed the BPNN
and ARIMA models. -e aim of the authors [17] was to
achieve some improvements in the prediction of oil price
volatility by using an Artificial Neural Network Generalized
Autoregressive Conditional Heteroscedasticity ANN-
GARCH hybrid model combined with financial variables.
-ey concluded that the hybrid model improves the vola-
tility prediction accuracy by more than 30% through the
results measured by the heteroscedasticity-adjusted mean
square error (HMSE) model. Lin and Sun [2] used
CEEMDAN-MLGRU based decomposition method to
forecast WTI crude oil price. Li et al. [18] used a new hybrid-
based model, namely, EEMD-SBL-ADD, and concluded that
the proposed model is promising for forecasting crude oil
price. -e authors [19] also worked on Box-Jenkins
(ARIMA) and neural network (NN) models to forecast
repairable system failure analysis. -ey concluded that both
models performed better with short-term forecasting;
however, NN as compared to the ARIMA model gave sat-
isfactory performances. Moreover, the authors in [20] used
machine-learning (decision tree) models to forecast crude
oil prices. -is study also concluded that the decision tree
models achieved higher prediction accuracy than bench-
mark models such as multiple linR and ARIMA. Due to
nonlinear features, the classical time series models were not
capable of predicting crude oil prices accurately [21, 22].

Motivated by the potential of median ensemble em-
pirical mode decomposition (MEEMD) in signal decom-
position, we proposed a new method for the prediction of
crude oil prices combining MEEMD, namely, the median
ensemble empirical mode decomposition and group method
of data handling (MEEMD-GMDH), stimulated by the
capability of MEEMD in the signal breakdown in order to
minimize mood splitting and mixing problems. In partic-
ular, there are three phases of MEEMD-GMDH. First,
MEEMD is used to decompose the daily raw price range for
crude oil into several relatively simple components. Sec-
ondly, we use GMDH inputs from the autoregressive term to
separately forecast each component. Finally, the predicted
results for each component are aggregated as a result of the
final forecast.

-is paper contains the following main contributions:

(1) We are proposing a new MEEMD framework that
uses the median operator rather than the mean
operator during an ensemble noisy intrinsic mode
function (IMF) trial.

(2) We forecast crude oil prices by integrating MEEMD-
GMDH following the “decomposition and ensemble”
framework. To the best of our knowledge, this blend is
used for forecasting purposes for the first time.

(3) Experimental outcomes show that the approach
proposed is beneficial for forecasting crude oil prices.

-e remainder of the study is structured in the sequence
as follows: In Section 2, we concisely explain MEEMD,
GMDH, ANN, and ARIMAmodels. Section 3 formulates the
proposed MEEMD-GMDH model in detail. To evaluate the
proposed model, results and discussion are presented in
Section 4 and finally, and Section 5 concludes this paper.

2. Methodology

2.1. MEEMD. EMD is one of the popular and widely used
decomposition methods for nonlinear and nonstationary
time series forecasting. -e EMD decomposes the data into
IMFs along with a residual. Intermittent recurrence of signals
in EMD is usually due to mode mixing and mode splitting.
Modemixing is defined as one IMF containing different scales
while mode splitting is defined as the spread of one scale over
two or more IMFs. To remove the effect of mode mixing from
EMD, an additional white noise term is added to the original
signal before applying EEMD. -e new added white noise
solves the problem of mode mixing; however, it inevitably
creates new mode splitting due to two main reasons: (i)
Signals having a scale located in the overlapping region of the
EMD equivalent filter would have a finite probability of mode
splitting [23]; (ii)-e added white noise cannot guarantee full
uniformity across all scales, whichmay lead unexpected signal
intermittency and irregularity [24]. To reduce the mode
splitting problem, [25] proposed MEEMD. It is the variation
of the EEMDmethod that uses themedian operator instead of
a mean operator during the ensemble noisy IMF trial. -e
steps of MEEMD are as follows:

(i) Create the ensemble:

Zn(t) � X(t) + μn(t). (1)

Forn � 1, . . . , N, where μn(t) ∼ N(0, σ2).
(ii) Perform and decompose every member of Zn(t)

into a maximum number (Mn) of IMFs using
standard (EMD) to obtain the IMFs dm

n (t)􏼈 􏼉
Mn

m�1 and
one residuern(t).

Zn(t) � 􏽘

Mn

m�1
d

m
n (t) + rn(t). (2)

(iii) Use the median operator to obtain final IMFs within
MEEED. -e IMFs are computed as

dm(t) � median d
m
1 (t) + d

m
2 (t) + · · · d

m
N(t).􏼈 (3)

In normal distribution N ∼ (μ, σ2), the median is
asymptotically normal [2]. -at is,

mean � m,

σ2 �
π
2N

ε2.
(4)

-e added noise for MEEMD is as follows:
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σN �

���
π
2N

􏽲

ε, (5)

where σN is the final standard deviation which is
equal to the difference between input and sum of
IMFs. -e flowchart of the MEEMD is presented in
Figure 1.

2.2. ARIMA Model. Box and Jenkins (1976) introduced the
Box-Jenkins technique (ARIMA models) in the area of time
series analysis [26]. An ARIMA model predicts a value in a
response time series as a linear combination of its own pth
previous values, the previous error, and current and previous
values of other time series. Box-Jenkins versions are highly
versatile due to the use of both AR and MA concepts. -e
time series (Yt) interdependencies are measured by AR
terms, while the previous error conditions depend on the
MA terms. -e following form is given for an ARMA order
model (p, d, and q) for a univariate series.

-e ARIMA process of order (p, d, and q) is defined as
follows:

Yt � c0 +∅1Yt− 1 +∅2Yt− 2 + · · · +∅pYt− p

+ ∈t + θ1∈t− 1 + θ2∈t− 2 + · · · θq∈t− q.
(6)

Here, Yt is the target value of time series t, Yt− j is the
lagged previous values, and ∅j is the coefficients of lagged
previous time series values, whereas θj is the coefficients of the
previous error term, ∈t is an error term with normally dis-
tributed (0, δ2), and ∈t− 1 is the previous error terms. As most
of the time series are usually nonstationary, the ARIMAmodel
needs stationary data [27]. -is can be achieved by differ-
entiating the time series data.-e ACF and PACF plots can be
used to select the appropriate order of AR and MA terms.

2.3. Artificial Neural Network Model. ANN is a very suc-
cessful model for time series forecasting [28]. One of the
characteristics of ANNs is their universal approximation;
that is, ANNs can estimate any nonlinear continuous
function up to any desired degree of accuracy [29, 30]. -e
most commonly used for time series forecasting is single
hidden layer feedforward neural network (SLFN). -e re-
lationship between output (yt) and the inputs (y1, . . . , yt− p)

has the following output:

yt � ∅0 + 􏽘

q

j�1
∅jg θ0j + 􏽘

p

i�1
θijyt− i

⎛⎝ ⎞⎠ + μt, (7)

where θij(i � 1, 2, . . . , p, j � 1, 2, . . . , q) and ∅j(j � 0, 1, 2,

. . . , q) are the weights,∅0 and θ0j are the bias term, Yt− i(i �

1, 2, . . . , p) represents the input nodes, and j � (1, 2, . . . , q)

is hidden nodes. Using the logistic function as the hidden
layer activation function g, the first layer is the input layer
where the data are introduced to the network, the second
layer is the hidden layer, and the last layer is the output layer
where the result of a given input is produced. -e ANN
architecture is shown in Figure 2.

2.4. Group Method of Data Handling (GMDH). -e idea of
GMDH was first proposed by Ivakhnenko in 1966, as an
inductive learning algorithm [31]. According to [32],
GMDH methodology solves higher-order regression poly-
nomials, that is, solving modeling and classification prob-
lems. In the time series forecasting, the GMDH algorithm
identifies the relationship between the variables based on
their lag values. -e GMDH methodology automatically
chooses the process to follow in the algorithm after training
the relationship between variables. -e authors in [33]
analyzed that GMDH has the ability to generalize and can fit
the complexity of nonlinear systems. -e Ivakhnenko
polynomial is defined as follows:

y � α0 + 􏽘
T

i�1
αixi + 􏽘

T

i�1
􏽘

T

j�1
αijxixj + 􏽘

T

i�1
􏽘

T

j�1
􏽘

T

k�1
αijkxixjxk + · · · .

(8)

Here, y represents the response variable, α0 represents
weights (coefficients), and xixj represents lagged time series
data. GMDH model consists of the following five steps:

Step 1. Step 1. Divide the data into training and testing
sets. Choose input x1, x2, x3, . . . , xT (variables).
T is equal to the number of inputs. Construct the
GMDHmodel using train data, while evaluating
the estimated model using the testing dataset.

Step 2. For partial description of GMDH, choose the
new k variables (Z � z1, z2, . . . , zk) where k
is the number of combinations i.e.,

Initialize ensemble number M and
the amplitude of white noise 

The final IMFs are get by
dm (t) = median{dm

1 (t) + dm
2 (t) + … … dm

N (t)

m = m + 1

Add a white noise
Zn (t) = X (t) + µn (t)

The IMFs are get from Zn (t) by
standard EMD 

If (m < M)

End

Signal X (t) 

Figure 1: Flowchart of median ensemble empirical mode de-
composition (MEEMD).
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k � (T∗(T − 1)/2). -e partial description is
the form of

f � x1, x2, . . . , xn( 􏼁 � α0 + α1xi + α2xj

+ α3xij + α4x
2
i + α5x

2
j + · · ·

(9)

Many researchers consider that the partial
description is a transfer function. -ere are
many types of transfer functions. In this study,
we use the radial basis function (RBP). -e
radial basis function is the form of

zk � e
− g2

k . (10)

Step 3. Estimate the vector of coefficients of partial
description using the least square method.

Ai � X
T
i Xi􏼐 􏼑

− 1
XiY. (11)

Here, Ai � (α0, α1, α2, . . . , αn) is a polynomial
coefficient. Y � (y1, y2, . . . , yn) is the observed
values, and

X �

xi1 xj1 xi1xj1 x
2
i1 x

2
j1

xi2 xj2 xi2xj2 x
2
i2 x

2
j2

⋮ ⋮ ⋮ ⋮ ⋮

xin xjn xinxjn x
2
in x

2
jn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Step 4. In this step, identify new (inputs) for the second
layer. Based on some criteria to choose the input
(variables) for the second layer, choosing the best
variables is based on some performance index,
MSE, and Relative Mean Square Error (RMSE).
-e best neuron out of k neurons identified the
value of MSE of checking dataset such that

MSE �
1
n

􏽘

n

i�1
yi − zi,h􏼐 􏼑

2
, for h � 1, 2, . . . , k. (13)

-ose values of Z whose MSE is less than the
threshold; then stop the process. Otherwise,
new input is [x1, x2, . . . , xk].
In criteria 2, ignore the weakest variables, and
replace x1, x2, . . . , xk by those columns of
z1, z2, . . . , zk that best estimate the response
variable in the checking set.

x1 � z1, x2 � z2, . . . , xk � zk. (14)

Step 5. In this step, check the stopping criterion.
Whether a set of polynomials of the model is
further improved, the lowest value of MSE
obtained in the current layer is compared with
the smallest value of MSE obtained in the
previous layer. If an improvement is achieved,
one goes back and repeat steps 1 to 5; otherwise,
the process is stopped, and the algorithm has
been completed. And finally, the GMDHmodel
is shown in Figure 3.

3. The Proposed MEEMD-GMDH Model

Due to nonlinear features, the classical time series models
are not capable of predicting crude oil prices accurately [21].
-erefore, inspired by the advantage of MEEMD in this
study, a novel approach that integrates MEEMD-GMDH is
used for forecasting crude oil price. -e decomposition and
ensemble framework of MEEMD-GMDH consists of the
following steps and is shown in Figure 4.

Step 1. Decomposition of data: MEEMD is applied to
decompose the X(t){ } crude oil prices series
into two parts: (i) IMFs components and (ii)
one residue component rn(t).

Step 2. Individual prediction: divide the data into
training and testing sets. Construct the GMDH
model using train data, while evaluating the
estimated model using the testing dataset.

g1 (.)

g1 (.)

g1 (.)

Bias Bias

Yt

θji

θjo

Input layer Hidden layer Output layer

……

Yt–1

Yt–2

Yt–3

Figure 2: -e architecture of the ANN model.
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Step 3. Ensemble prediction: the test results for all
IMFs from Step 2 are composed by adding as
the final prediction results.

4. Experimental Results

4.1. Data Description. In this study, daily crude oil prices of
time series data are utilized, that is, WTI and Brent.-eWTI
series consists of 8000 observations from Feb 10, 1989, to
Oct 10, 2019; 80 percent (6400 observations) are used as a
training set while 20 percent (1600 observations) are used as
a testing set.-e Brent dataset consists of 12000 observations
from Dec 10, 1973, to Oct 10, 2019; 80 percent (9600 ob-
servations) are used as a training set whereas 20 percent
(2400 observations) are used as an assessment set to check
the model performances. -e distribution of training and

checking data series is 80 percent and 20 percent, respec-
tively [34].

4.2. Evaluation Criteria. -e forecasting accuracy measures
are the most important criteria when competing models
occur. In this study, the forecasting capacity of the models is
measured using four criteria, as presented in Table 1, where n
is the number of data points, Yt represents observed values,
and 􏽢Yt represents the predicted values.

-e Diebold-Mariano (DM) test statistic compares the
prediction error of the two models, where d � (1/n) 􏽐

n
t�1 dt,

dt � (yt − f1,t)
2 − (yt − f2,t)

2, f1,t is the forecasts achieved
from the 1st model, and f2,t is the forecasts from the second
model. -e original WTI crude oil series is decomposed into
10 IMFs and one residue component, while the Brent series
is decomposed into 11 IMFs and one residue component
using MEEMD. We add the white noise with a standard
deviation of 0.02 and the number of ensemble sizes is equal
to the size of data. Both of them are illustrated in Figures 5
and 6.

4.3. Fitting Proposed Model to the Data. In designing the
GMDH model, one must determine the number of input
variables. -e selection of input corresponding to the
number of variables plays an important role in many suc-
cessful applications of the GMDHmodel. According to [35],
no theory can be used to guide the selection of the number of
inputs. To make the MEEMD-GMDHmodel, we choose the
best order (p, d, and q) of the ARIMA model for every kth
IMFs based on AIC and BIC that are used to determine the
input variables for the proposed model.

4.4. Predictive Performance of Single Models. We proposed a
hybrid model that includes two components: a decompo-
sition byMEEMD and forecasting by the GMDHmodel.-e
compared single models include GMDH, ANN, and classical
time series ARIMA. In this study, the comparison of the
three competing single models concerning forecasting
evaluation (accuracy) for testing datasets is presented in
Table 2.

From Table 2, among all these models, GMDH model
attains the smallest value (better performance) on the
metrics (RMSE, MAE, and MAPE). As shown in Table 2, the
single ANN model performed better than the classical
ARIMA model. Table 2 also indicated that the ARIMA
model performed worst, because the classical econometric
and time series method does not perform well for nonlinear
time series.

-e forecasting evaluation measures for single models
are shown in Table 2; some interesting conclusions can be
drawn:

(1) -e forecasting evaluation performance (RMSE) for
both crude oil markets is presented in Table 2. -e
decision is made from the RMSE value that GMDH
(single model) got the lowest value and out-
performed the other single models (ANN; ARIMA)
for both markets.

Input

MEEMD

IMF 1 IMFm Residual…

IMF1
prediction

IMFm
prediction

Residual
prediction

ADD predictions

Final output

GMDH1 GMDHm GMDHm+1…

…

Figure 4: Flowchart of the proposed MEEMD-GMDH model.

Set layer = 1

Estimate the weight in the Kth layer using
training set

Calculate output of each neuron using testing set

Output of Kth layer are set to input of (K + 1)th

layer

End

No

Yes
Is layer final?K = K + 1

Figure 3: GMDH network flowchart.
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(2) -e MAPE value of GMDH (single model) 0.2994%
and 0.7584% for both markets (Brent and WTI) lies
in the classification of perfect forecasts.

(3) -e ANNmodel attained second (lowest values) and
the ARIMAmodel has achieved the third rank in the
forecasting performance.

Table 1: Criteria to assess the competing models.

Criterion Formula

Root Mean Square Error RMSE �

������������������

(1/n) 􏽐
n
t�1 (􏽢Yt − Yt)

2
􏽱

Mean Absolute Error MAE � (1/n) 􏽐
n
t�1 |􏽢Yt − Yt|

Mean Absolute Percentage Error MAPE � (1/n) 􏽐
n
t�1 |(􏽢Yt − Yt)/Yt|∗ 100

Diebold-Mariano (DM) DM � (d/
������

var(d)

􏽱

)
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Figure 5: -e decomposition results of WTI series using MEEMD.
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4.5. Predictive Performance of Hybrid Models. -e most
important comparison of hybrid models based on decom-
position methods for both crude oil series is shown in Ta-
bles 3 and 4.

Regarding the hybrid models (i.e., EEMD-GMDH,
EEMD-ANN, EEMD-ARIMA, MEEMD-GMDH, MEEMD-
ANN, and MEEMD-ARIMA), Tables 3 and 4 show the ex-
perimental results of RMSE, MAE, and MAPE on both
markets, Brent and WTI, respectively.

-e forecasting evaluation criterion RMSE results are
shown in Tables 3 and 4. -e conclusion is drawn from
RMSE that the proposed MEEMD-GMDH model signifi-
cantly outperformed the other models for both Brent and
WTI crude oil markets, while on other hand,MEEMD-based
models (MEEMD-ANN and MEEMD-ARIMA) also attain
the lowest value (better performance) than the corre-
sponding EEMD-based (EEMD-ANN and EEMD-ARIMA)
models.
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Figure 6: -e decomposition results of the Brent series using MEEMD.

Table 2: Forecasting accuracy comparison of single models.

Models
Brent WTI

GMDH ANN ARIMA GMDH ANN ARIMA
RMSE 0.1772 1.1372 2.2543 0.5173 1.2397 2.0031
MAE 0.3126 1.0292 1.3469 0.5763 0.9235 2.8719
MAPE 0.2994 1.2885 1.5164 0.7584 1.5234 1.5035

Table 3: Forecasting accuracy of hybrid models of WTI series.

Models
EEMD MEEMD

GMDH ANN ARIMA GMDH ANN ARIMA
RMSE 0.3872 0.6580 0.6680 0.0426 0.1043 0.4297
MAE 0.5061 0.6244 0.6061 0.0351 0.1025 0.3915
MAPE 0.2864 0.4943 1.2306 0.0087 0.3770 0.5850
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-e forecasting evaluation performance (MAE) for both
crude oil markets is presented in Tables 3 and 4.-e decision
is made from theMAE value that the proposedmodel got the
lowest value and outperformed the other models for both
markets. From Tables 3 and 4, we observe that the MEEMD-
based model also performs better than the corresponding
EEMD-based models.

-e forecasting evaluation criterion MAPE on both
markets for all selectedmodels is presented in Tables 3 and 4.
-e decision made from MAPE value that the proposed
model significantly outperformed the other models for both
markets. -e models MEEMD-ANN and MEEMD-ARIMA
also attain the lowest values and perform well; then, the
other benchmarked models and ranked second and third,
respectively, in terms of MAPE. -e MAPE values of the
proposed model are 0.0087 and 0.0051 for both Brent and
WTI markets, respectively, which lies in the classification of
highly accurate forecasts.

From the forecasting evaluation measures shown in
Tables 3 and 4, some interesting conclusions can be drawn:

(1) Among all these models, the proposed method
performed well based on RMSE, MAE, and MAPE
presented in Tables 3 and 4.

(2) -e hybrid models based on MEEMD have better
performance than those based on EEMD.

(3) -e proposed model performs better for long-term
dependence than other classical and machine-
learning methods for predicting crude oil prices.

(4) Both MEEMD and EEMD hybrid models performed
better than single time series and machine-learning
models.

(5) -e suggested MEEMD-GMDH framework is way
above all other comparable models in terms of
MAPE, RMSE, and DM test, by utilizing the benefits
of MEEMD and GMDH. All of these mean that the
MEEMD-GMDH can effectively forecast crude oil
prices.

Next, to confirm the superiority of the proposed model,
we apply the DM test. For WTI dataset, the DM test statistic
and their p-values are shown in Table 5, while for the Brent
series, the DM test statistic and their corresponding p-values
are presented in Table 6.

-e assumptions of the DM test are the twomethods that
have the same number of predictions. -e DM test con-
firmed the above conclusion. -e MEEMD-based model
statistically outperformed ANN and ARIMA models, and
their p-values are less than <0.01 for both markets which
shows the superiority of the MEEMD-GMDH model, while
on the other hand, EEMD hybrid models and their p-values

are also less than 0.01. Finally, the proposed model per-
formed better than other models in this study.

4.6. Monte Carlo Simulations. In this section, simulation is
performed to check the robustness and generalizability of
the proposedMEEMD-GMDHmodel [36]. As we know, the
nature of the crude oil prices data is the combination of the
stochastic and deterministic components. -e MEEMD and
EEMD procedure divided the original time series into IMFs
in such a way that the first IMF is more stochastic as
compared to the second IMF and the second IMF is more
stochastic than the third IMF and so on, whereas the last
IMF is completely deterministic. Synthetic time series
datasets which are composed of additive white noise and sine
function are described in two different scenarios as follows
[37–39]:

(1) -e first synthetic time series consisting of a sine
function represents the deterministic component,
whereas the normal distribution represents the
stochastic component. -at is,

Yt � Sin(2πt) + ε(0, 1). (15)

(2) -e second synthetic time series consisting of the
sine function represents the deterministic compo-
nent, whereas the ARMA model represents the
stochastic component with an error of 0.25.

Yt � Sin(2πt) + ARMA(1, 1). (16)

(3) Different time series are generated using equations
(15) and (16) with a different number of observa-
tions, that is, 500, 1000, 2000, 5000, and 10000, and
decompose all the series using MEEMD and EEMD.
-e distribution of training and testing data series is
80 and 20 percent, respectively, of every series. -e
forecast accuracy measures RMSE, MAE, and MAPE
for testing datasets are presented in Tables 7 and 8,

Table 4: Forecasting accuracy of hybrid models of Brent series.

Models
EEMD MEEMD

GMDH ANN ARIMA GMDH ANN ARIMA
RMSE 0.6278 0.7142 0.7926 0.0240 0.0643 0.6780
MAE 0.6135 0.6742 0.8045 0.0360 0.1325 0.6820
MAPE 0.4543 0.4783 0.9762 0.0051 0.5370 0.9227

Table 5: DM test results for WTI series.

Tested models
EEMD MEEMD

ANN ARIMA ANN ARIMA

GMDH −10.674 −5.421 −6.783 −18.346
(0.000)∗ (0.000)∗ (0.000)∗ (0.000)∗

ANN −2.456 8.342
(0.000)∗ (0.000)∗

∗Statistically significant at 1%.

Table 6: DM test results for Brent series.

Tested models
EEMD MEEMD

ANN ARIMA ANN ARIMA

GMDH −34.993 −25.266 −23.261 −5.456
(0.000)∗ (0.000)∗ (0.000)∗ (0.000)∗

ANN 7.456 4.321
(0.000)∗ (0.000)∗

∗Statistically significant at 1%.
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respectively, for scenarios 1 and 2 for all models, that
is, EEMD-GMDH, EEMD-ANN, EEMD-ARIMA,
MEEMD-ARIMA, MEEMD-ANN, and the pro-
posed MEEMD-GMDH model.

From Tables 7 and 8, it is observed that the MEEMD
improved the performance of the ARIMA, ANN, and
GMDHmodels as compared to EEMD.-us, for forecasting
the crude oil prices, the MEEMD is recommended for data
decomposition. -e model MEEMD-GMDH outperforms
all of the models for a different number of observations, that
is, 500, 1000, 2000, 5000, and 10000.-eMAPE values of the
model MEEMD-GMDH are less than 1 for all sets of ob-
servations which demonstrated the highly accurate forecasts
[37, 38]. -e experimental findings of both scenarios
demonstrated that all ensemble methodologies were effective
but MEEMD was more effective. Moreover, the forecasting
accuracy measures in terms of MAE, RMSE, and MAPE

highlighted that the model MEEMD-GMDH is the most
efficient method for forecasting daily crude oil prices.

5. Conclusion

One of the most important quantitative models with sig-
nificant interest in the literature is time series forecasts. Oil
prices are a crucial factor influencing the economic agenda
and policies of government and trading enterprises, because
of the importance of the role of crude oil in the world
economy. Proactive experience of their potential movements
will also contribute to improved decision-making at all levels
of government and management. -e forecasts for oil prices
are very complicated since the financial time series is ex-
tremely unpredictable, nonlinear, and erratic.

Despite the attempts to fix the issue with new mathe-
matical approaches and because of its inherent complexity,

Table 7: Forecasting accuracy of all models for first synthetic data.

Number of observations Models
EEMD MEEMD

GMDH ANN ARIMA GMDH ANN ARIMA

500
RMSE 0.7543 1.0234 2.4567 0.3199 0.7089 1.4563
MAE 0.7432 1.0032 2.4321 0.2582 0.8694 1.0234
MAPE 0.9183 1.2313 2.0235 0.7253 1.0342 0.8456

1000
RMSE 1.2345 2.0934 3.5672 0.6462 0.7843 1.5321
MAE 1.0326 2.0742 2.9531 0.3719 0.7653 1.3267
MAPE 1.9482 2.6148 3.0219 0.6037 0.8723 1.7364

2000
RMSE 1.0234 2.3456 2.5342 0.3621 0.4932 1.3942
MAE 0.9934 1.4532 2.4329 0.2899 0.3444 1.2345
MAPE 0.8894 2.8743 1.6893 0.3523 0.6953 0.9654

5000
RMSE 0.8743 1.0043 2.0001 0.3945 0.5673 1.8721
MAE 0.8362 0.8732 1.8863 0.3173 0.5542 1.8290
MAPE 0.9795 1.3452 2.8743 0.8358 0.9731 1.2236

10000
RMSE 0.8456 1.4567 2.5693 0.2867 1.9567 3.1043
MAE 0.8123 1.4221 2.7123 0.2224 1.9256 2.9876
MAPE 0.7632 1.1345 1.4576 0.5211 2.1345 2.1376

Table 8: Forecasting accuracy of all models for second synthetic data.

Number of observations Models
EEMD MEEMD

GMDH ANN ARIMA GMDH ANN ARIMA

500
RMSE 0.7943 1.6321 2.6523 0.1592 0.6321 1.7643
MAE 0.6793 1.6432 2.3987 0.1151 0.6124 1.7432
MAPE 1.0032 2.1953 2.4404 0.7757 0.8943 2.0032

1000
RMSE 1.9123 2.8621 2.8732 0.5319 1.9456 2.3452
MAE 1.8943 2.5001 2.7632 0.4983 1.4387 1.0643
MAPE 2.0232 2.7348 2.1198 0.6183 2.4532 1.8476

2000
RMSE 0.4323 1.7634 3.2123 0.1493 0.3456 2.2345
MAE 0.2341 1.4532 2.2134 0.1245 0.3324 2.4321
MAPE 0.4567 1.5567 2.6785 0.2346 0.6783 3.4321

5000
RMSE 1.5432 2.9783 4.1283 0.1734 2.3457 2.2198
MAE 1.0003 2.4431 3.9991 0.1368 1.2963 1.8645
MAPE 1.7634 3.1863 4.9921 0.9703 2.7234 2.0036

10000
RMSE 0.7431 2.5673 2.9528 0.1419 1.3176 3.2134
MAE 0.7219 1.9090 2.1947 0.1126 1.0954 2.5674
MAPE 0.8732 1.3421 2.4788 0.6234 0.8743 3.4532
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apparently volatile existence, and different variables influ-
encing the fluctuation of the demand in crude oil, oil prices are
still difficult to tackle. Incorporate strategies have been more
indispensable than ever to apply computational approaches for
predicting and encouraging investment decisions.

Achieving an accurate prediction of a time series is a
very important but difficult task because of its attributes of
nonlinearity and nonstationarity. In this paper, we pro-
posed a hybrid model called MEEMD-GMDH for crude oil
price forecasting. -e MEEMD method uses a median
operator instead of a mean operator during the ensemble
noisy IMF trial during the standard EEMD process. -e
advantage of MEEMD is to reduce the mood splitting
problem of IMFs. -is is the first time that MEEMD-
GMDH has been applied to predict crude oil prices. -e
experimental results show that our new proposed meth-
odology goes beyond other decomposition hybrid models
(EMD, EEMD, and CEEMD). -is shows that MEEMD-
GMDH is a superior and promising alternative to the
autoregressive integrated moving average model, ANN,
and other machine-learning approaches studied by other
researchers. In addition to crude oil prices, for its ro-
bustness and routine testing, the MEEMD-GMDH
methodology can be implemented with more complex
tasks. Both theoretical and observational literature evi-
dence indicate that the hybrid model is less generic or error
dependent on the use of dissimilar models or models that
vary strongly. Moreover, the hybrid procedure can reduce
the model instability, usually present in the statistical
inference and time series prevision, due to potential un-
reliable or evolving data trends. A literature analysis of the
crude oil forecast reveals that there have been limited
studies on AI and complex methods. -e main objective of
this approach is to help decision-makers to reduce the risks
of crude oil and improve the accuracy of crude oil price
forecasts. Moreover, the research results of this study are
crucial to national economic growth and sustainable
development.

-e future work could be extended in two aspects: (1) to
predict other time series, such as gold price series, electricity,
and wind speed, one can apply MEEMD-GMDH; (2) to
attain more accurate and special decomposition of time
series data, one can apply more advanced average operators
such as weighted mean, quartiles, or geometric mean.
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