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Detection and Quantification of Resting Tremor in Parkinson’s
Disease Using Long-Term Acceleration Data
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Long-term monitoring of resting tremor is key to assess the status of patients suffering from Parkinson’s disease (PD), which is
of vital importance for reasonable medication. The detection and quantification of resting tremor in reported works rely heavily
on specified movements and are not appropriate for long-term monitoring in real-life condition. The purpose of this study is to
develop a detection model for long-term monitoring of resting tremor and explore an effective indicator for tremor
quantification. This study included long-term acceleration data from PD patients and proposed a resting tremor detection
model based on machine learning classifiers and Synthetic Minority Oversampling Technique (SMOTE). Four machine
learning classifiers, K-Nearest Neighbor (KNN), Random Forest (RF), Adaptive Boosting (AdaBoost), and Support Vector
Machine (SVM), were compared. Furthermore, an indicator called tremor timing ratio (TTR) was defined and calculated for
tremor quantification. The detection model with RF classifier achieved the highest overall accuracy of 94.81%. The sample
entropy of the acceleration signal was proved most influential in the classification by exploring the feature importance. Through
the Kruskal-Wallis test and the Mann-Whitney U test, the TTR had a strong correlation with the subscore of resting tremor in
Unified Parkinson Disease Rating Scale (UPDRS). Such two-step evaluation process for resting tremor can detect the tremor
effectively and is expected to be applied in long-term monitoring of PD patients in daily life to realize a more comprehensive
assessment of PD.

of patients have symptoms of resting tremor [4]. It is an
involuntary shakiness most noticeable in the hands, presents

Parkinson’s disease (PD) is a progressive, adult-onset
neurological disease and gets more common with age, af-
fecting more than doubled number of sufferers over the past
generation [1]. Therapy for Parkinson’s disease primarily
focuses on ameliorating the symptoms with medication [2].
Detection and quantification of these symptoms are of vital
importance for reasonable medication. Resting tremor is one
of the most typical presenting signs of PD [3] and about 75%

at rest, and disappears with intentional movement. The most
popular tool to assess the severity of rest tremor in clinic is
rating scale and the Unified Parkinson Disease Rating Scale
(UPDRS) is widely accepted [5]. However, the motor ex-
amination in UPDRS is based on subjective observation of
the clinicians trying to capture a snapshot of the outpatients.
It is acknowledged that there is variance among the
judgements from different clinicians, because of short time
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observation and the diversity in experience. Thus, reliable,
objective, and accessible diagnosing methods for resting
tremor are urgently expected.

Related works have reported various computer-assisted
techniques in the diagnosis and assessment of PD. As the
mature voice acquisition equipment facilitates the con-
struction of voice-based data, most study on PD focuses on
dealing with speech processing [6]. Besides, approaches
based on handwritten spiral images drawn by PD patients
are also hotspots in recent research [7, 8]. Both voice-based
method and drawing images require that the patients have
no cognitive disorder and fail to work in case of the low
compliance of patients. Local field potentials (LFP) were
used to detect resting tremor in recent works [9, 10]. LFP
requires the electrodes to be implanted to the patients during
the deep brain stimulation (DBS) and directly deals with
brain signal. However, it is difficult to popularize the LFP
recordings for the surgical DBS treatment is invasive and
costly. Other external body noninvasive signals such as
electromyography (EMG) [11] and electroencephalography
(EEG) [12] also have been applied to study resting tremor.
Both EMG and EEG need fixed electrodes which are
cumbersome to patients and not appropriate to long-term
monitoring in daily life. In recent years, Leap Motion
Controller (LMC), an interactive and noncontract device
mainly used for hand gestures and finger position detection,
has been introduced to the quantification of hand tremor
[13]. Nevertheless, all the methods mentioned above are
unsuited for long-term monitoring.

Smartphone and smart watch with motion sensors
appeared in recent studies on monitoring the symptoms of
PD [14]. A few researchers have employed inertial sensors
[15, 16] to assess the symptoms of resting tremor. Lacy et al.
[17] presented noninvasive electromagnetic sensors to
conduct the finger tapping test in PD patients. However,
most of the reported studies designed experiments in which
the patients were required to do the assigned tasks to induce
tremor and record signal for just a few seconds or a few
minutes. Although these tasks make the resting tremor more
distinctive and make the assessment more efficiently, the
assigned tasks are different from the activities of daily living.
In the patients’ real life, tremor does not occur all the time
and the amplitude of the tremor is always changing with
time. It is challenging to collect the dataset in real-life
condition and to distinguish the resting tremor from the
activities of daily living.

In addition, multiple methods such as joint time-fre-
quency analysis, statistical analysis, and machine learning
have been employed to study the tremor so far. Spectral
analysis and time-frequency analysis were well utilized in
several previous studies [18, 19]. Salarian et al. [20] used
frequency and amplitude of the signals to detect and
quantify resting tremor through fixed thresholding. Man-
zanera et al. [21] compared several parametric and non-
parametric spectral estimation methods for tremor detection
but failed to detect the resting tremor accurately. Moreover,
wavelet analysis such as discrete wavelet transform [22] and
wavelet coherence analysis [23] provided an approach to
analyze tremor signals and a framework called WAKE was
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proposed by using wavelet decomposition coupled with
adaptive Kalman filtering to extract hand tremor [24]. Be-
sides, statistical analyses such as correlation analysis [25] and
coherence analysis [26] were also helpful methods for ex-
ploring the features corresponding to tremor signals. Deep
learning techniques were well applied in the diagnosis of
diseases. Zeng et al. proposed a SDPSO-SVM model for
diagnosis of Alzheimer’s disease [27] and promoted the
diagnosis algorithm with deep belief network-based multi-
task learning [28]. With advances of deep learning tech-
nique, a few researchers attempted to employ neural
networks to diagnose or quantify tremor [29, 30]. Yoha-
nandan et al. [31] compared the performance of linear re-
gression models with machine learning classifiers and
achieved tremor severity ratings on the Bain-Findley tremor
rating scale. Most of the reported works so far focused on
detecting and quantifying resting tremor based on fragments
of signals. However, a long-term continuous automatic
monitoring system for PD in the home-based environment
is of great significance, which can help the assessment of the
tremor severity.

Wearable devices are suitable for tracking the resting
tremor in daily life and enable the automatic detection and
quantification of resting tremor, making drug adjustment
for patients more reasonable and timelier. In this work, a
two-step evaluation process for resting tremor of PD pa-
tients based on long-term acceleration data is proposed.
Consecutive long-term data of PD patients was collected in
home settings and provides statistical information such as
tremor prevalence. The tremor detection model with good
generalization performance combines Synthetic Minority
Oversampling Technique (SMOTE) with machine learning
classifiers, providing a judgement on the status of the hand
tremor. A new indicator called tremor timing ratio (TTR) is
extracted for the tremor quantification based on the con-
secutive tremor detection and proved to be highly correlated
with tremor severity.

2. Materials and Methods

2.1. Data Acquisition. To acquire the long-term acceleration
data, a total of 20 patients suffering from PD were invited to
participate in the experiment. Before data acquisition, ex-
plicit informed consent was obtained. The experiment was
carried out in accordance with The Code of Ethics of the
World Medical Association with prior approval of the Ethics
Committee of Shenzhen Second People’s Hospital. The
patients were asked to attach the wearable devices with the
triaxial accelerometer to both their wrists (see Figure 1). The
wearable devices acted like watches and did not interference
with the activities of subjects at all. The patients wore the
wrist accelerometers consecutively and were allowed to
move freely following their own will, same as their daily
activities. The acceleration data was sampled at a frequency
of 100 Hz and transmitted via Bluetooth wirelessly. The data
receiver was exactly fixed in the room where the patients
were. In the meantime, the whole process was video filmed
using cameras. Several neurologists with rich clinical ex-
perience were invited to evaluate the tremor of patients
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FiGURE 1: Experimental environment of the data acquisition. The wearable devices with triaxial accelerometer used in this study were placed
on both wrists of the patient (a). The wearable device was shown in (b).

according to UPDRS (see Table 1). Because the symptom of
the resting tremor might change over time, the patients’
scores were repeatedly examined in different periods of the
experiment to be applied as the gold standard. The hand
status of the patients was further annotated in detail to
facilitate the data labelling with assistance of the synchro-
nous video and the acceleration data was then labelled as
tremor and nontremor accordingly. Since not all the patients
suffered from resting tremor and the resting tremor dis-
appeared after some tremor-dominant patients took the
medicine, the mean tremor prevalence was 16.9%. Detailed
information of patients and experiment duration is shown in
Table 2.

2.2. Framework of Tremor Detection. The aim of tremor
detection was to track the hand status of the patients and to
detect whether the resting tremor occurs according to the
long-term acceleration data. To develop the resting tremor
detection model, all the acceleration data collected was
involved. The framework of the detection algorithm is
shown in Figure 2, including three key parts: preprocessing,
feature extraction, and classification. To meet the re-
quirements of real-time and detection resolution, a 5-
second time window was adopted, sliding on the acceler-
ation signals with an incremental step of 1 second. The
acceleration data was detected in each time window. Be-
cause the distance between the patients and the data re-
ceiver was changing as the patients moved and might be too
far away from the data receiver, a small amount of data was
missing. The sliding window firstly checked whether the
acceleration data was missing according to timestamps. If
there was no data missing in current time window, the
tremor detection would proceed. Otherwise, the data in
current window would be skipped and the detection would
slide to the next window.

2.3. Preprocessing. Before feature extraction, preprocessing
of raw acceleration data was indispensable. The acceleration
signal in the given time window was firstly bandpass filtered
with zero-phase digital filter using Kaiser window, respec-
tively. The offset of the triaxial acceleration signals was
dependent on the position of the accelerometer and changed
with the movements of the hands. Thus, components in
extremely low frequency were to be eliminated. Besides, both
intentional movement and involuntary resting tremor
produced acceleration signals of relatively low frequency and
were expected to be preserved after filtering. In this case the
passband of the filter was limited to the range from 0.65 to
12.5Hz. Since the frequency of the resting tremor mainly
ranges from 4 to 7 Hz [32], the waveform of resting tremor
signal was well preserved after filtering. The comparison of
triaxial acceleration signal before filtering and after filtering
is shown in Figure 3.

2.4. Feature Extraction. After preprocessing, features which
characterized the resting tremor were extracted. Related
works on the characteristics of tremor have been reported, in
which amplitude and frequency parameters were proved to
be significantly different between the PD patients and
healthy controls [33]. A number of characteristics in pre-
vious works offer multiple choices for feature extraction.
Considering that excess features contain redundant infor-
mation which may result in bad performance and slow down
the detection speed of the model, five features in time do-
main and frequency domain were finally calculated and were
presented in Table 3. Details and definition of the selected
features were then clarified below.

In time domain, the feature characterizing the amplitude
of signal was extracted. Root-mean-square values of the
triaxial acceleration signals were firstly calculated as the total
acceleration. The mean amplitude (mAmp) of the
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TaBLE 1: The evaluation of tremor at rest in head, upper, and lower extremities in motor examinations of UPDRS.

Score Description

0 Absent.

1 Slight and infrequently present.

2 Mild in amplitude and persistent. Or moderate in amplitude, but only intermittently present.
3 Moderate in amplitude and present most of the time.

4 Marked in amplitude and present most of the time.

TaBLE 2: The statistical review of the dataset.

Characteristics Observations
Number of patients 20
Male/female 15/5
Age (years) 60.7 + 8.6
Disease duration (years) 59+1.5
UPDRS-III before medication 52.7+17.7
UPDRS-III after medication 249+14.9
Hoehn and Yahr stage 29+0.2
Recording duration (hours) 2.35+1
Tremor prevalence 16.9%
Sliding Data missing .
Raw data window check Preprocessing
Classifiers SMOTE Moving the window Feature extraction

FIGURE 2: The framework of the proposed tremor detection model.
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FIGURe 3: Triaxial acceleration signal before filtering (a) and after filtering (b).
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TaBLE 3: The selected five features.

Feature Symbol Physical meanings

Mean amplitude mAmp Average amplitude of acceleration signal.

Sample entropy SampEn Complexity of acceleration signal, quantifying the regularity of acceleration signal.
Dominant frequency DF The frequency with highest amplitude in PSD.

Energy E The energy of acceleration signal in 5 seconds.

Spectrum SE The characteristic of spectrum distribution, describing how frequency component concentrated around
concentration dominant frequency.

acceleration signal was computed based on the total ac-
celeration. To calculate the mean amplitude of the accel-
eration signal, the envelope of the total acceleration was
extracted. The mean amplitude of the signal in a time
window is defined as the average of the difference between
the upper envelope and the lower envelope, given by

N
mAmp = % Z (envupper (n) — envyyyer (n)), (1)

n=1

where envyp,e.(n) is the upper envelope and envigyer(n) is
the lower envelope. An instance of the envelope extraction
from the acceleration signal is illustrated in Figure 4.
Sample entropy (SampEn) was first introduced by
Richman and Moorman [34]. It can be used to characterize
the complexity of time series by measuring the probability of
a new pattern being generated in the signal. Sample entropy
of hand tremor was proved significantly different between
the PD patients and healthy controls [35]. In this study, the
sample entropy of the total acceleration signal was computed
to distinguish the resting tremor status. For the total ac-
celeration signal in a window {x(i)|1 <i<N} of N data
points, the SampEn is calculated by the following steps:

(1) The acceleration signal is first reconstructed to the
delay vector:

X, (@) ={x@@),x({+1),....,x({[+m-1)}, (2)

where i<n—- N -m+ 1.
(2) The distance between X,,,(i) and X,,,(j) is defined as
d(X,,{),X,, () = o<r1?<3;i1 lx(i+k)—x(j+k)I (3)

(3) A; is the number of the vector X, (i) such that
d(X,,, (i), X, (j)) <7

0= i
4
N A 4)

(4) The SampEn is finally obtained by
SampEn (m, r, N) = log A™ () —log A™' (r).  (5)

Fast Fourier Transform (FFT) was applied to the triaxial
acceleration signals, respectively, to further obtain the
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F1GURE 4: Envelope extraction from the total acceleration signal (in
blue). The upper envelope (in red) and lower envelope (in yellow)
were extracted to obtain the average amplitude of the acceleration
signal.

features in frequency domain. The spectrums of the triaxial
acceleration signals are obtained by

N
F.(k) = Z acc, (n)e 7N,

n=1

N
F,(k) = Z acc,, (n)e” 2mjkniN (6)
n=1

N
F, (k) = z acc, (n)e” 2njknIN

n=1

where acc,(n), acc,(n), and acc,(n) are the triaxial acceler-
ation signals.

The dominant frequency (DF) was estimated by
searching the maximum value of the peaks in the frequency
spectrums. Comparing the amplitude of the peaks in triaxial
frequency spectrums, the frequency with highest amplitude
was defined as the DF. The DF of the triaxial acceleration
signals is estimated by

p(%) - max{F, (k) F,() (0},  (7)
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F1GURE 5: DF estimation from the acceleration signals. The triaxial acceleration data is first transformed into frequency domain. The highest
peak in each axis is marked by asterisk. The frequency corresponding to the peak with highest amplitude (red circle) is the dominant

frequency.

where f; is the sampling rate. The DF estimation from a
window of acceleration signal labelled as resting tremor is
depicted in Figure 5.

The power spectral density (PSD) of triaxial acceleration
signals was estimated. The energy (E) of the signal was cal-
culated as the integral sum of the triaxial spectrums, written as

E:JPx(f)df+JPy(f)df+JPZ(f)df, (®)

where P.(f), P,(f), and P,(f) are the PSD of the triaxial
acceleration signals.

The spectrum distribution characterized the frequency
components of the signal. The power around the DF to the
total power described how the spectrum concentrated around
the DF. Since the resting tremor was most obvious when the
patients were at rest, the spectrum was supposed to be highly
concentrated around the DF when resting tremor was present.
In the frequency spectrum, the amplitude of the highest peak
corresponding to the DF of resting tremor was much higher
than other peaks. The ratio of the power in the range of 0.4 Hz
around the DF to the total power was named as spectrum
concentration (SC) and can be calculated as follows:

DF+0.4 DF+0.4
B | PApAfe| p(ndf
DF-0.4 DF-0.4

DF+0.4

+j P.(f)df, )

DE-0.4
sc = For
£

It was summarized that each window of 5 s acceleration

signal was characterized by five features. The dataset con-

sisted of a total number of 225,066 samples of five features.

Since not all the patients suffered from resting tremor and
the tremor may disappear after some tremor-dominant
patients took the medicine, the samples of resting tremor
only accounted for 16.9%.

2.5. Classification. Before classification, the SMOTE algo-
rithm was employed to balance the dataset. As the tremor
prevalence was only 16.9%, the unbalanced dataset was
challenging for the classification. Undersampling and
oversampling are two strategies of resampling to solve the
unbalanced dataset problem. Random undersampling may
reduce the necessary information contained in the dataset
and the random oversampling adopts the strategy of simply
copying samples to increase the minority class of samples,
easy to cause the model overfitting. Therefore, SMOTE,
which was an algorithm improved based on the random
oversampling algorithm, was employed to deal with the
unbalanced dataset [36]. The basic idea of SMOTE is to
analyze and simulate the samples of minority class and add
the artificial simulated new samples to the dataset. After
oversampling with SMOTE algorithm, the proportion of
resting tremor samples increased to 50%.

To construct the detection model, four classifiers of
machine learning having good classification performance
[37, 38] and meeting the real-time requirements were opted
to achieve the tremor detection, including K-Nearest
Neighbor (KNN), Random Forest (RF), Adaptive Boosting
(AdaBoost), and Support Vector Machine (SVM).

K-Nearest Neighbor was proposed by Cover and Hart
[39], which was commonly used as a supervised learning
method. KNN classifier finds the k training samples closest
to the test sample in the training set according to the given
distance metric and predicts the results based on the
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information of the K-Nearest Neighbors. The selection of the
value of k has a great influence on KNN learning model.
Therefore, the grid-search method was utilized to find the
optimal parameters. Due to the large quantity of the samples,
only 10% of the samples were used to search for the optimal
parameters.

Random Forest classifier combines a number of decision
trees with randomly selected features into a forest. Each
decision tree determines the class of the sample indepen-
dently and the forest chooses the majority of the determi-
nation from the decision trees [40]. The RF classifier operates
efficiently on large dataset and reserves high accuracy despite
the large scale of data missing. Because of the random
sampling, the training model has small variance and strong
generalization capability.

Adaptive Boosting classifier was first proposed by
Schapire [41], which is an ensemble aggregation classifier as
well as Random Forest. The core idea is to train different
weak classifiers for the same training set and then combine
these weak classifiers to make it a stronger one. The ad-
aptation is embodied in the strategy that the weights of the
samples misclassified by the previous weak classifiers will be
strengthened. Then the updated samples are to be used to
train the next weak classifier again. In this work, the Ada-
Boost classifier was implemented with the decision tree as
the weak learner.

Support Vector Machine model finds hyperplanes
which maximize the distance between the closest samples
in different classes, hence the name Maximum Margin
classifier [42]. SVM addresses the classification problem
with small quantity of samples, nonlinear and high di-
mension data. Similarly, the grid-search method was ap-
plied to explore the optimal parameters for the SVM
classifier.

2.6. Method of Tremor Quantification. To further evaluate
the severity of tremor status, 8 patients with valid tremor
data over a long period of time were selected in this ex-
periment. The recorded resting tremor scores ranged from 0
to 3. A total of 33 cases with assigned resting tremor scores
were collected, consisting of 9 cases scored as 1, 18 cases
scored as 2, and 6 cases scored as 3. Each case was a 15-
minute continuous recording of acceleration signal. The
detail is shown in Table 4.

By exploiting the time-duration characteristics of dif-
ferent tremor scores, a new indicator was designed and
calculated to quantify tremor severity. Tremor timing ratio
(TTR) was defined as the ratio of the detected tremor
samples (tremor duration) to all the samples (the total
duration of tremor samples and nontremor samples) in
consecutive fifteen minutes, which can be calculated as
follows:

samples of tremor

TIR = . (10)
samples of tremor + samples of nontremor

The TTR was then used to perform statistical analysis
with the rating scores for resting tremor. The Mann-
Whitney U test and the Kruskal-Wallis test were adopted.

7

TaBLE 4: Information of the patients for tremor quantification.
Age (years) 59.4+7.0
Gender (F/M) 3/5
Tremor

Score 1/2/3
NS1 5/5/3
NS2 9/18/6
NSI1=numbers of patients with corresponding tremor scores.

NS2 =numbers of data segments with corresponding tremor scores.

The Mann-Whitney U test or the Wilcoxon rank sum test is a
nonparametric test for two populations when samples are
independent [43]. The Kruskal-Wallis test is a nonpara-
metric version of classical one-way Analysis of Variance and
an extension of the Wilcoxon rank sum test to more than
two groups [44]. The Kruskal-Wallis test is valid for data that
has two or more groups. It compares the medians of the
groups of data to determine whether the samples come from
the same population or the populations having the same
distribution.

3. Results

3.1. Performance Metrics. In this work, multiple machine
learning methods were selected for resting tremor detection.
To better assess the performance of the selected methods, the
fivefold cross-validation was introduced to the assessment.
The dataset was divided into fivefold randomly. In each
iteration, onefold of the dataset was kept as the holdout set
for testing while the remaining folds were used as the
training set. The average accuracy of fivefold cross-validation
was defined as the overall accuracy. The performance metrics
that were employed to compare those methods include
sensitivity, specificity, overall accuracy, and F1 score, which
can be expressed as follows:

TP
sensitivity = TP+ FN x 100%,

o TN
specificity = TN+ P> 100%,

(11)
TPTN
racy = ,
AUy = TP Y FN + TN + FP °
2xTP
Fl=— 2%°%
2% TP + FN + FP

where TP, TN, FP, and FN represent the number of true
positive, true negative, false positive, and false negative,
respectively.

As a measure of consistency, Kappa coefficient was also
included as the performance metrics to measure the ef-
fectiveness of classification. For the classification problem,
the Kappa coeflicient reflects a more authentic evaluation
than accuracy because the Kappa coefficient makes pun-
ishment for the unbalanced dataset. In this tremor de-
tection model, the Kappa coefficient can be calculated as
follows:



8
accuracy — p,
K =——~ 2°¢
appa 1-p,
_ (TN + FN) x (TN + FP) + (FN + TP) x (EP + TP)

e

(TP + FN + TN + FP)?
(12)

3.2. Result of Tremor Detection. In the classification of
tremor status and nontremor status, a total of 373,894
samples were used in the fivefold cross-validation. The
testing results for the selected four classifiers were listed in
Table 5. The RF classifier outperformed other classifiers in all
aspects and achieved an overall accuracy of 94.81%. The
Kappa coefficient of the RF classifier reached 0.90 which
implied that the classification results were almost perfectly
consistent with the actual labels. The goal of the tremor
detection was to distinguish the resting tremor from other
hand status of patients. The high sensitivity of RF classifier
means the model is able to recognize the tremor status
effectively, which is also conductive to the early screens for
tremor.

An instance for tremor detection model applied in one of
the patients is shown in Figure 6. The model combining with
RF classifier was tested on a segment of 60 s acceleration data
from both hands. Compared with the gold standard, the
error of the detection results was within 2 seconds, which
demonstrates the good capability of the model to detect the
resting tremor.

3.3. Result of Tremor Quantification. Asshown in Table 6, the
returned value of p for the Kruskal-Wallis test was 0.0034,
which indicated that the Kruskal-Wallis test rejected the null
hypothesis that all three data samples came from the same
distribution at a 1% significance level. The boxplot (Figure 7)
visually presents the summary statistics for each score. The
values of p for the Mann-Whitney U test on score 1 and
score 2, score 1 and score 3, and score 2 and score 3 were
0.022, 0.0048, and 0.026, respectively, which further verified
that the TTR of each score were significantly different from
each other. The test results demonstrate that the TTR shows
a strong correlation with the subscore of resting tremor in
UPDRS and has a prospect of applying in the quantification
of resting tremor.

4. Discussion

4.1. Main Findings. This work aims to establish a two-step
evaluation process for resting tremor of PD patients using
long-term acceleration data. Previous work on tremor de-
tection and quantification is mainly based on short segments
of signal and heavily relied on manual signal segmentation
[37]. The data cannot represent the activities of daily living
and the methods are not suitable for continuous tremor
detection. In this work, the long-term monitoring of PD
patients mainly lies in two aspects. Firstly, the detection
model distinguishes the tremor status from other daily
movements. Secondly, based on the consecutive acceleration
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recordings, TTR is extracted as the tremor quantification
indicator. Statistical information on acceleration data over
a continuous period is used to quantify the patient’s
changing status under continuous tracking. As the results
show, the detection model identifies the resting tremor
effectively with an accuracy of 94.81%. In comparison,
Zhang et al. [45] developed both generic model and person-
specific model using SVM classifier and achieved best
accuracy of 80.7% and 85.9%. The detection model in this
work got a satisfactory result compared to previous
achievements. In addition, by testing the algorithm on a
Dell XPS 8930 featuring an Intel(R) Core™ i7-8700 CPU @
3.20 GHz with 8.00 GB RAM, an averaged runtime of the
feature extraction is 0.068 seconds per data segment of 5
seconds. The runtime for model training of RF classifier
and classification is 20.12s for all the data. In terms of
quantification, TTR assesses the tremor burden by the
frequency of resting tremor occurrence, and it is shown to
be significantly different between tremor scores. Thus, the
proposed two-step evaluation process could detect the
resting tremor timely and provide an automatic long-term
observation of patients, offering a powerful support to the
diagnosis and treatment of PD for clinicians cannot stay
with the patient all the time. It is feasible to monitor the
resting tremor of PD in daily life, to track the transition of
the patients’ status, and to realize the automatic quanti-
fication of resting tremor.

4.2. Influence of Preprocessing. In data preprocessing, the
acceleration signal in the given time window was firstly
bandpass filtered. The goal of the bandpass filtering was to
remove noise such as gravity artifacts in low frequency. To
verify the influence of preprocessing on the overall per-
formance, the detection models were retrained using sig-
nals without preprocessing and the result is shown in
Table 7. In the absence of preprocessing, the result of
classification was significantly decreased compared to that
of acceleration signals with preprocessing and the accuracy
of RF classifier was 89.38% and reduced by 5.43%. The
preprocessing is indispensable to perform before feature
extraction.

4.3. Predictor Importance for Features. Among all the clas-
sifiers, RF classifier outperformed the others and showed
balanced performance for different metrics. Therefore, the
predictor importance of the features engaged in classifica-
tion was estimated through RF classifier. The feature with
high importance estimated through RF classifier contains
the vital information which differentiates the resting tremor
from other daily hand movements of PD patients. The es-
timated predictor importance was measured by permuta-
tion. The out-of-bag permuted predictor importance
estimates of the five features in RF classifier are shown in
Figure 8. The SampEn gains the largest value of predictor
importance followed by the energy of the signal, which
means the SampEn is most influential in identifying tremor.
The result hints that the complexity of acceleration data
measured by SampEn is sensitive to the characteristic of
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TaBLE 5: The classification results of the four machine learning methods.

Classifier Sensitivity (%) Specificity (%) Accuracy (%) F1 score (%) Kappa coefficient
KNN 93.16 93.33 93.24 93.24 0.87
RF 95.18 94.44 94.81 94.83 0.90
AdaBoost 93.09 92.17 92.63 92.67 0.85
SVM 93.59 86.38 89.98 90.33 0.80
T T T T T
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v
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FIGURE 6: The proposed tremor detection model applied in one of the patients. The detection results of left hand (a) and right hand (b) are

depicted.

TaBLE 6: The difference of the TTR from three tremor statuses. .
Score 1 Score 2 Score 3 0.9
Score 1 0.46 (0.22) — — ' —
Score 2 0.022* 0.67 (0.14) — 0.0034"~ 0.8}
Score 3 0.0048* 0.026" 0.85 (0.15) % 07l .
Values are shown as the median (standard deviation). * p value of Mann- éo !
Whitney U test. * * p value of Kruskal-Wallis test. g 06r
505} l
g 1
L 04} —1
. . . =
resting tremor in PD patients. Other features also con-
tributed to the tremor detection algorithm but were less 031 !
influential compared to SampEn. The difference in feature 02t I
importance reflects the ability of different features to dis- ol ',
criminate between resting tremor and other daily activities. ' : : :
The information contained in the other features is less able to ! S 2 ?
core

discriminate between tremor and other activities than

SampEn and E. FiGure 7: The boxplot of the TTR from different scores.
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TaBLE 7: The classification results of the four classifiers based on data without preprocessing.
Classifier Sensitivity (%) Specificity (%) Accuracy (%) F1 score (%) Kappa coefficient
KNN 88.53 89.04 88.78 88.75 0.78
RF 89.79 88.96 89.38 89.42 0.79
AdaBoost 88.29 84.51 86.40 86.65 0.73
SVM 72.10 90.72 81.41 79.50 0.63
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FIGURE 8: The out-of-bag permuted predictor importance estimates of the features.
TaBLE 8: The result for tremor detection under interpatient paradigm.
. Samples . Samples
Patient Accuracy (%) Patient Accuracy (%)
Tremor Nontremor Tremor Nontremor
1 1883 9866 91.80 11 0 2899 98.72
2 6828 8129 53.16 12 21 5723 96.95
3 14 8763 88.20 13 0 5605 99.23
4 14763 3767 75.28 14 369 6050 95.17
5 2388 5703 74.70 15 9 10059 87.12
6 0 15686 99.63 16 2 15580 99.65
7 0 12814 99.84 17 0 6556 96.39
8 5989 7621 90.74 18 0 19252 98.54
9 179 6811 95.36 19 0 12943 99.53
10 791 5716 87.50 20 2317 3455 84.74

4.4. Tremor Detection under Interpatient Paradigm. In pre-
vious studies, two popular evaluation paradigms for analysis
of signals in clinical medicine and the biological sciences are
intrapatient paradigm and interpatient paradigm. In the
intrapatient paradigm, the data in training set and testing set
may come from the same patient. In the interpatient para-
digm, the data from the same patient never appears in the
training set and testing set at the same time. But in practice,
the tremor detection model might come across unknown
individuals, which requires the model with excellent gener-
alization performance. To test the generalization performance
of the resting tremor detection model, the acceleration data
collected from 20 patients was again divided into training set
and testing set according to different patients and the result is
listed in Table 8. The detection model with RF classifier

performs well for most of the patients. The weighted average
accuracy according to the number of the samples for each
patient was calculated as the average accuracy and the model
still obtained a high average accuracy of 89.70%, slightly lower
than the result of intrapatient paradigm, which proves the
good generalization ability of the algorithm.

4.5. Limitation. The main limitation of this work is the data
size. Though the number of the subjects is limited, the ac-
celeration data was collected for long enough duration and
samples of each subject are adequate. It is really a challenge
to collect the long-term acceleration data of PD patients in
real-life condition. The dataset needs to be extended to
further verify the findings. Secondly, only three kinds of
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resting tremor severity were quantified, lacking the score 4. It
is because there were very few patients scored as 4 for resting
tremor when they were on medication, and the patients di-
agnosed as 4 were rather severe and unable to participate in
the experiment. Therefore, the difference of TTR between the
cases scored as 4 and other scores was not validated. Further
research is expected by collecting more cases scored as 4.

5. Conclusions

This work developed a two-step evaluation process for
resting tremor of PD patients. The proposed tremor de-
tection model in this work can distinguish the resting tremor
effectively with good generalization performance. TTR for
tremor quantification was proposed and showed significant
difference in different scores, which was proved valid in
quantifying the severity of the resting tremor. It is notable
that the tremor detection model was based on the long-term
acceleration data collected in a real-life condition, which
made the model feasible to practical application. The pro-
posed automatic two-step method is expected to be applied
for real-time monitoring of patients and help to guide the
medication for PD in daily life.
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