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,is paper presents an analytical method to investigate the multiple scattering problem within arrays of vertical bottom-mounted
circular cylinders subjected to linear incident waves. Based on the Laplace equation and boundary conditions on the seabed and
surface, a formulation of a two-dimensional multiple scattering problem is first obtained by using the variable separation method.
Furthermore, the analytical solution of the wave forces on multiple circular cylinders is derived, which consists of the incident
wave force due to the linear incident wave and the scattered wave forces considering multiple scattering waves. ,e presented
analytical solution is validated by comparing its results with a numerical method, and the result shows that the analytical solution
is in good agreement with the numerical one. Finally, the multiple scattering analysis is conducted on arrays of cylinders with
different incident wave numbers, distances between cylinders, and quantities.

1. Introduction

Many sea-crossing bridges and offshore structures have been
built worldwide in recent years. Pile group foundations play
an important role in these offshore structures, and ocean
wave is one of the major loadings that threaten the safety of
offshore structures. ,erefore, it is necessary to determine
the wave forces on offshore structures when designing and
constructing those structures. Linear diffraction theory is
often used to analyze the interaction of ocean waves with
cylinders based on the potential theory. Based on this theory,
an analytical solution for the linear wave diffraction by a
bottom-fixed vertical circular cylinder in finite water depth
was proposed by MacCamy and Fuchs [1]. ,is paper is to
extend the analytical solution for a single circular cylinder to
circular cylinder arrays.

Much attention has been paid to the wave forces on a
single vertical cylinder. Morison et al. proposed the Morison
equation to estimate the wave forces on slender cylinders, in
which the force is composed of a drag force proportional to
the square of the velocity and a virtual mass force propor-
tional to the horizontal component of the accelerative force

exerted on the mass of water displaced by the cylinder [2].
Except for a large circular cylinder, the diffractionwave theory
was also used by researchers to obtain analytical solutions for
wave-structure interaction problem of cylinders with various
geometric shapes. Williams presented two different approx-
imation methods to predict the wave forces on elliptical
cylinders [3]. ,e first method is based on the exact ex-
pressions obtained by Chen andMei [4], and the second is the
integral equation method. Bhatta et al. presented an analytical
approach to predict the wave forces due to scattering and
radiation on a floating circular cylinder in the water of finite
depth [5]. ,e inquiry into the interaction between a fixed
vertical elliptical cylinder and short-crested waves was ana-
lyzed by Wang et al. [6]. Liu et al. presented analytical so-
lutions to estimate the diffraction wave forces on a uniform
vertical cylinder and a truncated cylinder whose cross sections
are arbitrarily smooth [7, 8]. Zhai et al. investigated the
diffraction of waves from a system that is made up of a
cylinder and an arc-shaped wall and proposed an analytical
solution using the eigenfunction expansion approach [9].

Except for a single cylinder, the wave-structure inter-
action of arrays of vertical structures subjected to incident
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waves has drawn many scholars’ attention because of the
extensive applications of cylinder arrays in ocean engi-
neering. Linton and Evans proposed an analytical solution,
as an extension of the work of MacCamy and Fuchs, for
linear wave diffraction on arrays of vertical circular cylinders
[10]. ,e simplified approach was extended to the com-
plementary radiation problem by Kim [11] and for appli-
cation to incident focused wave groups on an array of
circular cylinders by Walker and Taylor [12]. Other inter-
actions between vertical cylinders and incident waves have
been studied, such as a group of dual-cylinder systems with a
thin and porous outer cylinder and an impermeable inner
cylinder subjected to linear waves [13], arrays of elliptical
cylinders wherein wave diffraction happened [14], an array
of truncated cylinders with arbitrary cross section subjected
to small steepness harmonic wave [15], and collections of
vertical bottom-mounted cylinders with arbitrary cross
section subjected to linear waves [16].

A few numerical schemes also have been proposed to
investigate the wave-structure interaction. Ali et al. devel-
oped a finite difference numerical method to estimate wave
forces on double vertical cylinders [17]. Wang et al. pre-
sented finite element solutions to compute the wave forces
on arrays of vertical circular cylinders and circular inclined
cylinders [18, 19]. Besides the finite element method (FEM),
the scaled boundary finite element method (SBFEM) has
been recently applied in studies on vertical cylinders with
different cross-sectional shapes [20–22]. ,e SBFEM dis-
cretizes only the common interfaces of the subdomains with
surface finite elements, and fully accurate results can be
obtained by using only fewer elements.

In most analytical methods, the whole diffraction analysis
mainly focused on the linear incident wave on cylinders and
the scattered wave generated by every cylinder, say the first-
order scattered wave [10]. Nevertheless, upon impinging on
each other, the first-order scattered wave is scattered by the
cylinder, and then the second scattered wave is generated.
Higher-order scattered wave is also generated in this manner.
,e term order denotes the scattering times that an incident
wave has encountered. ,erefore, this study aims to propose
an analytical solution to investigate how multiple scattering
waves influence the wave-cylinder interaction.

2. Mathematical Formulation

,ere is situated a group of N (N≥ 2) vertical circular cyl-
inders in water with depth h, as shown in Figure 1. Water is
assumed to be irrotational, inviscid, and incompressible.,e
origin of the global Cartesian coordinate system (x, y, z) is
located on the seabed level, and the z-axis is directed ver-
tically upwards. ,e center of the ith cylinder at (xi, yi) with
radius ai is taken as the origin of a local polar coordinate
system (ri, θi), where θi is measured counterclockwise from
the positive x-axis.

Figure 2 shows the relation between a global coordinate
system and a local coordinate system of the ith cylinder,
where the coordinates of Q in global Cartesian coordinate
system satisfy the following equations:

x � Xi + xi,

y � Yi + yi,
(1)

where Xi and Yi are the coordinates of Oi of the local co-
ordinate system of ith cylinder and (xi, yi) are the coordi-
nates of Q in the local coordinate system of ith cylinder.

Assuming that the direction of wave propagation of an
angle β to the positive x-axis and cylinders are exposed to the
linear incident waves, the total wave pressure in the time
domain can be written as pe � pe− iωt, with i �

���
− 1

√
, time t

and the wave frequency ω, and the total wave pressure in the
frequency domain p. ,e governing equation and boundary
conditions are expressed in the polar coordinate system as
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Figure 1: ,e interaction of water with arrays of circular cylinders.
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Figure 2: Coordinate systems and geometry for Graf’s addition
theorem adapted for multiple scattering problem.
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(2) ,e free surface condition (z� h):

−
ω2

g
p +

zp

zz
� 0. (4)

(3) ,e Sommerfeld radiation conditions at infinity:

lim
r⟶∞

�
r

√ zp

zr
− ikp  � 0, (5)

where k satisfies the dispersion relation, which is expressed
as ω2 � gk tanh kh.

,e total pressure p in the fluid domain consists of the
incident wave pressure pI and scattered wave pressure pS,
which satisfy the Laplace equation.

∇2p � ∇2pI
� ∇2pS

� 0. (6)

3. Analytical Solution

In this part, as an isolated cylinder is exposed to the
monochromatic incident waves, the interaction between it
and the surrounding water will be reviewed first. ,en, there
will be an investigation on the multiple scattering problem
among an array of circular cylinders, assuming that the in-
fluences on wave force of a column caused by other columns
could be superposed approximately and the influence of
column A on column B is immutable from other column.

3.1. Incident Wave Pressure. According to equation (6) and
boundary conditions in equations (3) and (4), the incident
wave pressure and the vertical mode of the fluid can be
expressed as [23]

p
I

� Z(z)e
i kxx+kyy( 

, (7)

Z(z) �
ρgH cosh(kz)

2 cosh(kh)
, (8)

in which i �
���
− 1

√
, ρ is the fluid density, H is the wave height,

and k is the total wave number with kx � k cos β and
ky � k sin β.

,e form of pI
i in the corresponding local polar coor-

dinate system of the ith cylinder (ri, θi), also denoted by
p

I,(0)
i , can be expressed as

p
I,(0)
i �

ρgH cosh(kz)

2 cosh(kh)
e

iLik cos ψi− β( ) 

∞

n�0
βnJn kri( cos n θi − β( ⎡⎣ ⎤⎦,

(9)

where βn �
1, n � 0,

2i
n
, n≥ 1 and Jn is the Bessel function of the

first kind of order n.

3.2. First-Order Scattered Wave Pressure due to Incident
Waves. ,e scattered wave pressure on the ith cylinder due
to the linear incident waves is denoted by p

S,(1)
i which is

called the first-order scattered wave pressure. According to
equation (7), after applying the variable separation method,
p

S,(1)
i can be expressed as

p
S,(1)
i (x, y, z) � P

S,(1)
i (x, y)Z(z). (10)

,us, the cylinder surface boundary condition for P
S,(1)
i

can be obtained as

zP
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i
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|ri�ai
+

zP
I,(0)
i

zri

|ri�ai
� 0. (11)

Substituting equations (8) and (10) into equation (6), a
two-dimensional Helmholtz equation in polar coordinate
system is obtained as
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Applying the variable separation method again, P
S,(1)
i

can be expressed as

P
S,(1)
i ri, θi(  � R ri( Θ θi( . (13)

Substituting equation (13) into equation (12) yields the
following equations:

Θ″ + n
2Θ � 0, (14)

r
2
i R″ + riR′ + k

2
r
2
i − n

2
 R � 0. (15)

,e solution of equation (14) can be written as

Θn θi(  � A
S,(1)
i,n cos nθi + B

S,(1)
i,n sin nθi, n � 0, 1, 2, . . . .

(16)

According to the Sommerfeld radiation condition
equation (5), the solution of equation (15) which is Hankel
function is

Rn ri(  � C
S,(1)
i,n Hn kri( , (17)

where Hn is the Hankel function of the first kind of order n.
Hence, the solution of the scattered wave pressure P

S,(1)
i

can be expressed as

P
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i � 

∞

n�0
Hn kri(  E

S,(1)
i,n cos nθi + F

S,(1)
i,n sin nθi . (18)

Substituting equations (18) and (9) into equation (11)
and using the orthogonality of mode functions cos nθi or
sin nθi, P

S,(1)
i can be obtained as

P
S,(1)
i � e

ikLi cos ψi − β( ) 

∞

n�0
−

Jn
′ kai( cos nβ
Hn
′ kai( 

βnHn kri( cos nθi + 

∞

n�0
−
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′ kai( sin nβ
Hn
′ kai( 

βnHn kri( sin nθi
⎡⎣ ⎤⎦. (19)
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Figure 2 also shows geometric relations between two
local polar coordinate systems. ,e first-order scattered
wave pressure of other cylinder can be expressed in equation

(19), but it is in its own local polar coordinate system. ,us,
in order to calculate pressures in one coordinate, the Graf’s
addition theorem for Bessel functions can be recalled as [24]

Hn krl( cos nθl � 

∞

v�− ∞
Hn+v kRil( Jv kri( cos vθi − nπ − v + nθil ,
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∞
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(20)

where Ril �

������������������

(xi − xl)
2 + (yi − yl)

2


. ,us, with first-order scattered wave from the lth cyl-
inder as the excitation source, the incoming wave impinging
ith cylinder denoted by P

I,(1)

i due toP
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l
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Finally, the total incoming wave pressure on the ith
cylinder due to the first-order scattered wave from other
cylinders denoted by P

I,(1)
i can be expressed as

P
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N
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3.3. Higher-Order Scattered Wave Pressure. Higher-order
scattered waves are generated in the same manner as
mentioned in Section 3.2. For a general qth order scattered
wave pressure on the ith cylinder denoted by P

S,(q)
i (q> 1), it

can be obtained as
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where the coefficients E
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where δ � 2 if n � 0 or δ � 1 if n≠ 0, and the superscript
prime denotes the derivative to the Hankel function.

With q− 1th order scattered wave from the lth cylinder as
the excitation source, the incoming wave impinging ith
cylinder denoted by P

I,(q− 1)
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(25)

,e total incoming wave pressures on the ith cylinder
due to the q− 1th order scattered wave from other cylinders
denoted by P

I,(q− 1)

i can be expressed as

P
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Substituting equation (26) into equation (24) and using
the orthogonality, E
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i,n and F
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i,n can be simplified as
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3.4. Wave Forces on the Cylinders. ,e wave pressure on the
ith cylinder can be written as

Pi � P
I,(0)
i + P

S,(1)
i + 

∞

q�2
P

S,(q)

i + P
I,(q− 1)

i ⎡⎢⎢⎣ ⎤⎥⎥⎦. (28)

Furthermore, the resultant circumferential wave force
along x-axis and y-axis on the ith cylinder at height z is
denoted by fx

i (z)e− iωt and f
y
i (z)e− iωt, where fx

i (z) and
f

y
i (z) are given by

f
x
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, (29a)

f
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y
i
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According to the equation (28), Fx
i and F

y

i can be
expressed as

F
x
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2π

0
Piai cos θidθi, (30a)

F
y
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2π

0
Piai sin θidθi. (30b)

Finally, the total wave force on the ith cylinder along the
x-axis and y-axis can be calculated by

F
e
i,x � 

h

0
f

x
i (z)e

− iωtdz, (31a)

F
e
i,y � 

h

0
f

y
i (z)e

− iωtdz. (31b)

4. Numerical Results

As shown in Figure 3, four different configurations, two and
three circular cylinders in tandem (N� 2, 3), four cylinders
in square (N� 4), and five cylinders in cross star (N� 5), are
used in this study to investigate the effect of higher-order
scattered waves on wave forces, where D denotes the dis-
tance between two adjacent cylinders. A dimensionless
parameter is defined as

Dr �
D

2a
, (32)

where D denotes the distance between two adjacent cylin-
ders and a denotes the radius of the cylinder.

4.1. Validation. ,e present analytical solution consists of
an infinite series including all the scattering waves in any
order, which shall be truncated into a finite term in com-
putation since the calculation speed is limited by the number
of the term. As shown in Figures 4 and 5, the results will
converge when truncating the infinite series into 15–18
terms. ,erefore, the truncation order is selected as q� 15 in
the following analysis.

,e case with N� 2 is firstly used to verify the effec-
tiveness of the proposed analytical solution. Figure 6 shows
the wave force Fx

i versus ka on two cylinders in tandem
(N� 2) with β � 0°, β � 45°, and β � 90° of the present
method and FEM [18]. ,e cases with N� 3, 4, and 5 are
further used to verify the effectiveness of the proposed
analytical solution. Figures 7 and 8 show the wave field (P)
obtained by the present method and FEM, respectively. ,e
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Figure 3: ,e sketch of pile group with N piles.
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relative errors of wave pressure on each cylinder between
Figures 7 and 8 are depicted in Figure 9. It can be concluded
from Figures 6–9 that the present method agrees well with
the FEM.

4.2. Effect of Higher-Order Scattered Waves. Two dimen-
sionless parameters Ix

i � Fx
i,q�15/F

x
i,q�2 and I

y
i � F

y
i,q�15/F

y
i,q�2

are defined to investigate the effect of higher-order scattered
waves on the wave forces on the cylinders, where Fx

i,q�2 and

Fx
i,q�15 denote the total wave forces on the ith cylinder along

the x-axis with q� 2 and q� 15, respectively; Fy
i,q�2 and F

y
i,q�15

denote the total wave forces on the ith cylinder along the y-
axis.

,e case with three cylinders arranged in tandem is
investigated firstly. Figure 10 shows the ratios Ix

i and I
y

i

versus ka with Dr � 1 for different β. Figure 11 shows the
ratios Ix

i and I
y

i versus Dr with β � 45° for different ka. ,e
effect of higher-order scattered waves on the wave forces on
each cylinder along the x-axis decreases as the wave
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Figure 4: ,e wave pressures on the first cylinder P1 versus θ for different q with β � 0° and N� 2.
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Figure 5: ,e wave forces Fx
i versus ka for different q with β � 0°. (a) N� 2. (b) N� 5.
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propagation angle changes from β � 0° to β � 60°. However,
higher-order scattered waves have a limited impact on the
wave forces along the y-axis.

,e case with four cylinders arranged in square and five
cylinders arranged in cross star are investigated secondly.
Note that the wave force on C3 and C4 of the four cylinders
and on the C5 of the five cylinders is omitted due to the

symmetry and wave propagation angle β � 0°. It can be
observed from Figures 12 and 13 that the effects of higher-
order scattered waves on the wave forces on the cylinders
can be ignored when ka is small (≤0.3), while the effects are
significant when ka is large (>0.3). ,is means higher-order
scattered waves can have more influence on the wave forces
on the cylinders with larger wave number. ,e results also
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Figure 7: ,e wave field obtained by the present method with ka � 1, Dr � 0.5, and a� 5m.
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i versus ka for different β with N� 3. (a) Left pile. (b) Middle pile. (c) Right pile.
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indicate that the effect of higher-order scattered waves on the
wave forces on the cylinders is significant when Dr is short
between cylinders and that the influence tends to drop as the
relative distance increases.

Figure 14 shows the ratio Ix
1 of the first cylinder in all

cases. It illustrates that the effect of higher-order scattered
waves on the wave forces on the cylinder tends to increase as
N increases.
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5. Conclusion

In this paper, an analytical method is presented to inves-
tigate wave forces on arrays of cylinders, which include the
incident wave forces due to the linear incident waves, first-
order scattered wave forces, and higher-order scattered wave
forces due to lower-order scattered waves. ,e validation
results indicate that the present analytical solution agrees
well with the finite element method. ,e effect of higher-
order scattered waves on the wave forces on the cylinders is
investigated by using the proposed method. Based on the
results, we can conclude that the effects of higher-order
scattered waves on the wave forces on the cylinders tend to
increase significantly as the wave number and the number of
cylinders increase and as distance between cylinders de-
creases. When cylinders are arranged in tandem, the effects
of higher-order scattered waves on the wave forces on
cylinders along the x-axis decrease as the wave propagation
angle increases, and the higher-order scattered waves have
little influence on the wave forces on cylinders along the y-
axis. It can also be concluded that the effects of higher-order
scattered waves can be neglected when ka≤ 0.3.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Zhao Mi and Wang Piguang were responsible for study
concept and design. Long Pengzhen analyzed and inter-
preted the data and drafted the manuscript. Wang Piguang
and Long Pengzhen were responsible for statistical analysis.
Du Xiuli obtained funding and supervised the study. Zhao
Mi, Wang Piguang, and Zhang Chao were responsible for
critical revision of the manuscript for important intellectual
content.

Acknowledgments

,is study was jointly funded by the National Natural
Science Foundation of China (52078010 and 51421005) and
the Ministry of Education Innovation Team of China
(IRT_17R03). ,eir financial support is gratefully
acknowledged.

References

[1] R. C. MacCamy and R. A. Fuchs, Wave Forces on Piles: A
Diffraction 9eory, U.S. Beach Erosion Board, Washington,
USA, 1954.

[2] J. R. Morison, J. W. Johnson, and S. A. Schaaf, “,e force
exerted by surface waves on piles,” Journal of Petroleum
Technology, vol. 2, no. 5, pp. 149–154, 1950.

[3] A. N. Williams, “Wave forces on an elliptic cylinder,” Journal
of Waterway, Port, Coastal, and Ocean Engineering, vol. 111,
no. 2, pp. 433–449, 1985.

[4] H. S. Chen and C. C. Mei, “Wave forces on a stationary
platform of elliptical shape,” Journal of Ship Research, vol. 17,
no. 2, pp. 61–71, 1973.

[5] D. D. Bhatta and M. Rahman, “On scattering and radiation
problem for a cylinder in water of finite depth,” International
Journal of Engineering Science, vol. 41, no. 9, pp. 931–967,
2003.

[6] P. Wang, M. Zhao, X. Du, and J. Liu, “Analytical solution for
the short-crested wave diffraction by an elliptical cylinder,”
European Journal of Mechanics-B: Fluids, vol. 74, pp. 399–409,
2019.

[7] J. Liu, A. Guo, and H. Li, “Analytical solution for the linear
wave diffraction by a uniform vertical cylinder with an ar-
bitrary smooth cross-section,” Ocean Engineering, vol. 126,
no. 1, pp. 163–175, 2016.

[8] J. Liu, A. Guo, Q. Fang, H. Li, H. Hu, and P. Liu, “Investigation
of linear wave action around a truncated cylinder with non-
circular cross section,” Journal of Marine Science and Tech-
nology, vol. 23, no. 4, pp. 866–876, 2018.

[9] Z. Zhai, H. Huang, W. Ye, L. Yang, and S. Liu, “Hydrody-
namic interactions between cnoidal waves and a concentric
cylindrical structure with arc-shaped outer cylinder,” Ocean
Engineering, vol. 209, Article ID 107448, 2020.

[10] C. M. Linton and D. V. Evans, “,e interaction of waves with
arrays of vertical circular cylinders,” Journal of Fluid Me-
chanics, vol. 215, no. -1, pp. 549–569, 1990.

[11] M. H. Kim, “Interaction of waves with N vertical circular
cylinders,” Journal of Waterway, Port, Coastal, and Ocean
Engineering, vol. 119, no. 6, pp. 671–689, 1993.

[12] D. A. G. Walker and R. E. Taylor, “Wave diffraction from
linear arrays of cylinders,” Ocean Engineering, vol. 32, no. 17,
pp. 2053–2078, 2005.

[13] K. Sankarbabu, S. A. Sannasiraj, and V. Sundar, “Interaction
of regular waves with a group of dual porous circular cyl-
inders,” Applied Ocean Research, vol. 29, no. 4, pp. 180–190,
2007.

[14] I. K. Chatjigeorgiou and S. A. Mavrakos, “An analytical ap-
proach for the solution of the hydrodynamic diffraction by
arrays of elliptical cylinders,” Applied Ocean Research, vol. 32,
no. 2, pp. 242–251, 2010.

[15] S. Zheng, Y. Zhang, J. Liu, and G. Iglesias, “Wave diffraction
from multiple truncated cylinders of arbitrary cross sections,”
AppliedMathematical Modelling, vol. 77, pp. 1425–1445, 2020.

[16] J.-b. Liu, A.-x. Guo, Q.-h. Fang, H. Li, H. Hu, and P.-f. Liu,
“Wave action by arrays of vertical cylinders with arbitrary
smooth cross-section,” Journal of Hydrodynamics, vol. 32,
no. 1, pp. 70–81, 2020.

[17] L.-Y. M. Ali, M. S. Mehdi, and L.-Y. Amin, “Wave force on
double cylindrical piles: a comparison between exact and
finite difference solutions,” Journal of Marine Science and
Application, vol. 10, no. 1, pp. 33–40, 2011.

[18] P. Wang, M. Zhao, X. Du, and X. Cheng, “A finite element
solution of earthquake-induced hydrodynamic forces and
wave forces on multiple circular cylinders,” Ocean Engi-
neering, vol. 189, Article ID 106336, 2019.

[19] P. Wang, X. Wang, M. Zhao, X. Cheng, and X. Du, “A nu-
merical model for earthquake-induced hydrodynamic forces
and wave forces on inclined circular cylinder,” Ocean Engi-
neering, vol. 207, Article ID 107382, 2020.

Mathematical Problems in Engineering 11



[20] B. Li, L. Cheng, A. J. Deeks, and M. Zhao, “A semi-analytical
solution method for two-dimensional Helmholtz equation,”
Applied Ocean Research, vol. 28, no. 3, pp. 193–207, 2006.

[21] X.-N. Meng and Z.-J. Zou, “Wave interaction with a uniform
porous cylinder of arbitrary shape,” Ocean Engineering,
vol. 44, pp. 90–99, 2012.

[22] H. Song, L. Tao, and S. Chakrabarti, “Modelling of water wave
interaction with multiple cylinders of arbitrary shape,”
Journal of Computational Physics, vol. 229, no. 5, pp. 1498–
1513, 2010.

[23] C. M. Chiang,9e Applied Dynamics of Ocean Surface Waves,
World Scientific, Singapore, 1992.

[24] G. N. Watson, Treaties of 9eory of Bessel Functions, Cam-
bridge University Press, London, UK, 2nd edition, 1945.

12 Mathematical Problems in Engineering


