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As we all know, the model mismatch, primarily when the desired signal exists in the training data, or when the sample data is used
for training, will seriously affect algorithm performance..is paper combines the subspace algorithm based on direction of arrival
(DOA) estimation with the adaptive beamforming. It proposes a reconstruction algorithm based on the interference plus noise
covariance matrix (INCM). Firstly, the eigenvector of the desired signal is obtained according to the eigenvalue decomposition of
the subspace algorithm, and the eigenvector is used as the estimated value of the desired signal steering vector (SV). .en the
INCM is reconstructed according to the estimated parameters to remove the adverse effect of the desired signal component on the
beamformer. Finally, the estimated desired signal SV and the reconstructed INCM are used to calculate the weight. Compared
with the previous work, the proposed algorithm not only improves the performance of the adaptive beamformer but also
dramatically reduces the complexity. Simulation experiment results show the effectiveness and robustness of the proposed
beamforming algorithm.

1. Introduction

Adaptive beamforming uses adaptive spatial filtering and
interference suppression to enhance the desired signal and
suppress the interference signal to make the desired signal
output more powerful. At present, it has been widely used
and rapidly developed in fields such as radar, sonar, ex-
ploration, seismology, radio astronomy, wireless commu-
nication, acoustics, medical imaging, biomedical
engineering, and other fields [1–3]. Without the required
directional knowledge, beamforming based on blind source
separation uses the transverse mode of the signal to recover
the desired signal, such as wireless communication. On the
contrary, when the desired signal direction of arrival (DOA)
is available, the Capon adaptive beamformer can output the
most prominent signal to interference plus noise ratio
(SINR) in the array, and it is the best spatial filter [4–6].
However, it is well known that when there is a model
mismatch, especially when there is a desired signal com-
ponent in the sampling covariance matrix, it has a severe
impact on its performance. In this case, the performance of

Capon beamformer is seriously degraded. In addition, in
practical applications, due to the limited number of training
samples, it is very difficult to perfectly estimate the required
interference plus noise covariance matrix (INCM). .ere-
fore, the adaptive beamforming method must be robust to
the uncertainty of covariance matrix [7–10].

.e diagonal loading (DL) algorithm is a classic and
easy to implement robust adaptive beamforming tech-
nology [11]. .e main idea is to add a weighted identity
matrix before the inversion of the received signal sample
covariance matrix of the array and improve the robustness
of the beamformer by reducing the dispersion of the small
eigenvalues corresponding to the noise. .en, scholars
proposed many improved algorithms to improve the
performance and robustness of the algorithm [12–16].
However, there is no clear theoretical guide to choose the
best loading factor in different situations. However, in the
practical application environment, the mismatch degree
of the steering vector cannot be accurately known in
advance, so it is difficult to determine the best loading
factor for the best beam performance, which can only be
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determined by the designer subjectively. .erefore, this
kind of algorithm is minimal to improve the performance
of adaptive beamformer.

.e main idea of beamforming technology based on
feature subspace projection [17] is to project the steering
vector (SV) of the desired signal on the signal-interference
subspace and then use the projected SV to replace the
original assumed SV of the desired signal for beamforming.
However, the performance of the algorithm will be seriously
degraded at low input signal to noise ratio (SNR), because
when the input SNR is low, the signal-interference subspace
and noise subspace will be aliased, resulting in serious
subspace exchange.

Since 2003, researchers have proposed a series of robust
adaptive beamforming (RAB) algorithms based on uncertain
desired signal vector sets to further improve the robustness of
RAB algorithms. .ey are beamformer based on worst-case
performance optimization [18], beamformer based on co-
variance fitting [19], robust Capon beamformer (RCB) [20],
and robust minimum variance beamformer (RMVB) [21]..is
kind of algorithms is unified in the worst-case performance
optimization (WCPO) criterion, and the worst-performance
optimization can also be seen as a kind of DL technology.
However, the worst case is difficult to occur in the actual
environment, and we usually know the upper bound of the
norm of the mismatch vector. .erefore, the worst-case op-
timization in this case is still suboptimal [22–24].

Unfortunately, the above methods improve performance
by estimating the sampling covariance matrix of the signal
received by the array, rather than removing the desired signal.
Since the sampled data always has the desired signal com-
ponent, self-destructive phenomena will occur when the input
SNR is high, and the output performance of the above-
mentioned beamforming algorithm will be reduced. In recent
years, a robust adaptive beamforming algorithm based on the
reconstruction INCM idea has been proposed in order to
achieve the goal of removing the desired signal component in
the sampling covariance matrix as much as possible [22]. In
practical application scenarios, the number of sampling
snapshots is generally very limited. In the case of limited
snapshots, the sample covariance matrix will have a significant
error compared with the ideal covariance matrix. At this time,
the performance and robustness of beamformer will be seri-
ously affected. .erefore, matrix reconstruction technology
uses the reconstructed INCM to replace the estimated co-
variance matrix and can not only eliminate the desired signal
component but also reduce the covariance matrix mismatch
caused by small snapshots, thereby significantly improving the
performance of the beamformer. In 2012, .e RAB algorithm
based on the INCM reconstruction idea was first proposed in
[19]..emain idea of the algorithm is to reconstruct the INCM
by integrating the reconstruction expression constructed by
Capon power spectrum in the interference signal sector and
then use the reconstructed INCM to construct a quadratic
constrained quadratic programming (QCQP) to estimate the
SV of the desired signal. As soon as the reconstruction method
of INCM is proposed, it has attracted wide attention of
scholars. .en researchers have proposed many improved
algorithms [25–31], which reduce the complexity of the

algorithm, further improve the output performance of
beamformer, and improve its robustness against array structure
error [32]. In reference [25], using the sparsity of source DOA,
INCM is improved to be reconstructed through a compressed
sensing problem. According to the definition of INCM, the
algorithm reconstructs the INCM directly from the covariance
term of interference signal and noise, which avoids the process
of integration and improves the accuracy of reconstruction. In
reference [27], by extending the integral to high-dimensional
annular interval, the ability of reconstruction algorithm to deal
with array calibration error is improved.

Although the aforementioned matrix reconstruction al-
gorithm greatly improves the performance of beamforming, it
needs to be integrated in the calculation process, thereby in-
creasing the complexity of beamforming. To solve this prob-
lem, this paper proposes a practical low complexity INCM
reconstruction algorithm based on subspace. In this paper,
since the eigenvector of the desired signal is in the same
subspace as the SV, the eigenvector of the desired signal can be
used to estimate the SV..e reconstructed INCM is composed
of the SV and power of the signal. .erefore, the reconstructed
covariance matrix removes the signal component, which re-
duces the problem of signal self-fading. Previous reconstruc-
tion methods are different. In this paper, we estimate the SV of
the desired signal and reconstruct the INCM directly based on
subspace. Because there is no complex operation such as in-
tegral, the complexity of the algorithm is low. Simulation
experiments show that the performance of the algorithm is
close to the ideal output SINR in a wide input SNR range. At
the same time, the complexity of the algorithm is low.

.e main work and contributions of this paper can be
summarized as follows:

(i) In this paper, a subspace based adaptive beam-
forming algorithm for reconstruction of INCM is
proposed. .e algorithm realizes the organic
combination with the subspace algorithm and uses
the idea of reconstructing INCM to calculate the
weight vector..erefore, compared with the general
algorithm, the output SINR performance of the
algorithm is greatly improved.

(ii) Compared with other reconstruction algorithms,
the complexity of the proposed algorithm is greatly
reduced. Because the algorithm uses the parameters
generated by the DOA estimation process to re-
construct the INCM, it does not need complex
operations such as integration, so the algorithm has
low computational complexity.

(iii) We derive the corresponding relationship between
eigenvalue and power. And the deduced relation-
ship is verified by mathematical formula. .us, the
eigenvalues obtained by eigendecomposition of
covariance matrix can be used as the power esti-
mation of signal and noise.

(iv) We obtained the one-to-one correspondence be-
tween the direction vector and the power by
combining the formulas. According to the corre-
sponding relationship between direction vector and
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eigenvector, eigenvector and eigenvalue, and ei-
genvalue and power, the corresponding relationship
between direction vector and power is obtained.

In this article, we use uppercase and lowercase bold
letters to represent matrices and vectors, respectively. Given
a matrix A, we use AT, AH, and A∗ to denote the transpose,
the Hermitian transpose, and the conjugate of A, respec-
tively. E(·) is used to express statistical expectations.

We organize the rest of this article as follows: Section 2
describes the signal model. Section 3 estimates the steering
vector and reconstructs the INCM. Section 4 gives the al-
gorithm simulation experiments under different conditions.
Section 5 summarizes the work of this paper.

2. Preliminaries

In this section, we will briefly review the signal model and
minimum variance distortionless response (MVDR) adap-
tive beamforming, which are needed in this paper [21].

2.1. $e Signal Model. A uniform linear array (ULA)
composed of Q array elements is considered. At the same
time, J far-field narrow-band signals of wavelength are
incident on the array (Q> J). It is assumed that each element
in the array is an omnidirectional antenna and is isotropic,
and there are no factors such as channel inconsistency and
mutual coupling between elements. .e array element
spacing d is set to half of the wavelength of the incident
signal (d � λ/2). Assuming that the first element is the
reference element, the output of the physical array at time t

can be expressed as

x(t) � A(θ)s(t) + n(t), t � 1, 2, . . . , L, (1)

where s(t) � [s1(t), s2(t), . . . , sJ(t)]T ∈ CJ×1 is the incident
signal vector and n(t) ∈ CQ×1 is a Gaussian white noise with
mean value of 0 and variance of σ2n, which is independent of
each other. A(θ) � [a(θ1), a(θ2), . . . , a(θJ)] ∈ CQ×J is the
array manifold matrix. .e direction vector of the kth signal
is defined as

a θk( 􏼁 � e
− jπd1 sin θk , e

− jπd2 sin θk , . . . , e
− jπdQ sin θk􏽨 􏽩

T
, (2)

where dk is the distance between the ith element and the
reference element and dk � k − 1, θk is the azimuth of the kth
signal (k � 1, 2, . . . , Q).

Under ideal conditions, the received signal covariance
matrix of the array can be expressed as

Rxx � E x(t)xH
(t)􏽮 􏽯

� ARssA
H

+ σ2nIQ.
(3)

.e signal covariance matrix is defined as
Rss � E s(t)sH(t)􏼈 􏼉 � diag σ21, σ

2
2 . . . , σ2J􏽮 􏽯, and

σ2j(j � 1, 2, . . . , J) represents the power of the jth signal. σ2n
is the power of the noise, and IQ ∈ CQ×Q is the identity
matrix whose main diagonal is 1.

2.2. Robust Adaptive Beamforming. In this part, the desired
signal is defined as s1(t), and the remaining J − 1 signals are
defined as interference signals. .e output formula of the
array can be determined by the following formula:

x(t) � d(t) + i(t) + n(t)

� a θ1( 􏼁s1(t) + 􏽘

J

i�2
a θi( 􏼁si(t) + n(t),

(4)

where d(t) � a(θ1)s1(t) is the desired signal vector and
i(t) � 􏽐

J
i�2 a(θi)si(t) represents the vector of the interfer-

ence signals..e output of the beamformer can be expressed
as

y(t) � wHx(t), (5)

where w ∈ CQ×1 is the weight vector.
We define SNR as the ratio of desired signal to noise

power:

SNR �
σ21
σ2n

. (6)

SINR is the power ratio of desired signal to interference
signals plus noise. .e output SINR of the array is used to
evaluate the performance of the beamformer, which is de-
fined as follows:

SINR �
σ21 w

Ha θ1( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

wHRi+nw
, (7)

where σ21 is the power of the desired signal and INCM isRi+n,
which is given by the following formula:

Ri+n � E [i(t) + n(t)][i(t) + n(t)]
H

􏽮 􏽯

� 􏽘

J

i�2
σ2i a θi( 􏼁a

H θi( 􏼁 + σ2nIQ.
(8)

Here, E(·) is used to express statistical expectations.
Among the various beamforming criteria proposed, the

output SINR maximization is the most popular one, .e
definition is as follows:

maxw
σ21 w

Ha θ1( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

wHRi+nw
. (9)

We can achieve the largest output SINR by solving the
MVDR problem [33]. We can construct the MVDR
beamformer by solving the following constraints:

minww
HRi+nw

s.t.wHa θ1( 􏼁 � 1,
(10)

where the solution is given by

wopt �
R−1

i+na θ1( 􏼁

aH θ1( 􏼁R−1
i+na θ1( 􏼁

, (11)

where wopt is also called Capon beamformer. It is difficult to
get the covariance matrix of interference noise Ri+n directly
in practical application. .erefore, the sampling covariance
matrix Rx can be used instead:
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Rx �
1
L

􏽘

L

t�1
x(t)xH

(t), (12)

where L denotes the number of snapshots.
It should be noted that when L is very small, the gap

between Rx and Ri+n is relatively large, which will make the
desired signal be suppressed as interference; with the im-
provement of SNR, the proportion of required signal
components will become larger, which will lead to serious
signal self-zeroing phenomenon, especially in the case of
high SNR. .erefore, it is necessary to remove the desired
part when estimating the covariance matrix. In addition, the
performance of the adaptive beamforming algorithm is very
sensitive to the direction vector, so we need to accurately
estimate the direction of arrival of the signal to accurately
reconstruct the direction vector.

3. The Proposed Algorithm

In this section, a new adaptive beamforming algorithm is
proposed to estimate the direction vector and power of the
signal to construct the weight vector. According to formula
(11), the weight vector of beamformer based on MVDR
criterion is determined by the INCM Ri+n and the desired
signal SV a(θ1). .erefore, the idea of adaptive beam-
forming algorithm is to make full use of parameters of
subspace algorithm to accurately reconstruct the core pa-
rameters of these two beamforming devices, so that the
designed beamformer performance approaches the theo-
retical value.

First, the subspace algorithm is used to estimate the
DOA of the signals, and the maximum correlation coeffi-
cient is used to correct the estimated direction vector of the
desired signal. .en the power of the signal and noise is
estimated through the eigenvalues to reconstruct INCM.
Finally, the weight vector is calculated according to the
reconstructed INCM and estimated SV.

Before the research, we need to take the number of
signals as the prior information of the algorithm. Here we
use Minimum Description Length (MDL) criterion to get
the number of signals [34]. Because it is not the focus of this
paper, we will not repeat it here.

3.1. Estimation of Direction Vector and SV. .e adaptive
beamforming algorithm in this paper is based on subspace
algorithm. Multiple signal classification (MUSIC) is one of
the classical subspace algorithms, so MUSIC algorithm is
introduced in this part, which provides the necessary basis
for the estimation of SV and the reconstruction of INCM.

According to J received signal vectors, the estimated
value of sampling covariance matrix as shown in formula
(12) is obtained. .e covariance matrix obtained by formula
(12) is decomposed into eigenvalues:

Rx � USΣSU
H
S + UNΣNU

H
N, (13)

where US is the signal subspace and ΣS is a matrix with
diagonal elements corresponding to the eigenvalues of J

signals and the remaining elements are 0. UN is the noise
subspace, and ΣN is the diagonal matrix of Q − J small
eigenvalues. From the definition of eigenvalue and eigen-
vector, we know

RxUN � ΣNUN � σ2nUN. (14)

And from formula (12) we can also get

RxUN � A(θ)RSA
H

(θ)UN + σ2nUN. (15)

According to formulas (14) and (15), we can get

A(θ)RSA
H

(θ)UN � 0. (16)

Since the signal covariance matrix RS is full rank and
nonsingular, its inverse exists. Equation (16) can be rewritten
as

AH
(θ)UN � 0. (17)

.is means that the column vector in matrix A and the
noise corresponding eigenvector are orthogonal to each
other, so there are some advantages:

UH
Na θk( 􏼁 � 0, k � 1, 2, . . . , J. (18)

Since the eigenvectors corresponding to the noise and
direction vector are orthogonal to each other, the spatial
spectrum function of the array is obtained as follows:

P(θ) �
1

aH
(θ)UNU

H
Na(θ)

. (19)

DOA θk(k � 1, 2, . . . , J) of the desired signal and in-
terference signal can be obtained by searching the peak
[35, 36]. After obtaining the DOA of the signal, the manifold
matrix A1 is reconstructed by formula (2):

A1 � a1, a2, . . . , aJ􏽨 􏽩. (20)

From formula (20), we can get the SV of desired signal
a1. However, due to the correlation between the noise and
the signals, an error will occur in the estimated SV of desired
signal. .erefore, it is necessary to correct the desired signal
SV. Formula (13) can be written as

Rx � 􏽘

Q

i�1
λieie

H
i � USΣSU

H
S + UNΣNU

H
N. (21)

Among them, λi(i � 1, 2, . . . , Q) is the feature value of
Rx and arranged from large to small, and ei is the eigenvector
corresponding to the feature value.

US � e1, e2, e3, . . . , eJ􏽨 􏽩, (22)

where US is the signal subspace. We know that the eigen-
vector and the desired signal SV are in the same space, so
replacing the estimated desired signal SV a1 with the
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eigenvector will achieve better performance. Since the di-
rection vectors of different signals are orthogonal to each
other, we have

eH
j a θi( 􏼁 �

��
Q

√
, i � j,

0, i≠ j.
􏼨 (23)

Only when the eigenvector and the direction vector
correspond, the inner product between them can get the
maximum value. .erefore, we define the correlation co-
efficient to find the eigenvector corresponding to the desired
signal SV a1 estimated by formula (20) [37]. Assuming that
the corresponding eigenvector is es, the correlation coeffi-
cient can be expressed as follows:

cor es, a1( 􏼁 � max
ei

cor es, a1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� max
ei

eH
i a1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

ei
����

���� a1
����

����

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(24)

By substituting the J eigenvectors obtained from formula
(22) into (24), we can obtain J correlation coefficients. Due
to the maximum correlation between the SV and the ei-
genvector of the desired signal, we can get the eigenvector es
of the desired signal. We assume that the SV of the desired
signal is as. Substituting as and es into formula (23) can be
rewritten as

eH
s as �

��
Q

􏽰
. (25)

.en we can get

as �
��
Q

􏽰
es. (26)

3.2. Reconstruction of INCM. We can write formula (21) as

Rx � 􏽘

Q

j�1
λjeje

H
j � 􏽘

J

i�1
σ2i a θi( 􏼁aH θi( 􏼁 + σ2nIQ. (27)

It can be seen from formula (27) that the eigenvalue of
the covariance matrix eigenvalue decomposition has a
certain corresponding relationship with the signal power. It
is available to transform formula (27):

λj � eH
j Rxej

� eH
j 􏽘

J

i�1
σ2i a θi( 􏼁aH θi( 􏼁 + σ2nIQ

⎛⎝ ⎞⎠ej

� 􏽘

J

i�1
σ2i e

H
j a θi( 􏼁aH θi( 􏼁ej + σ2n.

(28)

By substituting formula (23) into formula (28), we can
get

λj �
Qσ2j + σ2n, j≤ J,

σ2n, J< j≤Q.

⎧⎪⎨

⎪⎩
(29)

Since the first J eigenvalues correspond to signal power,
the following Q − J eigenvalues correspond to noise power.
.erefore, the small eigenvalue of the matrix is the noise
power. In practice, in order to obtain higher accuracy, we
average the noise power:

􏽥σ2n �
1

Q − J
􏽘

Q

j�J+1
λj. (30)

By substituting formula (30) into formula (29), we can
get

λj � Qσ2j + 􏽥σ2n, j≤ J. (31)

.erefore, we use the large eigenvalue to subtract the
small eigenvalue corresponding to the noise power and then
divide it by the number of array elements Q to estimate the
power of the interference signal:

􏽥σ2i �
λi − 􏽥σ2n􏼐 􏼑

Q
, i � 1, 2, . . . , J. (32)

In order to prove that the power estimation result we
derive is correct, we verify it through the following deri-
vation. Simultaneous formulas (2) and (27) can be obtained:

Rx �

G a12 a13 · · · a1Q

a21 G a23 · · · a2Q

a31 a32 G · · · a3Q

⋮ ⋮ ⋮ ⋱ ⋮

aQ1 aQ2 aQ3 · · · G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

where G � σ21 + σ22 + · · · + σ2J + σ2n and aij(i � 1, 2, . . . , Q; j �

1, 2, . . . , Q) is the array element. .e trace of the matrix can
be expressed as

tr Rx( 􏼁 � QG. (34)

Theorem 1. $e trace of the matrix is equal to the sum of the
eigenvalues of the matrix.

In this paper, let λ � 􏽐
Q
j�1 λj, and then we have

λ � tr(Rx). Accumulate the eigenvalues of formula (29) to get

λ � Q 􏽘

J

i�1
σ2i + Qσ2n � QG. (35)

From formulas (34) and (35), we know that the estimated
power is correct. However, there is a problem: we cannot de-
termine the one-to-one correspondence between the direction
of arrival and the power of the desired signal and interference
signal. .erefore, we define the correlation coefficient:

f � aH
(θ)USU

H
S a(θ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (36)

where we substitute the eigenvector ei intoUS and a(θ) is the
direction vector composed of (2) and (19). When the ei-
genvectors ei correspond to the direction vectors a(θ), their
relations are not orthogonal to each other, so the coherence
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coefficient is the largest. From formula (21) we get the
corresponding relationship between the eigenvector and the
eigenvalue, so we get the corresponding relationship be-
tween the eigenvalue and the direction of arrival. From
formula (32), we get the corresponding relationship between
eigenvalue and power, and finally we get the corresponding
relationship between power and direction of arrival.

.e estimated power and direction of arrival are
substituted into (8) reconfigurable INCM as

􏽥Ri+n � 􏽘

J

i�2
􏽥σ2i aia

H
i + 􏽥σ2nIQ. (37)

Finally, by substituting the desired signal SV as of for-
mula (26) and the reconstructed INCM 􏽥Ri+n of formula (37)
into (11), the weight vector of the proposed algorithm can be
expressed as

􏽥wopt �
􏽥R

−1
i+nas

aH
s

􏽥R
−1
i+nas

. (38)

.e implementation steps of the proposed algorithm are
summarized in Algorithm 1. .e complexity analysis is as
follows. Since the performance of the proposed algorithm
and reconstruction algorithm is much higher than other
algorithms, we only discuss the complexity of the proposed
algorithm and reconstruction algorithm. .e complexity of
estimating the steering vector of the desired signal is
O((J + 2)Q), the complexity of obtaining the corresponding
relationship between direction vector and power is O(2JQ),
the complexity of reconstructing INCM is O((J − 1)Q), and
the complexity of calculating weight vector is
O((Q2 + 2Q + 1)Q). .erefore, the complexity of the pro-
posed algorithm is O((Q2 + 2Q + 4J + 2)Q). .e computa-
tional load of this method is mainly caused by the calculation
of weight vector process in step 4, and all MVDR beam-
forming algorithms need to calculate the weight vector. And
the complexity of the reconstruction algorithm is
O(Q2N)(N≫Q), where N is the number of samples in 􏽥Θ.
From the above analysis, it can be seen that the complexity of
the algorithm is much lower than that of the reconstruction
algorithm. Table 1 shows the comparison of computational
complexity of the SMI [7], DLSMI [11], WORST-CASE [18],
RECONSTRUCTION [25], and the proposed algorithm.

4. Simulation Results

Our simulation experiment considers an omnidirectional
uniform linear array with Q � 10 elements, and the spacing
between the elements is half a wavelength. It is assumed that
the array receives three signals, among which the desired
signal comes from direction θs � 5°, the interference signal
comes from directions θ1 � −10°, and θ2 � 20°, and the
incident signals are independent of each other. .e inter-
ference to noise ratio (INR) of each element is fixed to 30 dB.
.e additive noise is modeled as a complex Gaussian ran-
dom process with a mean value of 0 and a variance of 1.
When comparing the output SINR of the adaptive beam-
forming algorithm with the input SNR, the number of

snapshots is set to L � 30. When comparing the curve of the
output SINR with the number of snapshots, the SNR of the
array element is assumed to be 20 dB. For each scenario, we
conduct 500 Monte-Carlo experiments.

.e proposed algorithm will be compared with the
traditional sampling covariance matrix inverse beamform-
ing algorithm [7], diagonal loading algorithm [11], worst-
case performance optimization [18], and covariance matrix
reconstruction [25] based beamforming algorithm in the
output SINR performance. In the figure, these algorithms
use “PROPOSED”, ”SMI”, ”DLSMI”, ”WORST-CASE”, and
”RECONSTRUCTION” as the illustration.

Our simulation shows a diagonal loaded beamformer
with a loading factor of 10 and a worst case performance
optimized beamformer with a parameter of 0.3Q. In the
reconstruction based beamformer and the proposed
beamformer, we assume that the angular region of the
desired signal is Θ � [0°, 10°]; therefore,
􏽥Θ � [−90°, 0°)∪ (10°, 90°].

Simulation 1. Exactly known signal SV.
In the first simulation example, the true direction of the

desired signal is considered to be consistent with the as-
sumed desired signal direction; that is, it is assumed that the
SV of all signals are accurately known. Under this simulation
condition, the performance of the beamformer will still be
affected when the input SNR is high and the number of
snapshots is limited. Figure 1 depicts the relationship be-
tween the output SINR and the input SNR of the beam-
former under the fixed snapshot number L � 30. Obviously,
the proposed beamformer always achieves near optimal
performance in a wide input SNR range. .is is because the
proposed algorithm eliminates the desired signal by
reconstructing INCM, thus avoiding the self-destructive
phenomenon of the signal. However, the other beamformers
do not remove the desired signal in the covariance matrix
except reconstruction algorithms. .erefore, when the SNR
is high, there will be different degrees of performance
degradation. Although the performance of the proposed
algorithm is only slightly higher than that of covariance
matrix reconstruction algorithm, the complexity of the al-
gorithm is greatly reduced. Figure 2 shows the relationship
between the output SINR and the number of snapshots when
the beamformer has a fixed SNR� 20 dB. .e simulation
results show that the proposed algorithm has excellent
performance under ideal conditions, and the output SINR is
higher than all other tested algorithms.

Simulation 2. Fixed look direction mismatch.
.is simulation experiment studies the output SINR

performance when there is a look direction mismatch in
beamforming. .e real direction of the desired signal is
selected as θs � 5°, while the assumed direction of the desired
signal is selected as 8°, and the corresponding observation
direction of 3° does not match. Figure 3 shows the rela-
tionship between the output SINR and the input SNR of the
beamformer, where the number of snapshots remains
constant at L � 30. It can be observed that the SINR of the
proposed beamformer is only slightly lower than that of
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covariance matrix reconstruction beamformer, but the
complexity of the proposed algorithm is much lower than
that of covariance matrix reconstruction beamformer. With
the increase of the input SNR, the covariance matrix re-
construction and the proposed beamformer can realize that
the output SINR changes linearly with the input SNR, be-
cause they remove the desired signal in the sampling co-
variancematrix..e performance of SMI, DLSMI, and worst
case beamformers at high SNR degrades due to the mis-
matching of SV due to the mismatching of direction. As-
suming SNR� 20 dB, the relationship between the
performance curve and the number of snapshots is shown in
Figure 4. .e results show that, under the condition of fixed
look direction mismatch, the performance of the proposed

beamformer is slightly worse than that of covariance matrix
reconstruction beamformer and is significantly better than
other comparable beamformers. .e simulation results
prove the effectiveness of the proposed algorithmwhen there
is a fixed look direction mismatch. Although the perfor-
mance is slightly lower than covariance matrix recon-
struction, the complexity of the algorithm is much lower
than that of the algorithms in [24].

Simulation 3. Random SV mismatch.
In this simulation experiment, we consider the impact of

an uncertain interference in the desired signal on the per-
formance of the beamformer, that is, the performance of the

Step 1: .e DOA results are obtained using the subspace algorithm in (19), and the direction vector of the signals is reconstructed by
formula (20)
Step 2: .e SV of the desired signal is corrected by formula (24), and the corrected desired signal SV is obtained using (26)
Step 3:.e correspondence between eigenvalues and power is derived using (28) and (29), and (30) and (32) are used to calculate the
power of noise and interference signals respectively. .en we proved that the corresponding relationship between the derived
eigenvalues and power is correct
Step 4: .e corresponding relationship between power and DOA is obtained by (21), (32) and (36)
Step 5: .e interference plus noise covariance matrix 􏽥Ri+n is reconstructed by the direction vector and power using (37)
Step 6: .e estimated steering vector and the reconstructed INCM are used to calculate the weight vector 􏽥wopt in (38)

ALGORITHM 1: .e proposed algorithm steps.

Table 1: Comparison of computational complexity.

Algorithms Computational complexity
.e SMI algorithm [7] O((Q2 + 2Q + 1)Q)

.e DLSMI algorithm [11] O((Q2 + 2Q + 1)Q)

.e WORST-CASE algorithm [18] O((5Q2 + 2Q + 1)Q)

.e algorithm [25] O(Q2N)(N≫Q)

.e proposed algorithm O((Q2 + 2Q + 4J + 2)Q)
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Figure 1: Exactly known signal SV: output SINR versus the input SNR.
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algorithm when the random SV mismatch. In this case, the
real SV can be expressed as

a � a θ1( 􏼁 + δ, (39)

where a(θ1) is a hypothetical SV with direction of θ1 and δ is
a random SV mismatch generated by the uncertainty set, as
follows:

δ �
α
��
Q

√ e
jϕ1 , e

jϕ2 , . . . , e
jϕM􏽨 􏽩

T
, (40)

where α is the norm of δ, which is generated randomly
from one run to another in [0,

���
0.5

√
]. ϕu(u � 1, 2, . . . , Q)

represents the coordinate of δ independently generated
from [0, 2π] in the uth run. Figures 5 and 6 show the
relationship between the input SNR, the number of
snapshots, and the output SINR. Obviously, as the input
SNR increases, the output SINR of the proposed algorithm
is always close to the ideal value, and convergence requires
less snapshots. .e simulation results prove that the al-
gorithm is effective in the case of random SVmismatch. In
addition, we can see that the performance of the
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Figure 2: Exactly known signal SV: output SINR versus the number of snapshots.
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beamformer is significantly better than other test beam-
formers, and we conclude that the beamformer is more
robust to random SV mismatches.

5. Conclusion

In this paper, an effective and low complexity adaptive
beamforming algorithm based on subspace algorithm of DOA
estimation was proposed. .e eigenvalue and signal subspace
were obtained by decomposing the eigenvalues of covariance
matrix, and DOA estimation of desired signal and interference
signal is obtained by spectral peak search. Since the desired
signal eigenvector in the signal subspace has the greatest
correlation with the desired signal SV, we can use the desired
signal eigenvector to estimate its SV. .en, we used the small
eigenvalue of eigenvalue decomposition to replace the noise
power, the result of subtracting the small eigenvalue from the
large eigenvalue to replace the power of the desired signal and
the interference signal, and the spectral peak search result to
replace the direction of the desired and interference signal, and
reconstructed the INCM according to the corresponding re-
lationship between the power and the direction of the inter-
ference signal determined by the correlation coefficient. Finally,
we use the estimated required signal SV and the reconstructed
INCM to calculate the weight vector of the proposed algorithm.
We prove the effectiveness of the algorithm through simulation
experiments. Compared with the existing algorithms, this
method has lower computational complexity while main-
taining close to the optimal performance.
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