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Aiming at the problem of pitch error of helical gear pair in engineering practice, the influence of pitch error on vibration,
bifurcation, and chaos characteristics of the helical gear pair system is mainly studied. Due to the periodic time-varying nature of
pitch error, a method of simulating the pitch error as a sine function is proposed to calculate pitch error. A nonlinear dynamic
model of bending-torsion-shaft coupling of the helical gear pair system is established considering the effect of pitch error. -e
influence of pitch error on the vibration, bifurcation, and chaos characteristics of the system is analyzed by the Runge–Kutta
numerical integration method. -e research results show that the introduction of pitch error has the most significant impact on
the torsional vibration of the system.With the increase in pitch error, the system exhibits rich bifurcation and chaos characteristics
in the torsional direction. Moreover, it is also found that the vibration response in the torsional orientation of the system increases
or decreases to the same degree when the system is in a periodic motion state, and the pitch error varies by the same extent.
-erefore, the impact of pitch error on the dynamic performance of the helical gear pair system should be considered in
engineering practice.

1. Introduction

Helical gear pairs are widely used in various machines and
mechanical equipment. -ey are one of the most crucial
motion and power transmission devices, whose mechanical
properties have an important influence on the whole ma-
chine’s vibration, noise, and reliability. Due to the con-
straints of the actual engineering conditions, there are
inevitable meshing errors in the operation of gear pairs. As
the most critical component of gear meshing error, pitch
error significantly impacts the dynamic characteristics of
gear transmission systems. -erefore, it is vital to study the
effect of pitch error on the vibration, bifurcation, and chaos
characteristics of gear transmission systems.

In recent years, many scholars have conducted a lot of
research on the nonlinear dynamics of gear systems. Yang
et al. [1] established a nonlinear dynamics model of the
helical gear system considering tooth wear and analyzed the
effect of tooth wear on the bifurcation and chaos charac-
teristics of the system. References [2, 3] discussed in detail

the bifurcation and chaos and other nonlinear dynamic
characteristics of the multibody mechanical systems with
revolute clearance joint and imperfect joint. Wang et al. [4]
developed a finite element model of a helical gear rotor
system considering the effect of time-varying meshing
stiffness and investigated the effect of different coupling
forms and helix angles on the vibration characteristics of the
system. In literatures [5–10], the effects of tooth surface
friction, meshing misalignment, meshing impact, tooth side
clearance, and geometric eccentricity on the vibration
characteristics of helical gear systems were investigated. Han
and Qi [11] studied the influence of tooth spalling and local
fracture on the meshing stiffness and vibration character-
istics of the helical gear pair system. Huang et al. [12] studied
the effects of excitation frequency, backlash, meshing
damping ratio, and bearing radial clearance on bifurcation
and chaos characteristics of the high contact ratio gear
system. Zhang et al. [13] investigated the impact of bearing
clearance on the vibration characteristics of the spur gear
transmission system. Xu et al. [14] established a
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mathematical model of spur gear tooth surface including
tooth profile deviation and analyzed the influence of dif-
ferent tooth profile deviations on transmission error and
dynamic characteristics of the system. Arian and Taghvaei
[15] developed a nonlinear dynamics model of a spur gear
transmission system with an idler and analyzed the effect of
the idler on the chaotic characteristics of the system and the
control of system chaos. Saghafi and Farshidianfar [16]
proposed a control system for the elimination of chaotic
behaviors in spur gear systems and verified the effectiveness
of the proposed control system in eliminating homoclinic
bifurcation and chaos in nonlinear gear systems. Hua and
Chen [17] developed a finite element dynamics model of the
bevel gear transmission system considering bearing elasticity
and analyzed the effect of bearing elasticity on the vibration
characteristics of the system. Yin et al. [18] researched the
influence of oil film among meshing teeth on vibration
characteristics of the herringbone gear transmission system.
Li et al. [19] conducted a global dynamics analysis of a
mechanical model with three nonsmooth factors, namely,
elastic impact, rigid impact, and dry friction, and compre-
hensively discussed the effects of different nonsmooth fac-
tors on the system motions distribution and transition.
Makarenkov and Lamb [20] discussed in detail the research
directions in the dynamics of nonsmooth systems and the
related bifurcation theories such as border-collision bifur-
cation and grazing bifurcation. References [21, 22] studied in
detail the bifurcation and chaos and other nonlinear dy-
namic characteristics of the nonsmooth dynamic systems
based on the OGY state feedback control law with the help of
bifurcation diagrams such as border-collision bifurcation
and torus bifurcation.

Moreover, in the process of nonlinear dynamic analysis
of gear systems, the gear pitch error problem has always been
a research hotspot. Umezawa et al. [23, 24] built a pure
torsional nonlinear dynamics model of the spur gear system
and analyzed the effects of pressure angle and pitch error on
the vibration characteristics of the system. Liu et al. [25] built
a nonlinear dynamics model of a spur gear pair system
considering pitch deviation under multistate meshing
conditions and investigated the effects of operating pa-
rameters and system parameters on the nonlinear dynamic
characteristics of the system under multistate meshing
conditions. Handschuh et al. [26] studied the influence of
pitch error on tooth root stress of the spur gear pair system.
In literatures [27–29], the impact of pitch error on the
dynamic transmission error and vibration characteristics of
the spur gear pair system was investigated by means of
numerical simulations and experiments. Franulovic et al.
[30] studied the influence of pitch error on load distribution
of contact teeth of the high contact ratio spur gear trans-
mission system. References [31–33] founded the nonlinear
dynamic model of the two-stage spur gear transmission
system and researched the impact of backlash and pitch
error on the vibration and chaos characteristics of the
system. Chen and Tang [34] studied the effect of pitch error
on the vibration characteristics of the herringbone gear
system. References [35–37] investigated the influence of
pitch error on meshing stiffness and vibration noise of the

cylindrical helical gear transmission system. Guo and Fang
[38] proposed a newmethod to calculate the meshing impact
based on the measured pitch error and analyzed the effect of
the meshing impact on the vibration and chaos character-
istics of the helical gear transmission system. -e above
literature mainly studies the effect of pitch error on the
dynamic characteristics of spur gear systems. However, there
are not many articles that consider the impact of pitch error
on the dynamic characteristics of helical gear systems and
analyze the vibration, bifurcation, and chaos characteristics
of helical gear systems.

-erefore, this paper comprehensively considers the
pitch error, time-varying meshing stiffness, meshing
damping, and tooth side clearance and establishes the
bending-torsion-shaft coupling nonlinear dynamic model of
the helical gear pair system. -rough the numerical analysis
of the dynamic model, combined with the time-domain
diagrams, spectrum maps, phase diagrams, Poincaré cross-
section graphs, bifurcation diagram, and largest Lyapunov
exponent (LLE) chart of the system response, the influence
of pitch error on the vibration, bifurcation, and chaos
characteristics of the helical gear pair system is studied in
detail. -e research results can provide theoretical support
for analyzing vibration, bifurcation, and chaos character-
istics of the helical gear pair system with pitch errors.

-e structure of this paper is organized as follows: the
nonlinear dynamic model and equations of motion of the
system are established in Section 2, where the pitch error,
time-varyingmeshing stiffness, meshing damping, and tooth
side clearance of the system are given. In Section 3, the
equations of motion of the system are solved by the nu-
merical integral method, and then the effect of pitch error on
the vibration, bifurcation, and chaos characteristics of the
system is investigated. Ultimately, some brief conclusions
are given in Section 4.

2. The Nonlinear Dynamic Model of Helical
Gear Pair considering Pitch Error

Comprehensively considering the pitch error, time-varying
meshing stiffness, meshing damping, tooth side clearance,
and other nonlinear factors, a six degree of freedom
bending-torsion-shaft coupling nonlinear dynamic model of
the helical gear pair system with pitch error is established
using the lumped mass method [39] as shown in Figure 1.
Ignoring the effect of friction between gear teeth, only the
torsional vibration of the driving and driven gear around the
z-axis, the axial vibration of the driving and driven gear
along the z-axis, and the transverse bending vibration of the
driving and driven gear along the y-axis are considered. In
this model,mp and mg represent the mass of the driving and
driven gears, respectively; Ip and Ig represent the moment of
inertia; rbp and rbg represent the radius of the base circle; kpz
and kgz represent the equivalent bearing support stiffness of
the driving and driven gears in the axial direction (z-di-
rection), respectively; kpy and kgy represent the equivalent
bearing support stiffness in the tangential direction (y-di-
rection); cpz and cgz represent the equivalent damping in the
axial direction; cpy and cgy represent the equivalent damping
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in the tangential direction; and Tp, Tg, k(t), e(t), cm, 2bn, and
βb represent the driving torque, load torque, time-varying
meshing stiffness, pitch error, meshing damping, tooth side
clearance, and base circle helix angle of the helical gear pair,
respectively.

2.1. Equations of Motion of the System. According to New-
ton’s law of motion, the nonlinear dynamic equations of the
system with pitch error can be obtained as follows:

mp€yp + cpy _yp + kpyyp � Fy,

mg€yg + cgy _yg + kgyyg � −Fy,

mp€zp + cpz _zp + kpzzp � −Fz,

mg€zg + cgz _zgp + kgzzg � Fz,

Ip
€θp � Tp − Fyrbp,

Ig
€θg � −Tg + Fyrbg.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

In equation (1), yp and yg represent the translational
displacement of the driving and driven gears along the y-
direction, respectively; zp and zg represent the translational
displacement of the driving and driven gears along the z-
direction, respectively; θp and θg represent the angular

displacement of the driving and driven gears around the z-
axis, respectively; and Fy and Fz represent the dynamic
meshing force of the system along the y-direction and z-
direction, respectively.

It is known that the pitch error, time-varying meshing
stiffness, and meshing damping of the helical gear pair
system along the meshing line direction are k(t), e(t), and cm,
respectively, which are decomposed into the corresponding
y-direction and z-direction pitch error, time-varying
meshing stiffness, and meshing damping as follows:

ey(t) � e(t)cos βb,

ky(t) � k(t)cos βb,

cmy � cm cos βb,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

ez(t) � e(t)sin βb,

kz(t) � k(t)sin βb,

cmz � cm sin βb.

⎧⎪⎪⎨

⎪⎪⎩
(3)

According to equations (2) and (3), the relationship
between the pitch error and the dynamic meshing force of
the system in y and z directions is established as follows:

Fy � cos βb k(t)fy yp + θprbp − yg + θgrbg − ey(t)􏽨 􏽩 + cm _yp + _θprbp − _yg + _θgrbg − _ey(t)􏽨 􏽩􏽮 􏽯, (4)

Fz � sin βb k(t)fz zp − tan βb θprbp + yp􏼐 􏼑 − zg + tan βb yg − θgrbg􏼐 􏼑 − ez(t)􏽨 􏽩 + cm _zp − tan βb
_θprbp + _yp􏼐 􏼑􏽨􏽮

− _zg + tan βb _yg − _θgrbg􏼐 􏼑 − _ez(t)􏽩}.
(5)
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Figure 1: Bending-torsion-shaft coupling nonlinear dynamic model.
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In equations (4) and (5), fy and fz represent the tooth side
clearance functions of the system along the y-direction and
z-direction, respectively.

To facilitate the calculation and analysis, equation (1)
should be dimensionless. Introducing the displacement
nominal scale b′, make δ1 � yp/b′, δ2 � yg/b′, δ3 � zp/b′,
δ4 � zg/b′, and δ5 � [θprbp − θgrbg − e(t)]/b′. Suppose the
tangential relative displacement is y1 and the relative axial
displacement is y2 of the helical gear pair system. Define
the dimensionless time as τ and the dimensionless
meshing frequency as ω. y1, y2, τ, and ω are, respectively,
as follows:

y1 � δ1 − δ2 + δ5 −
ey(t)

b′
, (6)

y2 � δ3 − δ4 − tan δ1 − δ2 + δ5( 􏼁 −
ez(t)

b′
, (7)

τ � ωht, (8)

ω �
ωn

ωh

, (9)

ωn � 2πf, (10)

ωh �

���
km

me

􏽳

, (11)

me �
IpIg

Ipr
2
g + Igr

2
p􏼐 􏼑

. (12)

In equations (8)–(12), ωh, f, km, and me are the natural
frequency, meshing frequency, average meshing stiffness,
and equivalent mass of the helical gear pair system,
respectively.

-e last two torsional dynamic equations in equation (1)
are combined into a relative torsional dynamic equation, and
then equation (1) is dimensionless to obtain its corre-
sponding dimensionless nonlinear dynamic equations as
follows:

€δ1 + 2η11 _δ1 + k11δ1 � cos β k10fy y1( 􏼁 + 2ε10 _y1􏽨 􏽩,

€δ2 + 2η21 _δ2 + k21δ2 � −cos β k20fy y1( 􏼁 + 2ε20 _y1􏽨 􏽩,

€δ3 + 2η12 _δ3 + k12δ3 � −sin β k10fz y2( 􏼁 + 2ε10 _y2􏼂 􏼃,

€δ4 + 2η22 _δ4 + k22δ4 � sin β k20fz y2( 􏼁 + 2ε20 _y2􏼂 􏼃,

€δ5 + cos β k0fy y1( 􏼁 + 2ε0 _y1􏽨 􏽩 � fn + ω2
e(τ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

In equation (13), η11 � (cpy/2mpωn);
k11 � (kpy/2mpω2

n); η21 � (cgy/2mgωn); k21 � (kgy/mgω2
n);

η12 � (cpz/2mpωn); k12 � (kpz/2mpω2
n); η22 � (cgz/2mgωn);

k22 � (kgz/mgω2
n); k10 � (km/mpω2

n); ε10 � (cm/2mpωn);
k20 � (km/mgω2

n); ε20 � (cm/2mgωn); k0 � (km/meω2
n);

ε0 � (cm/2meωn); fn � (Tp/meb′rbpω2
h); and e(τ) is di-

mensionless pitch error, e(τ) � (e(τ)/b′).

2.2. Pitch Error. Pitch error is the difference between the
actual pitch and the nominal pitch on the gear reference
circle, as shown in Figure 2. Due to the presence of pitch
error, the position of the gear teeth meshing will deviate
from the theoretical meshing position, which causes the
gear instantaneous transmission ratio change, resulting in
collisions and impacts between the gear meshing tooth
surfaces.

In the process of gear meshing transmission, the pitch
error changes periodically with the meshing period of the
gear. -erefore, this paper uses the method of simulating the
pitch error as a sine function to calculate the pitch error. -e
pitch error is expressed as a sine function as follows:

e(t) � e0 + er sin(2πtf + φ). (14)

In equation (14), e0 is the mean of pitch error; er is the
fluctuation amplitude of pitch error; f is gear meshing
frequency; and φ is the initial phase.

-emain parameters of the helical gear pair in this paper
are listed in Table 1. According to the basic parameters of the
helical gear pair in Table 1, the relevant error values of the
helical gear pair are obtained by checking GB/T 10095.1-
2008. In addition, make e0 � 0 and φ� 0 and get the sim-
ulation curve of pitch error in a meshing cycle of this helical
gear pair as shown in Figure 3.

-e above calculation results are basically consistent
with the experimental measurement results of the pitch error
in reference [40], thus verifying the correctness of the
method used.

2.3. Calculation of Time-Varying Meshing Stiffness. -e
contact ratio of helical gear is generally greater than 2. In
the process of gear meshing, N(N ≥ 1) pairs of teeth and
N + 1 pairs of teeth are engaged alternately, making the
meshing stiffness of the gear also change continuously and
periodically, i.e., time-varying meshing stiffness. -e
meshing process of gear is assumed to be composed of
many momentarily varying meshing contact lines, and the
elastic deformation of the gear teeth is obtained by cal-
culating the total length of the contact lines. On this basis,
the time-varying meshing stiffness of the gear is
determined.

For the helical gear pair studied in this paper, the contact
ratio is 2.7573. According to the relationship of the contact
ratio, the formula for calculating the total contact line length
l(t) in one meshing period of the helical gear pair is deduced
as follows:
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l(t) �

2lmax +
lmax

t1
t, 0≤ t< t2 − 2tz,

2lmax +
lmax

t1
t2 − 2tz( 􏼁, t2 − 2tz ≤ t< t1,

2lmax +
lmax

t1
t1 + t2 − 2tz − t( 􏼁, t1 ≤ t< t1 + t2 − 2tz,

2lmax, t1 + t2 − 2tz ≤ t≤ tz.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

In equation (15), lmax is the maximum contact line length
in one meshing cycle and tz is the meshing period of the gear
pair; its calculation equations are, respectively, as follows:

lmax �
B

cos βb

,

tz �
60

n1z1
.

(16)

-erefore, the time-varying meshing stiffness k(t) can be
obtained as follows [41]:

k(t) � λ · l(t), (17)

where λ is as follows:

λ �
km

lm
. (18)

In equation (18), λ is the conversion factor between
meshing stiffness and contact line length; km is the average
meshing stiffness; and lm is the average value of the total
contact line length in a meshing period.

Combining the data in Table 1, the average meshing
stiffness of this helical gear pair is calculated to be 13.3548N/
(μm∙mm) according to the relevant formulas in GB/T
3480.1-2019. On this basis, the time-varying meshing stiff-
ness of the helical gear pair is obtained. In order to facilitate
subsequent calculations, this paper uses a 6-order Fourier
series to fit the time-varying meshing stiffness to get the
following equation:

k(t) � km + 􏽘

6

n�1
an cos

2πn

tz

t􏼠 􏼡 + cn sin
2πn

tz

t􏼠 􏼡􏼢 􏼣. (19)

In equation (19), an and cn are Fourier series coefficients,
and the specific values of the Fourier series coefficients are
shown in Table 2.-e corresponding fitted curve is shown in
Figure 4.

2.4. Meshing Damping. -e meshing damping is mainly
related to the meshing damping ratio, average meshing
stiffness, and mass of the gear. -e meshing damping of the
gear can be calculated by the following equation [1]:

cm � 2ξ

�����������

kmr
2
bpr

2
bgIpIg

r
2
bpIp + r

2
bgIg

􏽶
􏽴

. (20)

In equation (20), ξ is the damping ratio, which usually
takes the value range of [0.03, 0.17] and is taken as 0.1 in this
paper; km is the average meshing stiffness; rbp and rbg are the
base circle radius of the driving and driven gears, respec-
tively; and Ip and Ig are the moments of inertia of the driving
and driven gears, respectively.

Actual pitch

Nominal pitch ∆fpt

Re
fer

en
ce

 ci
rcl

e

Figure 2: Pitch error.

Table 1: Main parameters of helical gear pair.

Parameter Driving gear Driven gear
Number of teeth z 21 38
Module mn (mm) 2.166
Pressure angle αn (°) 20
Helix angle β (°) 20 –20
Contact ratio εc 2.7573
Face width B (mm) 15
Rotational speed n (rpm) 2000 1105.26
Accuracy/level 7 7
Material 45 45

20

10
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-10

-20

e (
t) 

(μ
m

)

×10-3
0.5 10 1.5

t (s)

Figure 3: Simulation curve of pitch error.
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According to the main parameters of the helical gear pair
in Table 1, the relevant values are substituted into equation
(20). By calculation, the value of the meshing damping of
this helical gear pair can be obtained as follows:

cm � 247.331
N

m · s−1. (21)

2.5. Tooth Side Clearance. To facilitate the storage of lu-
bricating oil and prevent the tooth surface from being stuck
by thermal expansion, gear in the assembly process along the
direction of the meshing line to leave a specific tooth side
clearance. -e tooth side clearance function can be
expressed as follows [12]:

f(x(t)) �

x(t) − bn, x(t)> bn( 􏼁,

0, |x(t)|≤ bn( 􏼁,

x(t) + bn, x(t)< − bn( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩
(22)

In equation (22), bn is the half tooth side clearance.
-e corresponding y-direction and z-direction tooth side

clearance functions of the helical gear pair system in this
paper can be obtained as follows:

fy(x(t)) �

x(t) − bn cos βb, x(t)> bn cos βb,

0, |x(t)|≤ bn cos βb,

x(t) + bn cos βb, x(t)< − bn cos βb,

⎧⎪⎪⎨

⎪⎪⎩

fz(x(t)) �

x(t) − bn sin βb, x(t)> bn sin βb,

0, |x(t)|≤ bn sin βb,

x(t) + bn sin βb x(t)< − bn sin βb.

⎧⎪⎪⎨

⎪⎪⎩

(23)

3. Numerical Results and Discussion

3.1. Analysis of System Vibration Characteristics with and
without Pitch Error. According to whether the pitch error is
added to the nonlinear dynamic equations of the system, the
system equations are solved, and the vibration acceleration
time-domain curves of the system in each degree of freedom
direction with and without pitch error are obtained as shown
in Figure 5.

It can be seen from Figure 5 that

(1) Since the system operates at 2000 rpm, its dimen-
sionless meshing frequency is calculated to be
0.1394 and the corresponding dimensionless
meshing period is 7.1736. From Figure 5, it can be
seen that the vibration acceleration response of the
system in each direction has apparent periodicity
and the corresponding period is very close to the
dimensionless meshing period, so the accuracy of
the calculation results can be confirmed from this
perspective.

(2) -e changing trend of the time-domain curves of
vibration acceleration in each direction after adding
the pitch error is basically the same as the changing
trend of the time-domain curves of vibration ac-
celeration in each direction without adding the pitch
error, still showing obvious periodicity, but the phase
changes to a certain extent. In addition, the ampli-
tudes of vibration acceleration in each direction
increase slightly after adding the pitch error.

(3) -e amplitudes of vibration acceleration in the
torsional direction of the system are much greater
than those in the tangential and axial directions. -is
shows that torsional vibration is the primary vi-
bration form of the system, while tangential and axial

Table 2: Fourier series coefficients of time-varying meshing stiffness.

Coefficient code Corresponding value Coefficient code Corresponding value
a1 –1.202 c1 1.203
a2 –5.79e− 5 c2 –1.15e− 4
a3 –0.1339 c3 –0.1335
a4 –5.784e− 5 c4 9.478e− 8
a5 –0.04809 c5 0.04819
a6 –5.79e− 5 c6 –3.819e− 5

15

14

13

12

0 0.5 1 1.5 2 2.5 3
t (s) ×10-3

k 
(t)

 (N
/μ

m
·m

m
)

k (t)
curve-fitted

Figure 4: Fourier series fitting curve of time-varying meshing
stiffness.
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vibration can be considered as a coupling vibration
generated by torsional vibration as the excitation
force.

(4) -e variations of vibration acceleration amplitude in
each direction of the system after adding pitch error
are shown in Table 3. It can be seen from Table 3 that
the maximum change degree of vibration acceleration
amplitude in each direction after pitch error is in the
torsional direction, followed by the axial direction,
and the minimum change degree is in the tangential
direction. -is indicates that the pitch error has the
most significant influence on the torsional direction of
this helical gear system, followed by the axial direction
and the least tangential direction.

To further study the characteristics of the system vi-
bration response with and without pitch error, the fast
Fourier transform (FFT) can be done for the time-domain
response of the vibration acceleration in each direction to
analyze its frequency domain characteristics. -e vibration
acceleration spectrum maps of the system in the direction of
each degree of freedom are shown in Figure 6.

It can be seen from Figure 6 that

(1) -e main frequency components of the vibration
acceleration response of the system in each direction
with and without pitch error are all the dimen-
sionless meshing frequency (0.1394). -erefore, in
order to prevent the resonance of the system, the
overlap between the meshing frequency and the
system’s natural frequency should be avoided in the
system operation process.

(2) From the perspective analysis of the magnitude of the
acceleration amplitude change, the conclusion ob-
tained is consistent with the analysis result of the
vibration acceleration in the time domain: after
adding the pitch error, the amplitudes of the vibration
acceleration vary the extent the most in the torsional
direction, followed by the axial direction, and the
degree of tangential direction variation is minimal.

-rough the analysis of Figures 5 and 6, it can be seen
that the vibration in the torsional direction of the system is
the dominant vibration, and the degree of influence on the
torsional orientation of the system after adding the pitch
error is the greatest, followed by the axial direction, and the
tangential direction is the least.
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Figure 5: -e time-domain curves of vibration acceleration of the helical gear pair system with and without pitch error: (a) tangential
vibration acceleration of driving gear; (b) tangential vibration acceleration of driven gear; (c) axial vibration acceleration of driving gear;
(d) axial vibration acceleration of driven gear; (e) vibration acceleration in the torsional direction.
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3.2. Influence of Pitch Error on Bifurcation and Chaos
Characteristics of the System. From the analysis in Section
3.1, it can be seen that the introduction of pitch error has a
much more significant impact on the torsional direction of
the helical gear pair system than on the tangential and axial
directions. -erefore, this section mainly investigates the
effect on the bifurcation and chaos characteristics of the
helical gear pair system in the torsional direction when the
pitch error varies numerically.

When the pitch error takes the values of [0e(τ), 15e(τ)]
and other parameters are kept constant, the system
equations are solved. -e bifurcation diagram of the
relative torsional displacement of the system with the
variation of pitch error is obtained as shown in
Figure 7(a), and the corresponding LLE chart is shown in
Figure 7(b).

As shown in Figure 7, with the increase in pitch error, the
motion state of the system undergoes six stages of change: one
time periodic motion→two times periodic motion→ quasi-
periodic motion→chaotic motion→three times periodic
motion→chaotic motion. When the pitch error∈ [0e(τ),
10.07e(τ)], the system is in one time-periodic motion state, and
the corresponding LLE is less than 0. When the pitch error∈
[10.08e(τ), 11.16e(τ)], the system undergoes a doubling bifur-
cation, bifurcating from one time-periodic motion state to two
times periodic motion state, and the corresponding LLE is less
than 0.When the pitch error∈ [11.17e(τ), 11.77e(τ)], the system
enters a short quasiperiodic motion state; at this time, the LLE
becomes 0. When the pitch error∈ [11.78e(τ), 12.82e(τ)], the
system enters an unstable, chaotic motion state, and the cor-
responding LLE is greater than 0. After a short period of chaotic
motion, when the pitch error∈ [12.83e(τ), 13.04e(τ)], the
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Figure 6: Vibration acceleration spectrum maps of the helical gear pair system with and without pitch error: (a) tangential vibration
acceleration of driving gear; (b) tangential vibration acceleration of driven gear; (c) axial vibration acceleration of driving gear; (d) axial
vibration acceleration of driven gear; (e) vibration acceleration in the torsional direction.

Table 3: Variations of vibration acceleration amplitude in each degree of freedom direction of the helical gear pair system after adding pitch
error.

Tangential direction Axial direction
Torsional direction

Driving gear Driven gear Driving gear Driven gear
Variation of vibration acceleration amplitude 0.0009 0.0007 0.0022 0.0019 0.0113
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system enters a short period of three times periodic motion
state again, and the corresponding LLE is less than 0. Finally,
the system stays in an unstable and complexly changing
state, namely, chaotic motion state, and the corresponding
LLE is greater than 0. Moreover, the phenomenon of pitch
error hopping occurs at the point of 1.12e(τ), where the LLE
is −0.0043. Such sudden transition is named as a discon-
tinuous bifurcation (marked by hopping in Figure 7(a)).
-is hopping occurs for some bifurcation parameter values
for which the nonlinear dynamics can be either periodic or
chaotic. In Figure 7(a), the hopping induces a transition
from periodic gait to periodic gait.

-e above is a global analysis of the movement char-
acteristics of the entire helical gear pair system with the
change of pitch error. In order to verify whether the system
motion state described in Figure 7 is correct, the following
local analysis is used to further investigate the motion
characteristics of the system at some special stages.

When the pitch error takes different values, the corre-
sponding time-domain diagrams, phase diagrams, and
Poincaré cross-section graphs are obtained as shown in
Figures 8–13.

As shown in Figures 8, 9, and 12, when the pitch error
takes the values of 5.86e(τ), 10.75e(τ), and 12.97e(τ), the
corresponding time-domain diagrams have apparent peri-
odicity, the phase diagrams are a closed curve, and the
Poincaré cross-section graphs consist of a finite number of
points, so the system is in a periodic motion state at this
time. And because the phase diagram corresponding to
Figure 8 is a closed curve and the Poincaré cross-section
graph is a point, the phase diagram corresponding to Fig-
ure 9 is two closed curves, and the Poincaré cross-section
graph is two discrete points; the phase diagram corre-
sponding to Figure 12 is three closed curves, and the
Poincaré cross-section graph is three discrete points, so the
specific motion states of the system at this time are one time,
two times, and three times periodic motion states, respec-
tively. As shown in Figure 10, when the pitch error takes the
value of 11.64e(τ), its corresponding time-domain diagram

has a certain periodicity, the phase diagram is two closed
bands of curves, and the Poincaré cross-section graph
consists of a finite set of points, and the number of point sets
is two, so the system is in a two times quasiperiodic motion
state at this time. As shown in Figures 11 and 13, when the
pitch error is taken as 12.47e(τ) and 14.68e(τ), the corre-
sponding time-domain diagrams have no apparent peri-
odicity, the phase diagrams are irregular and fill a closed
area, and the Poincaré cross-section graphs consist of
patches of dense points, so the system is in a chaotic motion
state at this time.

From the above local analysis, it can be seen that the
motion states of the system during the special phase are
consistent with the results of the global analysis, thus ver-
ifying the correctness of the global analysis.

-e global and local analysis shows that when the pitch
error ∈ [0e(τ), 10.07e(τ)], [10.08e(τ), 11.16e(τ)], and
[12.83e(τ), 13.04e(τ)], the system is in one time, two times,
and three times periodic motion state, respectively, which is
the ideal working region of the system. At this time, the
system’s movement is more stable, and the vibration noise is
small.

3.3. Impact of Pitch Error on the Vibration Characteristics of
the System. -e analysis of Section 3.2 shows that the system
is in a periodic motion state when the pitch error ∈ [0e(τ),
11.16e(τ)]. -erefore, this section mainly studies the effect
on the vibration characteristics of the system in the torsional
direction when the pitch error varies by the same degree in
the cyclic motion state.

-e pitch errors of e(τ), 3e(τ), 5e(τ), 7e(τ), 9e(τ), and
11e(τ) are taken into the system equations, respectively, and
the other parameters remain unchanged. -e system
equations are solved to obtain the time-domain curves of
vibration acceleration in the torsional direction of the system
corresponding to different pitch errors, as shown in
Figure 14.

It can be seen from Figure 14 that
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Figure 7: (a) Bifurcation diagram. (b) LLE chart.
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Figure 10: Pitch error� 11.64e(τ). (a) Time-domain diagram. (b) Phase diagram. (c) Poincaré cross-section graph.
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Figure 11: Pitch error� 12.47e(τ). (a) Time-domain diagram. (b) Phase diagram. (c) Poincaré cross-section graph.
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Figure 8: Pitch error� 5.86e(τ). (a) Time-domain diagram. (b) Phase diagram. (c) Poincaré cross-section graph.
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Figure 9: Pitch error� 10.75e(τ). (a) Time-domain diagram. (b) Phase diagram. (c) Poincaré cross-section graph.
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(1) When the value of pitch error increases, the corre-
sponding amplitude of vibration acceleration also
increases accordingly.

(2) When the pitch error changes from e(τ) to 3e(τ),
3e(τ) to 5e(τ), 5e(τ) to 7e(τ), 7e(τ) to 9e(τ), and 9e(τ)
to 11e(τ), their corresponding vibration acceleration

amplitude changes are 0.2163, 0.0354, 0.0359, 0.0356,
and 0.0357, respectively. It can be seen that when the
pitch error changes from e(τ) to 3e(τ), the corre-
sponding vibration acceleration amplitude changes
significantly more than in the other cases. -e main
reason is that the pitch error causes the jump
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Figure 12: Pitch error� 12.97e(τ). (a) Time-domain diagram. (b) Phase diagram. Poincaré cross-section graph.
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Figure 13: Pitch error� 14.68e(τ). (a) Time-domain diagram. (b) Phase diagram. (c) Poincaré cross-section graph.
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Figure 14: Time-domain curves of vibration acceleration in the torsional direction of the system with different pitch errors.
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phenomenon when the pitch error changes from e(τ)
to 3e(τ).

(3) When the pitch error varies by the same degree
(2e(τ)) and there is no jump phenomenon in the
process of pitch error variation, the system will
produce a certain vibration response change in the
torsional direction.

To further study the characteristics of the system tor-
sional direction vibration response when the pitch error
changes, the FFT is done on the time-domain response of the
system torsional direction vibration acceleration, and the
spectrum map of the system torsional direction vibration
acceleration at different pitch errors is obtained as shown in
Figure 15.

It can be seen from Figure 15 that

(1) -e main frequency components of the vibration
acceleration response of the system in the torsional
direction for different pitch errors are all dimen-
sionless meshing frequencies (0.1394).

(2) From the perspective analysis of acceleration re-
sponse amplitude change, the conclusion obtained is
consistent with the result of vibration acceleration in
the time-domain analysis: when the pitch error
varies by the same degree (2e(τ)) and there is no
jump phenomenon in the process of pitch error
variation, it will produce a certain impact on the
torsional direction vibration response of the system.

-rough the analysis of Figures 14 and 15, it can be seen
that when the system is in a periodic motion state, the pitch
error changes to the same degree (2e(τ)) and there is no
jump phenomenon during the change of pitch error, and the
system will produce a specific vibration response change in
the torsional direction, i.e., the increased or decreased degree
of the vibration response in the torsional orientation of the

system caused by the change of the pitch error by the same
degree each time is almost the same.

4. Conclusions and Future Works

In this paper, a bending-torsion-shaft coupling nonlinear
dynamic model of the helical gear pair system is established
considering the effect of pitch error. -e pitch error is cal-
culated by using the method of simulating the pitch error as a
sine function. -en, the motion equations of the system are
solved by the Runge–Kutta numerical integration method.
-e effect of pitch error on the vibration, bifurcation, and
chaos characteristics of the system is investigated in detail.

-e major conclusions can be summarized as follows:

(1) -e introduction of pitch error has the greatest
degree of effect on the vibration acceleration re-
sponse of the helical gear pair system in the torsional
direction, followed by the axial direction and the
smallest in the tangential direction.

(2) With the increase in pitch error, the helical gear pair
system shows complex motion characteristics in the
torsional direction. Its motion state undergoes six
stages of changes: one time-periodic motion, two
times periodic motion, quasiperiodic motion, chaotic
motion, three times periodic motion, and chaotic
motion. Ultimately the system stays in an unstable
and complexly changing chaotic motion state.

(3) Under the condition that the helical gear pair system
is in a periodic motion state when the pitch error
varies to the same extent and there is no jump
phenomenon in the process of pitch error variation,
the system will produce a certain change in vibration
response in the torsional direction.

Based on the conclusions of the work, the following can
be further explored:
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(1) We investigated the nonlinear dynamic character-
istics of the six degrees of freedom helical gear pair
system in the present work. As a future direction, our
methodology introduced in the current work can be
extended to analyze nonlinear dynamic character-
istics of helical gear pair systems with more degrees
of freedom.

(2) Based on the optimal control principle, a reasonable
control strategy can be proposed, and then the
corresponding controller can be designed to realize
the smooth operation of the gear system.
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