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Accurate estimation of the mining process is vital for the optimal allocation of mineral resources. .e development of any country is
precisely connected with the management of mineral resources. .erefore, the forecasting of mineral resources contributed much to
management, planning, and a maximum allocation of mineral resources. However, it is challenging because of its multiscale variability,
nonlinearity, nonstationarity, and high irregularity. In this paper, we proposed two revised hybrid methods to address these issues to
predict mineral resources. Our methods are based on denoising, decomposition, prediction, and ensemble principles that are applied to
the production ofmineral resource time-series data..e performance of the proposedmethods is compared with the existing traditional
one-stagemodel (without denoised and decomposition strategies) and two-stage hybridmodels (based on denoised strategy), and three-
stage hybrid models (with denoised and decomposition strategies). .e performance of these methods is evaluated using mean relative
error (MRE), mean absolute error (MAE), and mean square error (MSE) as evaluation measures for the production of four principle
mineral resources of Pakistan. It is concluded that the proposed framework for the prediction of mineral resources indicated better
performance as compared to other existing one-stage, two-stage, and three-stage models. Furthermore, the prediction accuracy of the
revised hybrid model is improved by reducing the complexity of the production of mineral resource time-series data.

1. Introduction

In the development of the national economy of any country,
there is a significant contribution of minerals. .e devel-
opment of effective policies is necessary for mining indus-
tries. .e income obtained by the mineral sector can be
optimized, and the industry can alleviate the shortage of

metals through accurate prediction of the mining process, as
minerals have a massive impact on the economy of Pakistan.
Since the mineral production data are nonstationary and
have multiscale stochastic attributes, the mining process is
affected by climate change and other projects related to
socioeconomic developments that result in a challenging
task for predicting the production of minerals resources.
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Two models are commonly used to predict such types of
data: a process-based model and a data-driven model. .e
process-based model needs an extensive calibration and
validation dataset [1]. .e data-driven model considered the
physical mechanism and scientific knowledge of stochastic
geologic processes [2]. Huang et al. [2] used the process-
based models for the prediction of hydrological data that
were also nonlinear and having complex characteristics.
.ey concluded that the lack of scientific knowledge and
unavailability of sufficient data make it difficult to predict.
Data-driven models were efficiently used to overcome the
drawback of process-based models [3].

.e data-driven models are further categorized as tra-
ditional statistical and machine learning (ML) models. .e
traditional statistical methods, i.e., autoregressive integrated
moving average (ARIMA), only consider the stationary and
linear data. .e ARIMA model is successfully applied to
predict the production of mineral resources [4]. However,
the problem with this traditional model is that it needed data
to be stationary. Furthermore, since the production data of
mineral resources are nonstationary and have nonlinearity
in them, they also contain complex time-varying charac-
teristics. .erefore traditional statistical models are not
enough to capture the nonlinearity and time-varying
characteristics of the nonlinear data. However, ML tech-
niques can be used to deal with the drawbacks and instability
of the traditional statistical models, as ML methods are used
to deal with nonstationary and nonlinear time-series data
[5]. .erefore, ML methods also are suitable for capturing
the nonstationary and nonlinear behavior of mineral pro-
duction data.

Commonly used ML techniques are artificial neural
network (ANN) and support vector machine (SVM), which
also suffered from the problem of parameter selection and
overfitting, and do not consider time-varying characteristics
of nonstationary time-series data. Moreover, the production
data of mineral resources contain noises that forbid the
researcher to predict them accurately. .erefore, hybrid
techniques are needed to model the noise corrupted and
time-varying characteristics of the production of mineral
resources data. Bokde et al. [6] proposed a hybrid model
(EMD-ANN) for the nonstationary wind speed prediction
and concluded that its performance was highly satisfactory
and robust for jumping samplings than ANN and ARIMA
models.

To deal with the limitations of simple existing models,
some of the preprocessing strategies are utilized with dif-
ferent data-driven models to increase the prediction accu-
racy of a different kind of nonlinear and nonstationary time
series. .e hybris models are developed to get the time-
varying characteristics through noise reduction. .e dif-
ferent hybrid models with preprocessing strategies have
already been applied for complex and nonlinear data, having
time-varying characteristics [7]. .e strategy of the hybrid
technique is based on decomposition and denoising, pre-
diction, and ensemble stages [1, 8, 9]. Several algorithms are
developed, such as spectral analysis, wavelet analysis (WA),
Fourier analysis, and empirical mode decomposition
(EMD), to reduce these noises or stochastic volatiles from

the data [10, 11]. Fourier analysis and spectral analysis are
used for those kinds of data that are stationary or linear.
However, EMD and WA are the most commonly used
preprocessing algorithms for nonlinear or nonstationary
data and provide better results. .e algorithms of WA
decompose the nonlinear and nonstationary data of mineral
resources into multiscale components [12]. .ese compo-
nents are used as inputs at the prediction stage, and then
these predicted components are ensemble for final predic-
tion. .e authors in [5] proposed a hybrid model for
forecasting streamflow by using wavelet transform to de-
compose streamflows and use ANN for forecasting pur-
poses. .ey concluded that their hybrid model was efficient
than simple existingmodels. In the present paper, EMD- and
WA-based thresholds are used to reduce noises from the
mineral production data. .e WA is considered as a pow-
erful tool for converting a signal into a stationary signal with
specific effectiveness. In the literature, different hybrid
models with wavelet decomposition are used for the pre-
diction of different kinds of nonlinear and nonstationary
time-series data [13]. Wu et al. [14] proposed a hybrid
forecasting model in combination with the particle swarm
optimization algorithm and wavelet neural network (PSO-
WNN) to predict China’s natural gas consumption. .ey
used the PSO algorithm to optimize the initial weights, and
the parameters of wavelet are updated through dynamic
learning to have improvement in forecasting precision and
reduce fluctuation of the WNN. .ey concluded that the
proposed model is superior as compared to ANN- and
WNN-based models. Some improvements have been made
in hybrid modes consisting WA decomposition to get more
accurate results of the prediction of daily flows which is also
nonlinear time-series data [13]. However, the performance
of the WA depends upon the selection of the type of mother
wavelet. Prior knowledge about the signal, which is to be
analyzed, and prior knowledge about its frequency content
are needed for a suitable choice of the mother wavelet. Wu
et al. [15] proposed an EMD method to overcome the
shortcomings of WA for scrutinizing the nonlinear data and
nonstationary datasets. Complex time-series data can be
decomposed into a small and finite number of IMFs by using
EMD..e EMD strategy has the advantage of converting the
nonstationary series into stationary series. .ere exist dif-
ferent studies in the literature that used EMD with different
data-driven models such as EMD-artificial neural network
(EMD-ANN), EMD-radial basis function (EMD-RBF),
EMD-support vector machines (EMD-SVMs), EMD-rele-
vant vector machine (EMD-RVM), and EMD-ARIMA, and
these hybrid models improve the prediction accuracy
[16–18]. .e EMD is combined with the ANN in many past
studies, especially in hydrology [19], and also a novel model
based on EMD and deep learning is used by Mi et al. [20] to
reduce the noises and extract the information of trend of the
original data of wind speed. However, EMD suffers from the
problem of mode mixing between the IMFs [13]. To over-
come the mode mixing problem, the authors in [13] pro-
posed a new technique of decomposition called ensemble
empirical mode decomposition (EEMD), in which they used
white Gauss noise. .e EEMD method can separate the

2 Mathematical Problems in Engineering



signals without inappropriate mode mixing. It uses white
noise that helps to establish the dyadic reference frame on
time-scale space..ey concluded that removing the problem
of mode mixing EEMD produced a set of IMFs that carry the
full physical meanings. Many hybrid techniques based on
EEMD are used for streamflow and wind speed prediction
and in hydrology [21, 22]. Di et al. [1] proposed a four-stage
hybrid model based on EEMD decomposition to bring
improvement in the prediction accuracy by minimizing the
noises. .ey concluded that EEMD in combination with
data-driven models could improve the prediction accuracy
compared to EMD-based hybrid models. Liu [23] proposed
a hybrid model by combining EEMD with the grey SVM
model (GSVM) to forecast high-speed rail passenger flow.
.ey concluded that their two-stage hybrid model is more
suitable for short-term predictions than other single and
hybrid models.

Ghumman et al. [24] proposed two hybrid models based
on preprocessing techniques EEMD, called EEMD pattern
sequence-based forecasting (EEMD-PSF) and EEMD differ-
ence pattern sequence-based forecasting (EEMD-DPSF)
models..e first model decomposes the series into number of
IMFs and improves the prediction performance using the PSF
model, and the second model reduced the effects of sea-
sonality, trend, and irregularity from the wind speed data.
.ey compared their performances with simple PSF, ARIMA,
and LSSVM models for wind speed and concluded that
EEMD-PSF and EEMD-DPSF models outperformed than
simple models. Jaitly and Hinton [25] presented a compre-
hensive review of decomposition-based methods to improve
the wind forecasting accuracy. .ey used and discussed
wavelet analysis, EMD, seasonal adjusted, intrinsic time-scale
decomposition, variational mode decomposition, and Ber-
naola-Galvan algorithm for decomposition of wind speed
time-series data as an alternative forecasting algorithm.
.rough comparative analysis of various decomposition-
based models, they concluded that the decomposition-based
model provided the accuracy in prediction as compared to
other forecasting algorithms.

Although EEMD proved helpful in solving mode
mixing issues, it created one other problem: some residual
noise during signal reconstruction. As a result, there may
be different modes because of the various realizations of
signal and noise. To solve this problem, Mehrsai et al. [26]
proposed the complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) technique. A
specific noise is added in their proposed model at each
decomposition stage, and a residue is calculated to get each
mode. .e final complete results of decomposition are
obtained numerically with the negligible error term.

.is paper proposed a revised hybrid model to de-
compose the time-varying characteristics of the production
data of mineral resources built upon CEEMDAN based on a
48-step ahead of the direct recursive prediction strategy. .e
study focuses on the preprocessing techniques (denoising
and decomposing) and their effect on the prediction of
mineral resources. An important point to note from the past
studies is that they used a one-step-ahead prediction strategy
rather than a multistep-ahead prediction [27]. In one-step-

ahead prediction, all the observations are used by the pre-
dictor to estimate the parameter for the time step, and we
used 48-month-ahead prediction to predict the mineral
resources. For improved and better performance of the
revised hybrid model, the long-term behavior of mineral
resource production is observed by considering the 48-step-
ahead direct recursive prediction strategy.

In the current study, we aimed to make a revised hybrid
model using the preprocessing techniques to decompose the
production data of mineral resources using the WA-
CEEMDAN technique, which follows the steps of EEMD by
adding white noise at each level of decomposition. .ere-
fore, the purpose of using the CEEMDAN algorithm in the
current study is to find an efficient way to decompose the
time-series data of mineral resources, which increased its
prediction accuracy. Furthermore, the current study ex-
plores its prediction performance using 48-step-ahead
prediction, especially for nonlinear data, by considering this
emerging hybrid modeling technique.

Based on the details outlined above, this paper is focused
on developing a modified model to predict the production of
mineral resources, improving the EMD/WA-CEEMDAN-
based multimodels (EMD/WA-CEEMDAN). In this paper,
the prediction performance of CEEMDAN-based hybrid
models used for long-term to review the prediction of
mineral resources is observed. Section 2 is focused on the
motivations behind the production data of mineral resource
prediction. A short review of models used for prediction of
mineral’s data and an introduction to EMD, EEMD,
CEEMDAN, and their modified versions are discussed in
Section 3. Additionally, a short review of various approaches
used in hybrid CEEMDAN models to select the appropriate
prediction methods with the consideration of the charac-
teristics of respective IMFs is also discussed in Section 3.
Section 4 describes details of the study area and data. Section
5 presents and discusses the results of the case study, while
conclusions are made for this research in Section 6.

2. Motivation behind the Prediction of the
Mineral Resources

In recent years, prediction of mineral resource prediction
has become a challenging task for researchers. Although
there is abundance of coal reserves in Pakistan, still share of
gas and oil is about 65% in the energy mix. Pakistan, despite
being a mineral-enriched country, is facing an alarming
situation as its power generation is based on foreign ex-
change. .e mineral sector of Pakistan is dominated by four
principal minerals which are gas, oil, gypsum, and coal.
.ere is a need to analyze and accurate prediction of the
production of these four major minerals to deal with
emerging challenges. .e main purpose towards accurate
prediction of mineral production data is to get the efficient
and optimum utilization of natural resources in the devel-
opment of the economy.

Prediction of the mineral resources is considered to be
an important study because of nonlinear, nonstationary, and
having time-varying characteristics of datasets. Many re-
searchers are working towards accurate prediction of
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nonlinear datasets, having complex time-varying charac-
teristics. Although these researchers have the same goal,
most of them have varieties in their motivations.

Saadat et al. [28] used the CEEMDAN algorithm in their
proposed model to predict the daily peak load..e proposed
three-stage hybrid model comprised the CEEMDAN tech-
nique, which showed a robust decomposed ability of reliable
prediction. Nazir et al. [29] developed a robust hybrid model
by utilizing the CEEMDAN algorithm to decompose hy-
drological time-series data, which showed the robust de-
composition ability to forecast the nonlinear and complex
time-series data..e purpose of including such article is that
those inferred the practicability and serviceability of the
hybrid models for the decomposition of nonlinear datasets.

3. Proposed Methodology

In the current study, we proposed two hybrid methods to
enhance the prediction accuracy of the time-series data. Both
methods have the same map and formation except in the
denoising stage, where the approaches for eliminating the
noises from the data are different. At the decomposition
stage of both methods, CEEMDAN (an improved form of
EEMD) [25] is used to identify the oscillation. At the pre-
diction stage, the multimodels are used after considering the
nature of IMFs to predict the obtained IMFs accurately.
.ere are two main objectives of using the multimodels:
predicting the IMF by looking up their nature accurately.
.e second objective is to determine the attainments of the
complex and straightforward models after the reduction of
the complexity of mineral resource time-series data by using
decomposition strategies. Finally, all the IMFs obtained
through prediction are combined to predict the time-series
data. .e proposed hybrid models consist of denoising,
denoted as D-step, decomposition, and prediction, denoted
as Decompose-step and P-step, respectively [29]. A short
description of these steps is given as follows:

(1) In D-step, the WA and EMD methods are presented
to remove the noise from the production of mineral
resource time-series data.

(2) In Decompose-step, CEEMDAN is used to decom-
pose the denoised series into the k IMF components
and one residual term.

(3) In P-step, the series obtained after denoising is
decomposed into IMF components and one residual
term, which is predicted by using linear stochastic
and nonlinear machine learning methods. .e
model, which has a lower rate of error for prediction
than other models, is utilized for further consider-
ation based on three performance evaluation criteria.
At last, the predicted results are combined to get the
final prediction.

Compared with the earlier review papers, the main
contribution of the current study is to review the prediction
literature from the perspective of decomposition-based
hybrid methods. More precisely, we compile the decom-
position-based models and discuss their algorithms and

structures. Furthermore, we examine that how decompo-
sition-based hybrid models improve prediction accuracy.
Finally, existing techniques adopted in recent years to im-
prove the performance of decomposition-based models are
also compiled and discussed.

To better understand and ease the reader, by combining
all the steps mentioned above, the proposed strategy can be
named as EMD (denoising)-CEEMDAN (decomposing)-
MM (multimodels), and WA (denoising)-CEEMDAN
(decomposing)-MM (multimodels) shortly named as EMD-
CEEMDA-MM and WA-CEEMDAN-MM models. Both
models are exhibited in Figure 1.

3.1. Denoising Step (D-Step). In many time-series data,
noises are certain components that sometimes reduce the
prediction accuracy. Many algorithms exist in the literature,
such as spectral analysis, WA, Fourier analysis, and EMD, to
reduce these noises or stochastic volatiles from the data [30].
Fourier analysis and spectral analysis are used for those
kinds of data that are stationary or linear. However, EMD
and WA can also deal with nonlinear or nonstationary data
and provide better results. In this study, EMD- and WA-
based thresholds are used to reduce noises from the mineral
production data.

3.1.1. Wavelet Analysis (WA). WA has developed as an
efficient tool for converting a signal into a stationary signal
with specific effectiveness. .e wavelet with finite energy
(small wave) is established in time, or frequency for analysis
of temporal phenomena serves as a basis function. One of
the favorite uses of the discrete wavelet transformation
(DWT) is to eliminate the noises from the signal. .is idea
contains a strategy of applying the threshold wavelet on the
coefficients of the signal contains the noises called the
wavelet technique for denoising. .e wavelet threshold is
recognized as a powerful method for removing the noises
from the signal. For using the wavelet basis soft and hard
threshold, it is necessary to decide about the choice of the
mother wavelet function. Using the Symlet 8 mother wavelet
[31], the mineral production data are decomposed into the
following coefficients [26, 30]:

bk,l � 􏽘
2N−k−1

l�0
2− k/2ϕ 2− k

p − l􏼐 􏼑, (1)

ck,l � 􏽘
K

k�1
􏽘

2N−k−1

l�0
2− k/2θ 2− k

p − l􏼐 􏼑, (2)

where bk,l is the approximation coefficient and ck,l is the
detail coefficient.

Signal’s energy can be divided over some of the wavelet
coefficients with high magnitude by using this technique. On
the other side, noise energy can be divided into many
wavelet coefficients that have a low magnitude..e denoised
signal can be obtained by removing wavelet coefficient noise
and by reconstructing the coefficients. Wavelet denoising
has three steps: (1) decomposition of the signal into
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coefficients of wavelet, (2) applying thresholds on the co-
efficients obtained in step 1 [32], and (3) reconstruction of
the wavelet coefficients.

3.1.2. Hard and Soft :resholds. .e assignment of the
actual threshold is necessary for the elimination of the noises
during denoising. As in wavelet transformation, the effi-
ciency of the denoising technique depends on the value of
the threshold. Several selection procedures are most likely
for deciding about the thresholding rule, but two symbolic
ones are hard thresholding and soft thresholding [33]. In the
current study, for calculating the wavelet coefficients, soft
and hard thresholding are applied to implement the wavelet
denoising technique, which is listed below [26]. .e soft
thresholding is

ck,l
′ �

ck,l, ck,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥Thk,

0, ck,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Thk,

⎧⎨

⎩ (3)

and the hard thresholding is

ck,l
′ �

sgn ck,l􏼐 􏼑 ck,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Thk􏼐 􏼑, ck,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥Thk,

0, ck,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<Thk,

⎧⎪⎨

⎪⎩
(4)

where Thk is the threshold which is calculated as Thk � a���������
2Ek ln(N)

􏽰
, k � 1, 2, 3, . . . , K, a is the constant which

considers the values in the interval of 0.4 and 1.4 with the
jump of 0.1, and 􏽣Mdk is the median deviation, i.e.,

􏽣Mdk �
median ck−1,l|k � 1, 2, 3, . . . , 2k− 1

− 1􏽮 􏽯􏼐 􏼑

0.6745
. (5)

By utilizing the following equation, the decomposed
signal is reconstructed using the approximations and noise-
free details:

x(p) � 􏽘
2N−K−1

k�0
ak,l
′2− k/2ϕ 2− k

p − l􏼐 􏼑 + 􏽘
k

k�1
􏽘

2N−k−1

k�0
ck,l
′2− k/2θ 2− k

p − l􏼐 􏼑,

(6)

where ak,l
′ and ck,l

′ are the threshold approximation and
detailed coefficients, respectively.

3.1.3. Empirical Mode Decomposition (EMD). .e EMD is a
flexible kind of decomposition technique and a purely data-
driven technique to decompose the sophisticated signals into
the series of components of the nonlinear and nonstationary
data. After decomposition, by combining all the components
for reconstructing, the original signal without any loss of the
information can be obtained. .e primary purpose of EMD
is to get the IMFs from the complex signals. .e following
two conditions should be satisfied by the extracted IMFs
[34]: (a) from all the data, the total of zero-crossings and the
extrema should either be equal or differ by at most one; (b) at
any point, the value of the envelope should be zero.

.e main steps of the EMD for an original time series
x(p), (p � 1, 2, 3, . . . , N) are as follows [33]:

(1) Identification of all the local extrema of original time
series x(p).

(2) Create the upper and lower envelope as U(p) and
G(p) by using a cubic spline.

(3) Estimate the mean value of the upper envelope and
the lower envelopem(p) � (U(p) + G(p))/2.
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END/WA

EMD/WA-based
denoised series

CEEMDAN

D
-s

te
p

D
ec

om
po

se
-

ste
p

IMF1 IMF1 IMFk

P-
ste

p
(s

el
ec

t b
es

t
m

od
el

)

ARIMA ARIMAARIMARGMDH RGMDH RGMDH

RBFNN RBFNN RBFNN

Ensemble of predicted
IMFs

Figure 1: .e suggested structure of EMD/WA-CEEMDAN-MM for the prediction of production data of mineral resources.
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(4) Find the difference in the mean of the envelope from
the original series x(p). .e difference d(p) is
calculated as d(p) � x(p) − m(p). .en, examine
the properties of d(p).

(5) Repeat 1–4 steps before the number of extrema is less
than or equal to one so that no more IMF can be
extracted or residue e(p) becomes a monotonic
function.

At last, the signal can be shown as the sum of all the IMFs
and residue e(p), where n is the number of IMFs, Ci(p), (i �

1, 2, 3, . . . , n) is the ith IMF, and e(p)is the residue. .e way
to denoise the IMF is the same as described in steps (1)–(4),
except for the last two because of the low-frequency IMFs,
which are used without denoising them [26, 35]:

x(p) � 􏽘
n

i

di + e(p), (7)

where n shows the number of sifted IMFs, as
(i � 1, 2, 3, . . . , n) e(p) is the trend of the signal and di(p) is
the ith IMF. Except for the last two IMFs, which are used
without applying denoising techniques on them because of
the low magnitude in their frequencies, the rest of the
procedure of denoising process is the same as in wavelet-
based denoising by using (3), (4), and (7) equations. In
equations (3), (4), and (7), according to the number of IMFs,
the subscript is replaced by i. Before reconstructing the
signal, a smooth signal for input can be obtained by applying
the thresholds on IMFs. .e rebuilding of the denoised
signal is generalized as

x(p) � 􏽘

n1−2

i�1
hi(p) + 􏽘

n

i�n1−2
hi(p) + e(p), (8)

where the parameter n1 is the number of IMFs which
provides us with the easiness of the elimination of the low-
order IMF which are noisy and also of higher-order IMFs,
which are a little bit noisy in Gaussian noise conditions as
(i � 1, 2, 3, . . . , n) hi(p), and e(p) is the ith IMF and trend of
the signal, respectively.

3.2. Decomposition Step (Decompose-Step). In the decom-
position step, we need to apply a helpful tool to reduce the
noises, providing accurate results. EEMD technique is ap-
plied in the decomposition step to handle the trouble of
mode mixing.

3.2.1. Ensemble Empirical Mode Decomposition (EEMD).
To improve the EMD and mitigate the mode mixing, EEMD
is developed. In this technique, the white noise added by
EEMD is distributed equally among all the time-frequency
space, which helps in the separation of the frequency scales
and decreases the occurrence of mode mixing. .e proce-
dure is presented as follows [36, 37]:

(i) Initialization of the ensemble number Q.
(ii) Set the amplitude of the added white noise i � 1.

(iii) Add the random white noise signal wni(p) in the
original signal x(p):

xi(p) � x(p) + wni(p), (9)

where wni(p) is the ith included series of white noise
and xi(p) denotes the ith included noise signal
i � 1 ∼ Q, Q> 1.

(iv) By using EMD, decompose the noise signal xi(p)

into N IMFsCj,i(p), (j � 1, 2, 3, . . . , P), where
Cj,i(p) shows the jth IMF of the ith noise signal and
P is the total number of IMFs.

(a) To obtain the pro-IMF s1(p), subtract the mean
envelope m1(p) from the original x1(p), i.e.,
s1(p) � x1(p) − m1(p), where
m1(p) � (U(p) + G(p))/2.

(b) Consider s1(p) as a new signal if the average of
the lower and upper envelope becomes zero and
if the number of zero-crossing and the number
of extrema are equal or almost one.

(c) Consider the points (a)–(c) of 4th step as far as
the resulting signal as proper IMF C1(p).

(d) From the original signal, x1(p), subtract the
resulting IMF C1(p). Consider the residue
e1(p) as the new data and go back to step 1:

x1(p) � C1(p) + e1(p). (10)

(e) In the substep, if the residue becomes the
monotonic function, then complete the algo-
rithm, and if i<Q, then go back to step 3. .e
last residual is treated as the trend:

(v) Estimate the ensemble mean IMFj(p) of all trials of
each IMF:

IMFj(p) �
1
P

􏽘

P

j�1
Cj,i(p),

j � 1, 2, 3, . . . , P, i � 1, 2, 3, . . . , Q.

(12)

(vi) Consider the mean IMFj(p) as the final mean of all
the P IMFs.

3.2.2. Complete Ensemble Empirical Mode Decomposition
with Added Noise (CEEMDAN). Although EEMD can bring
down the problem of mode mixing to a certain degree with
included white noise sequence, the error cannot be eliminated
after the computation of the averaging to a finite number. It
affects the sequence of reconstruction. For the elimination of
the mode mixing, CEEMDAN adds the adaptive white noise
smoothing pulse interference in decomposition, and for
making the decomposition of the data more complete, it uses
the properties of themean Gaussian white noise whosemean is
zero. .e detailed procedure of the CEEMDAN is as follows.

Persistent with EEMD, in the calculation of CEEMDAN,
P times decompose the original signal x(p), i.e.,
x(p) + riwni(p), where ri is the parameter which deals the
signal to noise ratio. .e first component of the IMF is
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IMF1(p) �
1
P

􏽘

P

i�1
cj,1(p). (13)

.e residual of the signal is

e1(p) � x(p) − IMF1(p). (14)

.e d(p) is defined as the lth IMF component obtained
from EMD. .e sequence v1(p) + r1d1(p)(nj(p)) is
decomposed as follows to get the second IMF component:

IMF2(p) �
1
P

􏽘

P

j�1
d1 e1(p) + r1d1 nj(p)􏼐 􏼑􏼐 􏼑. (15)

.e second residual signal is

e2(p) � e1(p) − IMF2(p). (16)

Similarly, by following the above procedure, the ex-
pression of the lth residual signal will be as follows:

el(p) � el−1(p) − IMFl(p). (17)

.e expression of the l + 1th residual signal is

IMFl+1(p) �
1
P

􏽘

P

j�1
dl el(p) + rldl nj(p)􏼐 􏼑􏼐 􏼑. (18)

.e above procedure is repeated until the criterion is
met. .e expression of the original sequence, if the number
of IMF components is M, is as follows:

x(p) � 􏽘
M

i�1
IMFi(p) + e(p), (19)

where IMFi(p) is the ith IMF, e(p) is the overall residual
signal, and x(p) is the signal obtained after decomposition.
.e decomposed IMFs are further used in the prediction
stage.

3.3. Prediction Step (P-Step). Multistep-ahead prediction is
used to predict a sequence of values in time-series data. .is
approach is applied to predict a model step-by-step and use
the predicted value of the current time step to determine its
value in the next time step. We split the data into training
and testing datasets. For the training dataset, 70% of the
observations are used, and 30% are used for the testing
dataset.

In the prediction stage, by using machine learning time
series and stochastic methods, the denoised IMFs are used as
input to predict the production data of mineral resources.
For this, we used multistep-ahead forecasting strategy. .e
reason for using two different types of models in prediction
is that the IMFs with high frequencies are predicted accu-
rately through ML methods and do not provide accurate
results for the IMFs having low frequencies. Stochastic
models provide better outcomes for the prediction of the
IMFs with low frequencies. .ese two types of models are
used for the direct forecast of IMFs having high and low
frequencies.

.e models used for the prediction purpose are briefly
described as follows.

3.3.1. Autoregressive Integrated Moving Average (ARIMA)
Model. For the prediction of the IMF, the autoregressive
moving average model is used as follows:

IMFi
k � ψ1IMFi

k−1 + · · · + ψpIMFi
k−p + εi

k + φ1ε
i
k−1

+ · · · + φqε
i
k−q,

(20)

where IMFi
k shows the ith IMF and εi

p shows ith residual
obtained through CEEMDAN, and p and q are the lag values
of autoregressive and moving average term. Sometimes the
time-series data are nonstationary; in such a situation, the
series can be made stationary by differencing to an ap-
propriate degree. .en, in the case of differencing the series,
the model is called ARIMA(p, d, q), where d is a degree of
difference that makes the series stationary.

3.3.2. Group Method of Data Handling (GMDH)-Type NN
Model. GMDH is a type of unexplored neural network. .e
GMDH-NN models are established by considering the
evolutionary method of modeling (GEvoM), which is a
program that generates a polynomial type neural network
for modeling the data. .e input variables, hidden layers
containing neurons, best model structure, and the number of
layers are determined automatically in these networks. By
considering the evaluation criteria, some of the neurons are
chosen then the output of these selected neurons turns into
the input of the next layer. For the selection of the neurons,
the prediction means square criterion is considered using
some transfer functions shown in Table 1.

.e procedure is repeated until the final layer. In the last
segment, only one predicted neuron is considered. However,
GMDH-NN selects the relation of only two variables and
ignores the effect of an individual variable. .e relationship
between input and output variables is generally expressed
through the Volterra functional series called Kolmogor-
ov–Gabor polynomial [38]:

v � b0 + 􏽘

n

k�1
bkuk + 􏽘

n

k�1
􏽘

n

l�1
bklukul + 􏽘

n

k�1
􏽘

n

l�1
􏽘

n

m�1
bklmukulum + · · · .

(21)

A refined form of GMDN-NN is the architecture group
method of data handling (RGMDH-NN), which not only
considers two variables but also considers them individually;
the remaining procedure of RGMDH is the same as GMDH.

3.3.3. Radial Basis Function Neural Network (RBFNN).
As an ANN technique, RBFNN is used to predict the
decomposed IMFs and components of residual. .e reason
for the selection of RBFNN is the simplicity of its structure
and flexibility in selecting the number of neurons [39]. On
the contrary to other feedforward neural networks, that
RBFNN consists of one layer. Moreover, the RBFNN has a
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sound capability of approximation and fast convergence
speed [40].

.e structure of the RBFNN consists of two sections, one
section is the nonlinear conversion of input (the first layer in
Figure 2) to the hidden layer (the second layer in Figure 2),
and the other part is the linear conversion of the hidden layer
to the output layer which is the third layer described in
Figure 2. Some of the expressions of RBF are shown in
Table 2.

3.3.4. Mutistep-Ahead Prediction. Time-series prediction
can be used for both single (one-step-ahead prediction) and
multiple periods (multistep-ahead prediction). Multistep-
ahead prediction has to deal with problems, such as accu-
mulation error, uncertainty, and accuracy, unlike one-step-
ahead prediction. However, accurate time-series prediction
for long horizon has become challenging. A multistep-ahead
time-series prediction consists of predicting the next H
values of a time series consists of N observations, where the
forecasting horizon is denoted by H> 1.

.e DirREC strategy [41] combines the steps and the
principles of direct and iterated strategies. .e recursive
strategy is used for the prediction of all IMFs using three
different models, and at last, all the predicted IMFs are
ensembled and predicted by direct approach. DirRECmakes
the prediction with different models for each horizon, and
also, as the recursive approach, it increases the set of inputs
by adding more variables related to the predictions of the
previous step. However, the embedding size is different for
all horizons.

4. Study Area and Experimental Design

4.1. Selection of Area for Study. Pakistan is blessed with
numerous geological potential and has numerous reserves of
minerals such as coal, copper, gold, and limestone, which are
much useful for industrial development. However, we have
not yet promoted growth and eliminated poverty in the
country by utilizing our natural resources to the maximum
level. .e wealthiest province of Pakistan is Baluchistan,
with approximately 80 to 85% minerals. .e rest of the
minerals, 10 to 15%, are present in KPK, Sindh, and Punjab.
Despite Pakistan’s precious mineral resources and two
continuousmineral policies, this sector contributes poorly to
the country’s GDP. .e reason may be insufficient assess-
ments and monitoring, political instability, problems related
to weather, shortage of foreign investments, and insecurity
in themineral-rich areas (https://www.pc.gov.pk/uploads/
pub/FIRST_05_PAGES_STRATEGY_FOR_MINERAL_
SECTOR_DEVELOPMENT_IN_PAKISTAN.pdf ).

4.2. Description of Data. .e observed data consist of the
production of principle minerals resources of Pakistan,
which are named natural gas, oil, coal, and gypsum mea-
sured in terms of metric tons. It consists of 168 monthly
observations recorded from July 2005 to June 2019. .e data
are divided into the training dataset and testing data for
observing the model performance. .e dataset of data
contains 118 observations from the month of July 2005 to
April 2015, and the testing dataset contains 50 observations
fromMay 2015 to June 2019. .e training dataset consists of
80% observations of the observed series, and the testing
dataset includes 20% observations of the observed series.

4.3. Comparison of the Proposed Hybrid Model with Other
Models. Both suggested models are compared with other
models used for prediction, with and without decomposed
and denoised techniques. We named them 1-stage, 2-stage,
and 3-stage models for our convenience, which we used for
comparison purposes:

(i) 1-stage model: models without having denoising
and decomposition techniques are selected in this
stage, i.e., ARIMA. We called them 1-stage as used
in [29].

(ii) 2-stage model: in 2-stage models, denoised tech-
niques (EMD/WA) are selected for comparison,
having noise removal capacity, i.e., EMD/WA-
ARIMA, EMD/WA-RGMDH, and EMD/WA-
RBFNN. For prediction purposes, different models
are selected to compare the statistical model with
the models based on artificial intelligence, i.e.,
RGMDH and RBFNNmodels..ese 2-stagemodels
are selected from [42] for comparison purpose.

(iii) 3-stage model: in these models, both denoised and
decomposed strategies are accessed; that is, EMD-
EEMD-MM is selected from [15] for the purpose of
comparison. Multiple models are selected under 3-
stage models for the prediction by keeping the same
strategy as in the proposed model. A direct 48-step-
ahead forecasting strategy is used in the prediction
step. We used a multistep-ahead forecasting
methodology. .ree methods for prediction are
used: one traditional statistical model, i.e., ARIMA

Table 1: Transfer functions for GMDH-NN algorithms.

Transfer functions
Sigmoid function v � (1/(1 + exp− u))

Tangent function v � tan u

Radial basis function v � exp− u2

Polynomial function v � u

Output layerInput layer Hidden layer

x (1) k (x, x1)

k (x, x2)

k (x, x3)

k (x, xn)

x (2)

x (3)

x (p)

O
ut

pu
t

Figure 2: Structure of the radial basis function neural network.
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(p, d, and q), and two machine learning methods,
i.e., GMDH and RBFNN.

4.4. Accuracy Measure Techniques. .e performance of the
model can be achieved by measuring the closeness of the
predicted values and the observed values for the test dataset.
By using three evaluation measures, i.e., signal-to-noise ratio
(SNR), mean relative error (MRE), mean absolute error
(MAE), mean square error (MSE), and mean absolute
percentage error (MAPE) [43], the prediction accuracy of
the selected and proposed models is obtained. .e following
are their mathematical expressions:

MRE �
1
N

􏽐
n
p�1 g(p)0 − g(p)pred

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

g(p)0
,

MAE �
1
N

􏽘

n

p�1
g(p)0 − g(p)pred

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

MSE �
1
N

􏽘

n

p�1
g(p)0 − g(p)pred􏼐 􏼑

2
,

MAPE �
g(p)m0 − g(p)m(pred)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

g(p)m0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
∗ 100,

(22)

where g(p)pred and g(p)0 are the predicted and real data,
respectively, and n is the data size; also, g(p)m0 is the mean
of the observed data, and g(p)m(pred) is the mean of the
predicted values. MRE, MAE, and MSE measures the de-
parture between the original values and predicted values.
.e neurons of neural networks (GMDH and RGMDH) are
selected according to their MSEs.

5. Results and Discussion

In Figure 1, step-by-step procedure of the proposed method
is described. In which firstly, in D-step, the original series is
decomposed using EMD or WA. In the second step (De-
compose-step), the denoised series is decomposed using the
CEEMDAN technique. In the third step of Figure 1, the
IMFs which are obtained through CEEMDAN are predicted
using ARIMA, RGMDH, and RBFNN models. At the final
stage, all the predicted IMFs are ensembled :

D-stage results: according to Figure 1, the original
series of data is decomposed in the first step by using

two noise removal filters; the results of denoising are
described as follows:
Wavelet-based denoising: by following the ELTprocess
shown in Figure 1 and using equations (1) and (2), the
approximations are calculated on the data of mineral
resources of Pakistan, and soft and hard thresholding
are used to remove the noises from the coefficients of
mineral production time-series data. Rules of soft and
hard thresholding are calculated by using equations (3)
and (4), respectively. .en, based on the lower value of
MSE, denoised series, hard thresholds are recon-
structed for wavelet analysis.
EMD-based denoising: for removing the noises from
the production of mineral resource data using EMD,
IMFs are calculated using equation (7). For denoising,
these calculated IMFs except for the last two IMFs, soft
and hard thresholding rules, are used as inWA by using
equations (3) and (4), respectively. Since the last two
IMFs are smooth and have low-frequency character-
istics, that is why there is no need for denoising the last
two IMFs. .e denoised IMFs based on hard thresh-
olding reconstruct noise-free mineral resource time-
series data from equation (8). .e WA- and EMD-
based denoising are combined in Figure 3 for gas and
oil. .e statistical measures of the original series and
denoised series of all four minerals, i.e., mean, standard
deviation, MRE, MAE, and MSE for EMD and wavelet
noise removal techniques, are shown in Table 3.
According to these findings, it can be observed that
EMD behaves better than WA.
According to statistical measures, the results show that
WA and EMD behave differently for all four minerals.
.e mean and standard deviation of the original series,
denoised series by EMD, and denoised by WA are al-
most the same in all minerals. However, for gas and coal
production, the standard deviation becomes less by
using WA. According to other statistical measures, i.e.,
MRE, MAE, and MSE, EMD performs better than WA,
as, in all minerals, these measures have lower values than
WA. .erefore, it is concluded that EMD and WA
performed equally to denoise the mineral resources in
the long run. In the decomposition stage, EMD andWA,
both denoising techniques are used separately as input to
get those characteristics that change in terms of varying
frequencies, i.e., high frequencies and low frequencies.
Decompose-stage results: to get the local changing
features for the time from denoised time-series data of

Table 2: Transfer functions for RBFN algorithms.

Radial basis functions for RBFN algorithms
Power function ψ(w) � wc, c � odd, w ∈ R

Gaussian function ψ(w) � exp(−w2/2c2), c> 0, w ∈ R

Square root function ψ(w) �
������
w2 + c2

√
, c> 0, w ∈ R

Hyperbolic tangent function ψ(w) � ((1 − e− 2w)/(1 + e−2w)), w ∈ R

Sigmoid function ψ(w) � (1 + e− w)− 1, w ∈ R

.in plate spline function ψ(w) � w2 log(w), w ∈ R

Reciprocal square root function ψ(w) � (w2 + c2)− 1/2, c> 0, w ∈ R
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mineral resources by WA/EMD, which are decom-
posed further into six IMF components and one re-
sidual term. .e EMD and CEEMDAN decomposition
methods are used for the extraction of IMFs from four
minerals. .e decomposition results of EMD-CEEM-
DAN techniques of gas and oil are presented in Fig-
ure 4, where all four minerals are decomposed into six
IMF components, and one residual term is presented.
.e drawn-out IMFs represent mineral production
time-series data characteristics where the starting IMFs
show the higher frequency. In contrast, the last three
IMFs represent lower frequency and residual shown as
a trend.
.e results of WA-CEEMDAN decomposition are
shown in Figure 5. .e extracted IMFs represent the
attributes of production of mineral resource time-series
data, where at the beginning, some IMFs have a higher
frequency and then slowly frequency reduces till sixth
IMF and residual shown as the trend in Figures 4 and 5.
.e amplitude’s value of the white noise is chosen as

0.2, and a maximum number of the ensemble members
(1000) are selected. Almost all IMFs and residuals for all
minerals show identical characteristics for EMD-
CEEMDAN and WA-CEEMDAN decomposition
methods.
P-step results: three methods are adopted to predict all
extracted IMFs and for residuals to get precise results.
For this purpose, one traditional and two other non-
linear methods are used, i.e., ARIMA (p, d, and q) as
traditional statistical method and GMDH-NN and
RBFNN as nonlinear methods, which are used for the
prediction of IMFs and residual for all four-mineral
production. .e mineral resource data of four minerals
are partitioned into 70% and 30% for the training
dataset and testing dataset, respectively..e parameters
of the model and its structure are estimated using 118
observations of mineral resources. .en, the suggested
model and other models used for comparison purposes
are tested in terms of their validity using 30% mineral
resource data. After estimating multimodels for every
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1,800,000
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2005 2010 2015
Time

Original series
Denoised by EMD
Denoised by WA

Figure 3: .e denoised series for the production of gas and oil. .e denoised series are obtained by EMD-threshold (in blue color) and
wavelet threshold (in red color).

Table 3: Statistical measures of WA- and EMD-based denoised production of four-mineral time-series datasets.

Mineral resources Mode μ σ MRE MAE MSE

Gas production
Original series 122355 5477.39

EMD 122352.4 5452.545 64.56 0.00 5849.80
WA 122355 3757.383 3258.05 0.03 14792170

Oil production
Original series 2341219 353450.2

EMD 2341179 353338.3 441.92 0.00 266404.30
WA 2341219 343459.1 62569.99 0.03 6181270027

Gypsum production
Original series 109677.6 56078.37

EMD 109673.2 56031.31 178.88 0.00 43509.52
WA 109675.9 54138.90 9578.65 0.10 143169479

Coal production
Original series 297596.6 73584.54

EMD 297615.9 73382.25 315.16 0.00 144581.50
WA 297596.6 58222.67 30897.95 0.12 1552598008
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IMF component and residual, the model with the least
value ofMRE, MAE, andMSE is considered as the most
appropriate and selected for the prediction of each IMF.
.e findings for the training dataset of the suggested
model and all other models in comparison to gas, oil,
coal, and gypsum production are given in Table 4. .e
prediction results of suggested models EMD-CEEM-
DAN-MM and WA-CEEMDAN-MM illustrated the
effectiveness of all four minerals with a minimum value
of MRE, MAE, and MSE compared with 1-stage, 2-
stage, and 3-stage evaluation models. However, the

suggested model WA-CEEMDAN-MM acquires the
lowest value of MSE than another proposed EMD-
CEEMDAN-MM model. .e model with the worst
prediction is a 1-stage model, as shown in Table 4, with
the maximum value of MRE, MAE, and MSE.
Here, the 1-stage model, i.e., the ARIMAmodel, attains
the maximum value of MSE without applying the
techniques of denoising and decomposition on the
mineral production time-series data. .e predicted
graph of the suggested model EMD-CEEMDAN-MM
in comparison with 2-stage, i.e., EMD-ARIMA and
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Figure 4:.e EMD-CEEMDAN decomposition of gas (a) and oil (b) production..e four series are decomposed into six IMF components
and one residual.
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EMD-RGMDH models, is presented in Figure 6, and
also, the predicted graph of WA-CEEMDAN-MM in
comparison with 2-stage, i.e., WA-ARIMA and WA-
RGMDH models, is presented in Figure 7. Here, in
Table 4, the MSE of the RBFNN model is greater than
all the MSEs of other models, so for comparison, we
skip RBFNN in the graphical presentation of predicted
results. Denoising, decomposition, and ensemble
principles can be used to predict the mineral resources’
production. In Table 4, 2-stage, i.e., ARIMA and
RGMDH models, performs better than the single-stage
model, and from the 2-stage model, the WA-based
model performs better than EMD-based models.
However, it is concluded from Table 4 that the sug-
gestedmodels performwell to predict the production of
mineral resources by decreasing its intricacy and

increasing the performance of prediction over 1-stage,
2-stage, and 3-stage models.
.e prediction errors for the testing dataset are pre-
sented in Table 5. It can be concluded that our sug-
gested model performed better than all other
benchmark models, i.e., the error obtained through
prediction using the testing dataset in comparison
with the error of prediction using the training dataset.
From Table 5, it can be examined that the performance
of the WA-CEEMDAN-MM model with minimum
values of MAD, MAPE, and MSE is better than all
other models. .e graphical presentation of suggested
models by considering the testing dataset for only gas
production is exhibited in Figure 8, based on the EMD
technique. Figure 9 is based on the WA technique.
From these figures, it can be observed that our

Table 4: .e evaluation of the prediction error of the suggested model (EMD-CEEMDAN-MM andWA-CEEMDAN-MM) in comparison
with other existing models for gas, oil, coal, and gypsum production.

Mineral production Model name Models MRE MAE MSE

Gas production

1-S ARIMA 5562.08 0.05 34688672

2-S

WA-ARIMA 564.79 0.00 500307.2
WA-RGMDH 1041.51 0.01 1621799
WA-RBFN 22919.26 0.19 545273283

EMD-ARIMA 3750.39 0.03 23240715
EMD-RGMDH 3753.87 0.03 23340680
EMD-RBFN 22916.16 0.19 556913324

3-S
EMD-EEMD-MM 2020.75 0.02 7766789

WA-CEEMDAN-MM 158.46 0.00 38472.38
EMD-CEEMDAN-MM 1195.00 0.01 2336537

Oil production

1-S ARIMA 86924.62 0.04 12933064462

2-S

WA-ARIMA 32680.16 0.01 1778236730
WA-RGMDH 24693.97 0.01 981106280
WA-RBFN 441208.80 0.17 313742347809

EMD-ARIMA 86826.35 0.04 12907664665
EMD-RGMDH 84082.76 0.04 11935015062
EMD-RBFN 445083.30 0.17 318704000000

3-S
EMD-EEMD-MM 34349.94 0.01 2014443387

WA-CEEMDAN-MM 5676.63 0.00 54755189
EMD-CEEMDAN-MM 26569.21 0.01 1213733733

Coal production

1-S ARIMA 47665.83 0.19 3554183458

2-S

WA-ARIMA 4919.99 0.02 63677954
WA-RGMDH 7587.04 0.03 109980128
WA-RBFN 65501.76 0.20 6500657737

EMD-ARIMA 47592.77 0.19 3543414179
EMD-RGMDH 46715.48 0.19 3480224927
EMD-RBFN 74976.31 0.25 8461474651

3-S
EMD-EEMD-MM 14999.79 0.06 365101582

WA-CEEMDAN-MM 2384.12 0.01 10215110
EMD-CEEMDAN-MM 13761.37 0.05 328725693

Gypsum production

1-S ARIMA 16095.92 0.16 494553674

2-S

WA-ARIMA 10218.46 0.09 239738995
WA-RGMDH 9318.04 0.08 217996433
WA-RBFN 44669.82 0.42 3399773324

EMD-ARIMA 16040.73 0.16 492041414
EMD-RGMDH 16495.23 0.16 501503414
EMD-RBFN 45538.21 0.43 3549328950

3-S
EMD-EEMD-MM 6876.55 0.08 77558497

WA-CEEMDAN-MM 2569.18 0.02 25152289
EMD-CEEMDAN-MM 21073.19 0.22 773453648
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suggested model performed better than all other
existing models.
Overall comparison of the proposed model with
denoised and decomposed models: in general, from
Tables 4 and 5, it can be observed that removing the
noises from the production data of mineral resources

by using EMD and WA techniques provides better
results as compared to single or model without
denoising and decomposing. It can be observed that the
value ofMAE,MRE, andMSE from Tables 4 and 5 of all
four minerals performs well for 2-stage models as
compared to 1-stage models. It is noticed that the 1-
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Figure 6: Prediction results of gas and oil production using suggested EMD-CEEMDAN-MM in comparison with EMD-ARIMA and
EMD-RGMDH predicted models.
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Figure 7: Prediction results of oil production using suggested WA-CEEMDAN-MM in association with WA-ARIMA and WA-RGMDH
models.
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stage ARIMA model predicted some of the IMFs
having low frequencies, precisely but not for the IMFs
having high frequencies as they contained more time-
varying characteristics. Moreover, different statistical
and machine learning models are used with these
denoised series to predict mineral production and
explore the performances of simple and complex
models. .ese statistical and machine learning models
can be seen from Tables 4 and 5, where RBFNN with
EMD and WA performs worst than EMD- and WA-
based ARIMA and RGMDH. .is shows that one can
use simple models for predicting mineral production
compared to complex models such as RBFNN.
It is observed that the two-stage model performed on
average 6.7% better than the 1-stage model, and the 3-
stage existing model performed 76.3% better than the

1-stage model on average and 87.3% on average better
than the two-stage model.
Our proposed model 3-stage EMD/WA-CEEMDAN-
MM attained 29.4% on average less value of MSE
compared to the 1-stage model, 49.2% less value
compared to 2-stage, and 68.75% less value of MSE as
compared to the existing 3-stage model, similarly, on
average 10.87% less value of MRE as compared to 1-
stage, 2.0% on average less value of MRE than the 2-
stage model, and 75.5% on average than the 3-stage
model. Also, on average, there is a 22.49%, 52.38%,
and −46.63% decrease in MAE by using the proposed
model as compared with 1-stage, 2-stage, and existing
3-stage models.
However, the performance of 3-stage models, i.e.,
EMD–CEEMDAN-MM and WA-CEEMDAN-MM, is

Table 5: .e evaluation of the prediction error of the suggested model (EMD-CEEMDAN-MM andWA-CEEMDAN-MM) in comparison
with other models for all four minerals having the testing dataset.

Mineral production Model name Models MRE MAE MSE

Gas production

1-S ARIMA 3253.46 0.03 16505715

2-S

WA-ARIMA 3357.08 0.03 14297822
WA-RGMDH 85.12 0.00 10700.46
WA-RBFN 85178.71 0.70 7484485277

EMD-ARIMA 3243.62 0.03 16313393
EMD-RGMDH 3564.16 0.03 17443358
EMD-RBFN 85223.53 0.70 7507698054

3-S
EMD-EEMD-MM 120692.20 1.00 14573026239

WA-CEEMDAN-MM 55.78 0.00 4528.72
EMD-CEEMDAN-MM 1121.05 0.01 1835955

Oil production

1-S ARIMA 104425.90 0.04 16912634727

2-S

WA-ARIMA 92291.30 0.03 11294925595
WA-RGMDH 5925.51 0.00 64583522
WA-RBFN 1919080.00 0.70 3802014000000

EMD-ARIMA 104445.20 0.04 16895725118
EMD-RGMDH 100369.30 0.04 15464333281
EMD-RBFN 1919040.00 0.70 3814679000000

3-S
EMD-EEMD-MM 2722506.00 1.00 7416098000000

WA-CEEMDAN-MM 7888.74 0.00 147703705
EMD-CEEMDAN-MM 34261.48 0.01 1730054305

Coal production

1-S ARIMA 52706.14 0.17 3986455945

2-S

WA-ARIMA 34790.81 0.11 1834667964
WA-RGMDH 3399.37 0.01 17296854
WA-RBFN 234617.90 0.69 61083423522

EMD-ARIMA 52689.36 0.17 3984927942
EMD-RGMDH 47981.98 0.16 3413398302
EMD-RBFN 234083.70 0.68 63318268986

3-S
EMD-EEMD-MM 332627.70 1.06 111602246835

WA-CEEMDAN-MM 2207.27 0.01 9144544
EMD-CEEMDAN-MM 20414.31 0.07 20414.31

Gypsum production

1-S ARIMA 26046.03 0.14 1164947275

2-S

WA-ARIMA 29409.92 0.16 1482365241
WA-RGMDH 1007.13 0.00 1651773
WA-RBFN 135000.60 0.70 19562632811

EMD-ARIMA 26005.65 0.14 11618477
EMD-RGMDH 27240.40 0.14 1228486486
EMD-RBFN 134601.00 0.69 20165977385

3-S
EMD-EEMD-MM 193557.50 1.02 38076758501

WA-CEEMDAN-MM 1023.04 0.01 2727448
EMD-CEEMDAN-MM 11205.51 0.06 213535838
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better than 1-stage and 2-stage models as it reduces the
complexity of mineral production data in many ways
by combining denoising and decomposing techniques.
.e integrated features of denoising and decomposing
of 3-stage models enhance the prediction accuracy of
mineral production, as shown in Tables 4 and 5.
Moreover, the WA-based hybrid models provided
better accuracy of prediction as compared to EMD-
based models.

6. Conclusion

For the optimal mineral supply and the purposes of mineral
resources, an accurate prediction of mineral resources is
necessary. Here, some of the data processing methods are
utilized to increase the prediction accuracy of such stochastic
type data by efficiently using decomposition techniques. By
using the three strategies, denoising, decomposing, and
ensemble, two hybrid models with 3-stages are suggested,
EMD-CEEMDAN-MM and WA-CEEMDAN-MM, from
which WA-CEEMDAN-MM performed better than the
EMD-CEEMDAN-MM model for the decomposition of the
nonstationary and nonlinear data of minerals. For evalu-
ating the performance of both models, the production data
of four minerals are used. In general, our suggested model
performed well for all four minerals than the other 1-stage,
2-stage, and existing 3-stage models. For evaluation mea-
sures, three techniques are utilized, i.e., MAE, MSE, and
MAPE. .ese 3-stage hybrid models can be used for the
decomposition of any nonlinear and nonstationary data for
prediction [44–47].

Data Availability
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