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We have studied the Opial-type inequalities for superquadratic functions proved for arbitrary kernels. )ese are estimated by
applying mean value theorems. Furthermore, by analyzing specific functions, the fractional integral and fractional derivative
inequalities are obtained.

1. Introduction and Preliminary Results

Opial’s inequality is very important and useful in the study of
differential and difference equations. It was introduced by
Opial in 1960. It is stated in the following theorem.

Theorem 1 (see [1]). Let ψ ∈ C1[0, c] be such that ψ(0) � 0
and ψ(t)> 0 for t ∈ (0, c). .en,


c

0
ψ(t)ψ′(t)


dt≤

c

4


h

0
ψ′(t)

2
 dt. (1)

Here, (c/4) is the best possible constant.

Many authors have been working continuously on
Opial’s inequality and succeeded to establish very interesting
results. For its numerous generalizations and extensions, we
refer the readers to [2–14] and references therein. Opial-type
inequalities are useful in the study of difference and dif-
ferential equations, for example, in the uniqueness of initial
value problems, in the existence and uniqueness of boundary
value problems, and setting upper bounds of their solutions.
For a historical survey of the inequalities given after the
publication of inequality (1), one can study the book by
Agarwal and Pang; see [2]. Mitrinović and Pečarić, in 1988,
proved Opial-type inequalities for convex functions with

respect to the power function by defining two classes of
functions involving general kernels; see [15, 16]. Motivated
by these inequalities, recently, we have studied such in-
equalities for convex functions by considering a generalized
class of functions with arbitrary kernel [17]. Also, for special
kernels, fractional Opial-type inequalities are proved for
different fractional integral and derivative operators [18, 19].

Our aim in this paper is to study Opial-type inequalities
for superquadratic functions which are also connected with
inequalities that hold for convex functions. )e established
results estimate the Opial-type inequalities with the help of
some suitably defined functions. )e definitions and results
needful for the presentation of results of this paper are given
as follows.

Definition 1 (see [4]). A function ψ: I⟶ R is said to be
convex if for all x, y ∈ I and all t ∈ [0, 1],

ψ(tx +(1 − t)y)≤ tψ(x) +(1 − t)ψ(y), (2)

holds, where I is an interval in R.

Definition 2 (see [20]). A function ψ: [0,∞)⟶ R is called
a superquadratic function provided for all x≥ 0, there exists
a real constant Cx such that
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ψ(y)≥ψ(x) + Cx(y − x) + ψ(|y − x|), ∀y≥ 0. (3)

)e following lemma explores convexity from the
superquadratic function.

Lemma 1 (see [20]). Let ψ be a superquadratic function with
Cx as in Definition 2. .en, we have

(i) ψ(0)≤ 0
(ii) Cx � ψ′(x) where ψ is differentiable for x> 0 and

ψ(0) � ψ′(0) � 0
(iii) ψ is convex and ψ(0) � ψ′(0) � 0 if ψ ≥ 0

Let U1(u, k) denote the class of functions w: [a, b]⟶ R

having representation

w(x) � 
x

a
k(x, t)u(t)dt, (4)

where u is a continuous function and k is an arbitrary
nonnegative kernel such that k(x, t) � 0 for t< x and
u(x) > 0 implies w(x)> 0 for every x ∈ [a, b]. Let U2(u, k)

denote the class of functions w: [a, b]⟶ R having
representation

w(x) � 
b

x
k(x, t)u(t)dt, (5)

where u is a continuous function and k is an arbitrary
nonnegative kernel such that k(x, t) � 0 for t< x and
u(x) > 0 implies w(x)> 0 for every x ∈ [a, b].

Theorem 2 (see [15, 16]). Let ψ: [0,∞)⟶ R be a dif-
ferentiable function such that, for p2 > 1, the function
ψ(x(1/p2)) is convex and ψ(0) � 0. Let w ∈ U1(u, k) where
(

x

a
(k(x, t)p1dt)(1/p1) ≤K1 and (1/p1) + (1/p2) � 1. .en,


b

a
|w(x)|

1− p2ψ′(|w(x)|)|u(x)|
p2dx≤

p2

K
p2
1
ψ K1 

b

a
|u(x)|

p2dx 

1/p2( )
⎛⎝ ⎞⎠. (6)

)e reverse of the above inequality holds when ψ(x(1/p2))

is concave.
A similar result for the class U2(u, k) is given as follows.

Theorem 3 (see [15, 16]). Let ψ: [0,∞)⟶ R be a dif-
ferentiable function such that, for p2 > 1, the function
ψ(x(1/p2)) is convex and ψ(0) � 0. Let w ∈ U2(u, k) where
(

b

x
(k(x, t)p1dt)(1/p1) ≤K2 and (1/p1) + (1/p2) � 1. .en,


b

a
|w(x)|

1− p2ψ′(|w(x)|)|u(x)|
p2dx≤

p2

K
p2
2
ψ K2 

b

a
|u(x)|

p2dx 

1/p2( )
⎛⎝ ⎞⎠. (7)

)e reverse of the above inequality holds when ψ(x(1/p2))

is concave.
Recently, the following Opial-type inequalities for

superquadratic functions are established.

Theorem 4 (see [21]). Let ψ: [0,∞)⟶ R be a differen-
tiable function such that (ψ′(x)/x) is increasing and
ψ(0) � 0. Let w ∈ U1(u, k), |k(x, t)|≤K, and

M< 
x

a
|u(t)|dt. .en, the following inequality holds for the

superquadratic function ψ:


b

a

ψ′(|w(x)|)|u(x)|

|w(x)|
dx≤

1
K

2
M

ψ K 
b

a
(|u(t)|dt) . (8)

Theorem 5 (see [21]). Under the conditions of İeorem 4, in
addition, if ψ is nonnegative, then we have


b

a

ψ′(|w(x)|)|u(x)|

|w(x)|
dx≤

1
K

2
M

ψ K 
b

a
(|u(t)|dt) 

≤
1

(b − a)MK
2 

b

a
ψ(K(b − a)|u(t)|)dt.

(9)

Theorem 6 (see [21]). Let ψ: [0,∞)⟶ R be a differ-
entiable function such that (ψ′(x)/x) is increasing and
ψ(0) � 0. Let w ∈ U1(u, k), (

x

a
(k(x, t))p1dt)(1/p1) ≤K,

M< (
x

a
|u(t)|p2dt)(2/p2)− 1, and (1/p1) + (1/p2) � 1. .en,

the following inequality holds for superquadratic function
ψ:
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b

a

ψ′(|w(x)|)|u(x)|
p2

|w(x)|
dx≤

p2

K
2
M

ψ K 
b

a
|u(t)|

p2dt 

1/p2( )
⎛⎝ ⎞⎠. (10)

Theorem 7 (see [21]). Under the conditions of İeorem 6, in
addition, if ψ is nonnegative, then we have


b

a

ψ′(|w(x)|)|u(x)|
p2

|w(x)|
dx≤

p2

K
2
M

ψ K 
b

a
|u(t)|

p2dt 

1/p2( )
⎛⎝ ⎞⎠

≤
p2

K
2
M(b − a)


b

a
Ψ (b − a)

1/p2( )K|u(t)| dt.

(11)

)e following lemmas provide classes of convex as well
as superquadratic functions which will be useful to establish
results of this paper.

Lemma 2 (see [22]). Let ψ ∈ C2(I), where I⊆(0,∞) and
m′ ≤ψ″(η)≤M′ for all η ∈ I. .en, the functions ψ1 and ψ2
defined by

ψ1(x) �
M′x2

2
− ψ(x),

ψ2(x) � ψ(x) −
m′x2

2
,

(12)

are convex.

Lemma 3 (see [23]). Let ψ ∈ C2(I), I⊆(0,∞) such that
m′ ≤ (ηψ″(η) − ψ′(η)/η2)≤M′, for all η ∈ I. Consider the
functions ψ1 and ψ2 defined by

ψ1(x) �
M′x3

2
− ψ(x),

ψ2(x) � ψ(x) −
m′x3

2
.

(13)

)en, the functions (ψ1′(x)/x) and (ψ1′(x)/x) are in-
creasing. Also, if ψj(0) � 0, j � 1, 2, then the functions
ψj, j � 1, 2, are superquadratic.

Lemma 4 (see [22]). Let I⊆(0,∞), ψ ∈ C2(I), h(x) �

xp2 , p2 > 1, and
m′ ≤ ((ηψ″(η) − (p2 − 1)ψ′(η))/p2η2p2− 1)≤M′ for all
η ∈ I. .en, the functions ψ1 and ψ2 defined by

ψ1(x) �
M′x2p2

2
− ψ(x),

ψ2(x) � ψ(x) −
m′x2p2

2
,

(14)

are convex with respect to h(x) � xp2 ; that is, ψj(x(1/p2)),
j � 1, 2, are convex.

Next, we define the Riemann–Liouville fractional inte-
gral and Caputo fractional derivative as follows.

Definition 3 (see [24]). Let − ∞< a< b<∞ and h ∈ L1[a, b].
)en, the left-sided and right-sided Riemann–Liouville
fractional integrals of order c> 0 are defined by

I
c
a+h(x) �

1
Γ(c)


x

a
(x − t)

c− 1
h(t)dt, x> a,

I
c

b− h(x) �
1
Γ(c)


b

x
(t − x)

c− 1
h(t)dt, x< b,

(15)

where Γ(.) is the gamma function.

Definition 4 (see [24]). Let c> 0 and c ∉ 1, 2, 3, . . .{ },
n � [c] + 1, and h ∈ ACn[a, b]. )en, the left-sided and
right-sided Caputo fractional derivatives of order c are
defined by

C
D

c

a+h(x) �
1
Γ(n − c)


x

a

h
n
(t)

(x − t)
c− n+1 dt, x> a,

C
D

c

b− h(x) �
(− 1)

n

Γ(n − c)


b

x

h
n
(t)

(t − x)
c− n+1 dt, x< b.

(16)

In [25], Andrić et al. presented the composition iden-
tities for the left-sided and right-sided Caputo fractional
derivatives; these are stated in the following two lemmas.

Lemma 5. Let μ> c≥ 0, l � [μ] + 1, and m � [c] + 1 for
c, μ ∉ N0; m � [c] and l � [μ] for c, μ ∈ N0. Let
h ∈ ACm[a, b] be such that hj(a) � 0 for
j � m, m + 1, . . . , l − 1. Let CD

μ
a+h, CD

c

a+h ∈ L1[a, b]. .en,
we have
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C
D

c

a+h(x) �
1
Γ(μ − c)


x

a
(x − t)

μ− c− 1C
D

c

a+h(t)dt, x ∈ [a, b].

(17)

Lemma 6. Let μ> c≥ 0, l � [μ] + 1, and m � [c] + 1 for
c, μ ∉ N0; m � [c] and l � [μ] for c, μ ∈ N0. Let
h ∈ ACm[a, b] be such that hj(b) � 0 for
j � m, m + 1, . . . , l − 1. Let CD

μ
b− h, CD

c

b− h ∈ L1[a, b]. .en,
we have

C
D

c

b− h(x) �
1
Γ(μ − c)


b

x
(t − x)

μ− c− 1C
D

c

b− h(t)dt, x ∈ [a, b].

(18)

In the upcoming section, we prove the mean value
theorems for the estimation of the nonnegative differences of
the inequalities given in )eorems 4–7. In Section 3, we
prove the fractional versions of the results of Section 2 for
Riemann–Liouville integrals and Caputo fractional
derivatives.

2. Main Results

First, we define the linear functional Φψj (w, u; K), j � 1, 2,
from nonnegative differences of Opial-type inequalities for
superquadratic functions given in )eorems 4 and 5 as
follows:

Φψ1 (w, u; K) � ψ K 
b

a
(|u(t)|dt)  − K

2
M 

b

a

ψ′(|w(x)|)|u(x)|

|w(x)|
dx,

Φψ2 (w, u; K) � 
b

a
ψ(K(b − a)|u(t)|)dt − (b − a)MK

2


b

a

ψ′(|w(x)|)|u(x)|

|w(x)|
dx.

(19)

Remark 1. Under the assumptions of )eorems 4 and 5, we
have Φψj (w, u; K)≥ 0 for j � 1, 2.

Theorem 8. With the same assumptions as given in.eorem
4, furthermore, let I⊆(0,∞) be a compact interval and
ψ ∈ C2(I). Also, let m′ ≤ (ψ′(x)/x)≤M′ where
infx∈I(ψ″(x)) � m′ and supx∈I(ψ″(x)) � M′. .en, there
exists η1 ∈ I such that the following result holds:

Φψ1 (w, u; K) �
η1ψ″ η1(  − ψ′ η1( 

3η21
Φx3

1 (w, u; K). (20)

Proof. By replacing ψ with ψ1 (defined in Lemma 3) in
)eorem 4, one can have the following inequality:


b

a

M′|w(x)|
2

− ψ′(|w(x)|) |u(x)|

|w(x)|
dx

≤
1

MK
2

M′
3

K 
b

a
|u(t)|dt 

3

− ψ K 
b

a
|u(t)|dt  ⎛⎝ ⎞⎠.

(21)

From inequality (21), after simplification, one can obtain

Φψ1 (w, u; K)≤
M′
3
Φx3

1 (w, u; K). (22)

Similarly, if we take ψ2 from Lemma 3 instead of ψ in
)eorem 4, then the following inequality holds:

Φψ1 (w, u; K)≥
m′
3
Φx3

1 (w, u; K). (23)

)e above two inequalities lead to the following
inequality:

m′ ≤
3 Φψ1(w, u; K)

Φx3

1 (w, u; K)
≤M′. (24)

)erefore, there exists η1 ∈ I such that the following
equation is obtained:

η1ψ″ η1(  − ψ′ η1( 

η21
�
3Φψ1(w, u; K)

Φx3

1 (w, u; K)
, (25)

which gives equation (20). □

Theorem 9. With the same assumptions on ψ1 and ψ2 as
given for ψ in .eorem 4, furthermore, if I⊆(0,∞) is a
compact interval and ψ1,ψ2 ∈ C2(I) where Φx3

1 (w, u; K)≠ 0,
then there exists η1 ∈ I such that the following result holds:

Φψ1
1 (w, u; K)

Φψ2
1 (w, u; K)

�
η1ψ1″ η1(  − ψ1′ η1( 

η1ψ2″ η1(  − ψ2′ η1( 
, (26)

where denominators should not be zero.

Proof. Let us define the function f by f � λ1ψ1 − λ2ψ2,
where λ1 and λ2 are given by

λ1 � ϕψ2
1 (w, u; K),

λ2 � ϕψ1
1 (w, u; K).

(27)

)en, f ∈ C2(I); by applying)eorem 8 for f, it follows
that there exists η1 such that we have

0 � λ1 η1ψ1″ η1(  − ψ1′ η1( (  − λ2 η1ψ2″ η1( ((

− ψ2′ η1( Φx3

1 (w, u; K).
(28)

From this, one can get the required equation. □
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Theorem 10. With the same assumptions as given in .e-
orem 5, furthermore, if I⊆(0,∞) is a compact interval and
ψ ∈ C2(I), then there exists η2 ∈ I such that the following
result holds:

Φψ2 (w, u; K) �
ψ″ η2( 

2
Φx2

2 (w, u; K). (29)

Proof. By replacing ψ with ψ1 from Lemma 2 in)eorem 5,
we get the following inequality:


b

a

M′|w(x)| − ψ′|w(x)|( |u(x)|

|w(x)|
dx≤

1
(b − a)MK

2

×
M′
2


b

a
(K(b − a)|u(t)|dt) 

2
⎛⎝ ⎞⎠ − 

b

a
ψ(K(b − a)|u(t)|)dt⎛⎝ ⎞⎠.

(30)

Similarly, adopting the method for functional
Φψ2 (w, u; K) as we did for Φψ1 (w, u; K) in the proof of
)eorem 8, one can see there exists η2 ∈ I such that equation
(29) holds. □

Theorem 11. With the same assumptions on ψ1 and ψ2 as
given for ψ in .eorem 5, furthermore if I⊆(0,∞) is a
compact interval and ψ1,ψ2 ∈ C2(I) where Φx2

2 (w, u; K)≠ 0,
then there exists η2 ∈ I such that we have

Φψ1
2 (w, u; K)

Φψ2
2 (w, u; K)

�
ψ1″ η2( 

ψ2″ η2( 
, (31)

where denominators should not be zero.

Proof. Let us define the function g by g � λ1ψ1 − λ2ψ2,
where λ1 and λ2 are given by

λ1 � Φψ1
2 (w, u; K),

λ2 � Φψ2
2 (w, u; K).

(32)

)en, g ∈ C2(I); by applying)eorem 10 for g, it follows
that there exists η2 such that we have

0 � λ1ψ1″ η2(  − λ2ψ2″ η2( ( Φx2

2 (w, u; K). (33)

From this, one can get the required equation.

Next, we define functional Πψj (w, u; K), j � 1, 2, from
nonnegative differences of Opial-type inequalities for
superquadratic functions given in )eorems 6 and 7 as
follows:

Πψ1 (w, u; K) � ψ K 
b

a
|u(t)|

p2dt 

1/p2( )
⎛⎝ ⎞⎠ −

K
2
M

p2


b

a

ψ′(|w(x)|)|u(x)|
p2

|w(x)|
dx,

Πψ2 (w, u; K) � 
b

a
ψ K(b − a)

1/p2( )|u(t)| dt −
K

2
M(b − a)

p2


b

a

ψ′(|w(x)|)|u(x)|
p2

|w(x)|
dx.

(34)

□
Remark 2. Under the assumptions of )eorems 6 and 7, we
have Πψj (w, u; K)≥ 0 for j � 1, 2.

Theorem 12. With the same assumptions of.eorem 6 on ψ,
furthermore, if I⊆(0,∞) is a compact interval and ψ ∈ C2(I),
then there exists η3 ∈ I such that we have

Πψ1 (w, u; K) �
η3ψ″ η3(  − ψ′ η3( 

3η23
Πx3

1 (w, u; K). (35)

Proof. By replacing ψ with ψ1 from Lemma 3 in)eorem 6,
we get the following inequality:
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b

a

M′|w(x)|
2

− ψ′(|w(x)|) |u(x)|
p2

|w(x)|
dx≤

p2

MK
2

M′
3

K 
b

a
|u(t)|

p2dt 

1/p2( )
⎛⎝ ⎞⎠

3

⎛⎜⎝

− ψ K 
b

a
|u(t)|

p2dt 

1/p2( )
⎛⎝ ⎞⎠⎞⎠.

(36)

From inequality (36), after simplification, one can obtain

Πψ1 (w, u; K)≤
M′
3
Πx3

1 (w, u; K). (37)

Similarly, if we apply ψ2 from Lemma 3 instead of ψ in
)eorem 6, then the following inequality holds:

Πψ1 (w, u; K)≥
m′
3
Πx3

1 (w, u; K). (38)

)e above two inequalities lead to the following
inequality:

m′ ≤
3Πψ1 (w, u; K)

Πx3

1 (w, u; K)
≤M′. (39)

)erefore, there exists η3 ∈ I such that the following
equation is obtained:

η3ψ″ η3(  − ψ′ η3( 

η23
�
3Πψ1 (w, u; K)

Πx3

1 (w, u; K)
, (40)

which gives the required equation. □

Theorem 13. With the same assumptions on ψ1 and ψ2 as
given for ψ in .eorem 6, furthermore, if I⊆(0,∞) is a
compact interval and ψ1,ψ2 ∈ C2(I) where Πx3

1 (w, u)≠ 0,
then there exists η3 ∈ I such that we have

Πψ1
1 (w, u; K)

Πψ2
1 (w, u; K)

�
η3ψ1″ η3(  − ψ1 η3( 

η3ψ2″ η3(  − ψ2 η3( 
, (41)

where denominators should not be zero.

Proof. Let us define the function h by h � ω1ψ1 − ω2ψ2,
where ω1 and ω2 are given by

ω1 � Πψ1
2 (w, u; K),

ω2 � Πψ2
2 (w, u; K).

(42)

)en, h ∈ C2(I); by applying)eorem 12 for h, it follows
that there exists η3 such that we have

0 � ω1
η3ψ1″ η3(  − ψ1 η3( 

3η23
− ω2

η3ψ2″ η3(  − ψ2 η3( 

3η23
Πx3

2 (w, u; K).

(43)

From this, one can get the required equation. □

Theorem 14. With the same assumptions of.eorem 7 on ψ,
furthermore, if I⊆(0,∞) is a compact interval and ψ ∈ C2(I),
then there exists η4 ∈ I such that the following result holds:

Πψ2 (w, u; K) �
η4ψ″ η4(  − p2 − 1( ψ η4( 

2p2η
2p2− 1
4

Πx2p2

2 (w, u; K).

(44)

Proof. By replacing ψ with ψ1 from Lemma 3 in)eorem 4,
we get the following inequality:


b

a

M′p2|w(x)|
2p2− 1

− ψ′|w(x)| |u(x)|
p2

|w(x)|
dx≤

p2

(b − a)MK
2

×
M′
2


b

a
K(b − a)

1/p2( )|u(t)|dt  

2p2

− 
b

a
ψ K(b − a)

1/p2( )|u(t)| dt⎛⎝ ⎞⎠.

(45)

Rest of the proof can be followed from the proof of
)eorem 12. □

Theorem 15. With the same assumptions on ψ1 and ψ2 as
given for ψ in .eorem 7, furthermore, if I⊆(0,∞) is a
compact interval and ψ1,ψ2 ∈ C2(I) where
Πx2p2

1 (w, u; K)≠ 0, then there exists η4 ∈ I such that we have

Πψ1
1 (w, u; K)

Πψ2
2 (w, u; K)

�
η4ψ1″ η4(  − p2 − 1( ψ1′ η4( 

η4ψ2″ η4(  − p2 − 1( ψ2′ η4( 
, (46)

where denominators should not be zero.

Proof. )e proof can be followed from the proof of )e-
orem 13. □
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3. Fractional Versions of Mean Value Theorems

In this section, we give applications of results proved in
Section 2 by choosing particular kernels. We get fractional
versions of mean value theorems by applying definitions of
fractional integral/derivative operators. First, we give results
for Riemann–Liouville fractional integrals.

Theorem 16. With same assumptions of .eorem 4 on ψ,
furthermore, let I⊆(0,∞) be a compact interval and
ψ ∈ C2(I). Also, let u ∈ L1[a, b] be a Riemann–Liouville
fractional integral of order c, where c≥ 1; then, there exists
η1 ∈ I such that the following result holds:

Φψ1 I
c
a+u, u;

(b − a)
c− 1

Γ(c)
  �

η1ψ″ η1(  − ψ′ η1( 

3η21
Φx3

1 I
c
a+u, u;

(b − a)
c− 1

Γ(c)
 . (47)

Proof. Let us define the kernel k(x, t) as follows:

k(x, t) �

(x − t)
c− 1

Γ(c)
, t ∈ [a, x],

0, t ∈ (x, b].

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(48)

Furthermore, we take w as follows:

w(x) � I
c
a+u(x) �

1
Γ(c)


x

a
(x − t)

c− 1
u(t)dt. (49)

It is clear that, for c≥ 1,
0≤ k(x, t)≤ ((x − a)c− 1/Γ(c))≤ ((b − a)c− 1/Γ(c)),
t ∈ [a, x], x ∈ [a, b]. By choosing K � ((b − a)c− 1/Γ(c)) and
applying )eorem 8 for the kernel given in (48), one can get
the required result. □

Theorem 17. With the same assumptions of .eorem 4 on
ψ1 and ψ2, furthermore, let I⊆(0,∞) be a compact interval
and ψ1,ψ2 ∈ C2(I). Also, let u ∈ L1[a, b] be a Rie-
mann–Liouville fractional integral of order c where c≥ 1;
then, there exists η1 such that we have

ϕψ1
1 I

c
a+u, u; (b − a)

c− 1/Γ(c)  

ϕψ2
1 I

c
a+u, u; (b − a)

c− 1/Γ(c)  
�
η1ψ1″ η1(  − ψ1′ η1( 

η1ψ2″ η1(  − ψ2′ η1( 
,

(50)

where denominators should not be zero.

Proof. It is easy to prove by applying )eorem 9 for the
kernel defined in (48) and using the function w given by
(49). □

Theorem 18. With the same assumptions of.eorem 5 on ψ,
furthermore, let I⊆(0,∞) be a compact interval and
ψ ∈ C2(I). Also, let u ∈ L1[a, b] be a Riemann–Liouville
fractional integral of order c where c≥ 1; then, there exists
η2 ∈ I such that the following result holds:

Φψ2 I
c
a+u, u;

(b − a)
c− 1

Γ(c)
  �

ψ″ η2( 

2
Φx2

2 I
c
a+u, u;

(b − a)
c− 1

Γ(c)
 .

(51)

Proof. )e proof is similar to the proof of )eorem 16. □

Theorem 19. With the same assumptions of .eorem 5 on
ψ1 and ψ2, furthermore, let I⊆(0,∞) be a compact interval
and ψ1,ψ2 ∈ C2(I). Also, let u ∈ L1[a, b] be a Rie-
mann–Liouville fractional integral of order c where c≥ 1;
then, there exists η2 such that we have

Φψ1
2 I

c
a+u, u; (b − a)

c− 1/Γ(c)  

Φψ2
2 I

c
a+u, u; (b − a)

c− 1/Γ(c)  
�
ψ1″ η2( 

ψ2″ η2( 
, (52)

where denominators should not be zero.

Proof. It is easy to prove by applying )eorem 11 for the
kernel defined in (48) and using the function w given by
(49). □

Theorem 20. With the same assumptions of.eorem 6 on ψ,
furthermore, let I⊆(0,∞) be a compact interval and
ψ ∈ C2(I). Let u ∈ L1[a, b] be a Riemann–Liouville fractional
integral of order c where c≥ (1/p2); then, there exists η3 ∈ I

such that the following result holds:

Πψ1 I
c
a+u, u;

(b − a)
c− 1/p2( )

Γ(c) p1(c − 1) + 1( 
1/p1( )

⎛⎝ ⎞⎠ �
η3ψ″ η1(  − ψ′ η3( 

3η23

× Πx3

1 I
c
a+u, u;

(b − a)
c− 1/p2( )

Γ(c) p1(c − 1) + 1( 
1/p1( )

⎛⎝ ⎞⎠.

(53)

Proof. Let us consider the kernel k(x, t) as defined in (48)
and w given in (49). If we set Q(x) � (

x

a
(k(x, t))p1dt)(1/p1),

then Q(x) � ((x − a)c− (1/p2)/Γ(c)(p1(c − 1) + 1)(1/p1)).
Furthermore, Q is increasing for c> (1/p2), on [a, b];
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therefore, we have
Q(x)≤ ((b − a)c− (1/p2)/Γ(c)(p1(c − 1) + 1)(1/p1)) � K. By
applying )eorem 12, we get the required result. □

Theorem 21. With the same assumptions of .eorem 6 on
ψ1 and ψ2, furthermore, let I⊆(0,∞) be a compact interval

and ψ1,ψ2 ∈ C2(I). Furthermore, let u ∈ L1[a, b] be a Rie-
mann–Liouville fractional integral of order c. If c> (1/p2)

and Πx3

2 (I
c
a+u, u)≠ 0, then there exists η3 ∈ I such that the

following equality holds:

Πψ1
1 I

c
a+u, u; (b − a)

c− 1/p2( )/Γ(c) p1(c − 1) + 1( 
1/p1( )  

Πψ2
1 I

c
a+u, u; (b − a)

c− 1/p2( )/Γ(c) p1(c − 1) + 1( 
1/p1( )  

�
η3ψ1″ η3(  − ψ1 η3( 

η3ψ2″ η3(  − ψ2 η3( 
, (54)

where denominators should not be zero.

Proof. It is easy to prove by applying )eorem 13 for the
kernel defined in (48) and using the function w given by
(49). □

Theorem 22. With the same assumptions of.eorem 7 on ψ,
furthermore, let I⊆(0,∞) be a compact interval and
ψ ∈ C2(I). Let u ∈ L1[a, b] be a Riemann–Liouville fractional
integral of order c. If c> (1/p2), then there exists η4 ∈ I such
that the following result holds:

Πψ2 I
c
a+u, u;

(b − a)
c− 1/p2( )

Γ(c) p1(c − 1) + 1( 
1/p1( )

⎛⎝ ⎞⎠ �
η4ψ″ η4(  − p2 − 1( ψ′ η4( 

2p2η
2p2− 1
4

× Πx2p2

2 I
c
a+u, u;

(b − a)
c− 1/p2( )

Γ(c) p1(c − 1) + 1( 
1/p1( )

⎛⎝ ⎞⎠.

(55)

Proof. )e proof is similar to the proof of )eorem 20. □

Theorem 23. With the same assumptions of .eorem 7 on
ψ1 and ψ2, furthermore, let I⊆(0,∞) be a compact interval

and ψ1,ψ2 ∈ C2(I). Let u ∈ L1[a, b] be a Riemann–Liouville
fractional integral of order c. If c> (1/p2) and
Πx2p2

2 (I
c
a+u, u)≠ 0, then there exists η4 ∈ I such that the

following equality holds:

Πψ1
1 I

c
a+u, u; (b − a)

c− 1/p2( )/Γ(c) p1(c − 1) + 1( 
1/p1( )  

Πψ2
1 I

c
a+u, u; (b − a)

c− 1/p2( )/Γ(c) p1(c − 1) + 1( 
1/p1( )  

�
η4ψ1″ η4(  − p2 − 1( ψ1 η4( 

η4ψ2″ η4(  − p2 − 1( ψ2 η4( 
, (56)

where denominators should not be zero.

Proof. It is easy to prove by applying )eorem 15 for the
kernel defined in (48) and using the function w given by
(49).

Next, we give the results for Caputo fractional derivatives
using their composition identities. □

Theorem 24. With the same assumptions of .eorem 4 on
ψ, furthermore, let I⊆(0,∞) be a compact interval and
Ψ ∈ C2(I). Also, let l � [μ] + 1 and m � [c] + 1, for
c, μ ∉ N0 and u ∈ ACm[a, b] such that uj(a) � 0 for
j � m, m + 1, . . . , l − 1. Let CD

μ
a+u, CD

c

a+u ∈ L1[a, b]. .en,
for c≤ μ − 1, the following result holds:

Φψ1
C

D
c

a+u,
C

D
μ
a+u;

(b − a)
μ− c− 1

Γ(μ − c)
  �

η1ψ1″ η1(  − ψ1′ η1( 

2

×Φx3

1
C

D
c

a+u,
C

D
μ
a+u;

(b − a)
μ− c− 1

Γ(μ − c)
 .

(57)

Proof. Let us consider the kernel k(x, t) as follows:

k(x, t) �

(x − t)
μ− c− 1

Γ(μ − c)
, t ∈ [a, x],

0, t ∈ (x, b].

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(58)

Furthermore, we take w as follows:
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w(x) �
C

D
c

a+u(x) �
1
Γ(μ − c)


x

a
(x − t)

μ− c− 1C
D

μ
a+u(t)dt.

(59)

It is clear that, for c≤ μ − 1, 0≤ k(x, t)≤ ((x − a)
μ− c− 1/Γ(μ − c))≤ ((b − a)μ− c− 1/Γ(μ − c)), t ∈ [a, x],
x ∈ [a, b]. By choosing K � ((b − a)μ− c− 1/Γ(μ − c)) and
applying )eorem 8 for the kernel given in (59), one can get
the required result. □

Theorem 25. With the same assumptions of .eorem 4 on
ψ1 and ψ2, furthermore, let I⊆(0,∞) be a compact interval
and ψ1,ψ2 ∈ C2(I). Let l � [μ] + 1 and m � [c] + 1, for
c, μ ∉ N0. Also, let CD

μ
a+u, CD

μ
a+u ∈ L1[a, b], c≤ μ − 1, and

ϕx3

1 (D
c
a+u, D

μ
a+u)≠ 0. .en, there exists η1 ∈ I such that we

have

Φψ1
1

C
D

c

a+u,
C

D
μ
a+u; (b − a)

μ− c− 1/Γ(μ − c)  

Φψ2
1

C
D

c

a+u,
C

D
μ
a+u; (b − a)

μ− c− 1/Γ(μ − c)  
�
η1ψ1″ η1(  − ψ1′ η1( 

η1ψ2″ η2(  − ψ2′ η1( 
, (60)

where denominators should not be zero.

Proof. It is easy to prove by applying )eorem 9 for the
kernel defined in (58) and using function w given by
(59). □

Theorem 26. With the same assumptions of.eorem 5 on ψ,
furthermore, let I⊆(0,∞) be a compact interval and
ψ ∈ C2(I). Also, let l � [μ] + 1 and m � [c] + 1, for
c, μ ∉ N0, and u ∈ ACm[a, b] such that uj(a) � 0 for
j � m, m + 1, . . . , l − 1. Let CD

μ
a+u, CD

c

a+u ∈ L1[a, b]. .en,
the following result holds for c≤ μ − 1:

Φψ2
C

D
c

a+u,
C

D
μ
a+u;

(b − a)
μ− c− 1

Γ(μ − c)
  �

ψ″ η2( 

2
Φx2

2
C

D
c

a+u,
C

D
μ
a+u .

(61)

Proof. )e proof is similar to the proof of )eorem 24. □

Theorem 27. With the same assumptions of .eorem 5 on
ψ1 and ψ2, furthermore, let I⊆(0,∞) be a compact interval

and ψ1,ψ2 ∈ C2(I). Let l � [μ] + 1 and m � [c] + 1, for
c, μ ∉ N0. Also, let CD

μ
a+u, CD

μ
a+u ∈ L1[a, b], c≤ μ − 1, and

ϕx2

2 (D
c
a+u, D

μ
a+u)≠ 0. .en, there exists η2 ∈ I such that we

have

Φψ1
2

C
D

c

a+u,
C

D
μ
a+u; (b − a)

μ− c− 1/Γ(μ − c)  

Φψ2
2

C
D

c

a+u,
C

D
μ
a+u; (b − a)

μ− c− 1/Γ(μ − c)  
�
ψ1″ η2( 

ψ2″ η2( 
,

(62)

where denominators should not be zero.

Proof. It is easy to prove by applying )eorem 11 for the
kernel defined in (58) and using function w given by
(59). □

Theorem 28. With the same assumptions of.eorem 6 on ψ,
furthermore, let I⊆(0,∞) be a compact interval and
ψ ∈ C2(I). Also, let l � [μ] + 1 and m � [c] + 1, for
c, μ ∉ N0, and u ∈ ACm[a, b] such that uj(a) � 0 for
j � m, m + 1, . . . , l − 1. Let CD

μ
a+u, CD

c

a+u ∈ L1[a, b]. .en,
for c< μ − (1/p2), the following result holds:

Πψ1
C

D
c

a+u,
C

D
μ
a+u;

(b − a)
μ− c− 1/p2( )

Γ(μ − c) p1(c − 1) + 1( 
1/p1( )

⎛⎝ ⎞⎠ �
η3ψ″ η3(  − ψ′ η3( 

3η23

× Πx3

1
C

D
c

a+u,
C

D
μ
a+u;

(b − a)
μ− c− 1/p2( )

Γ(μ − c) p1(c − 1) + 1( 
1/p1( )

⎛⎝ ⎞⎠.

(63)

Proof. Let us consider the kernel k(x, t) as defined in (58)
and w given in (59). If we set Q(x) � (

x

a
(k(x, t))p1dt)(1/p1),

then Q(x) � ((x − a)μ− c− (1/p2)/Γ(μ − c)(p1
(μ − c − 1) + 1)(1/p1)). Furthermore, Q is increasing for
c< μ − (1/p2), on [a, b]; therefore, we have
Q(x)≤ ((b − a)μ− c− (1/p2)/Γ(μ − c)

(p1(μ − c − 1) + 1)(1/p1)) � K. By applying )eorem 12, we
get the required result. □

Theorem 29. With the same assumptions of .eorem 6 on
ψ1 and ψ2, furthermore, let I⊆(0,∞) be a compact interval
and ψ1,ψ2 ∈ C2(I). Let l � [μ] + 1 and m � [c] + 1, for
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c, μ ∉ N0. Also, let CD
μ
a+u, CD

μ
a+u ∈ L1[a, b], c≤ μ − 1, and

Πx3

2 (D
c
a+u, D

μ
a+u)≠ 0. .en, there exists η3 ∈ I such that, for

c< μ − (1/p2), we have

Πψ1
1

C
D

c

a+u,
C

D
μ
a+u; (b − a)

μ− c− 1/p2( )/Γ(μ − c) p1(c − 1) + 1( 
1/p1( )  

Πψ2
1

C
D

c

a+u,
C

D
μ
a+u; (b − a)

μ− c− 1/p2( )/Γ(μ − c) p1(c − 1) + 1( 
1/p1( )  

�
η3ψ1″ η3(  − ψ1′ η3( 

η3ψ2″ η3(  − ψ2′ η3( 
, (64)

where denominators should not be zero.

Proof. It is easy to prove by applying )eorem 13 for the
kernel defined in (58) and using function w given by
(59). □

Theorem 30. With the same assumptions of.eorem 7 on ψ,
furthermore, let I⊆(0,∞) be a compact interval and
ψ ∈ C2(I). Also, let l � [μ] + 1 and m � [c] + 1, for
c, μ ∉ N0, and u ∈ ACm[a, b] such that uj(a) � 0 for
j � m, m + 1, . . . , l − 1. Let CD

μ
a+u, CD

c

a+u ∈ L1[a, b]. .en,
for c< μ − (1/p2), the following result holds:

Πψ2
C

D
c

a+u,
C

D
μ
a+u;

(b − a)
μ− c− 1/p2( )

Γ(μ − c) p1(c − 1) + 1( 
1/p1( )

⎛⎝ ⎞⎠ �
η4ψ″ η4(  − p2 − 1( ψ1 η4( 

2p2η
2p2− 1
4

×Πx2p2

2
C

D
c

a+u,
C

D
μ
a+u;

(b − a)
μ− c− 1/p2( )

Γ(μ − c) p1(c − 1) + 1( 
1/p1( )

⎛⎝ ⎞⎠.

(65)

Proof. )e proof is similar to the proof of )eorem 28. □

Theorem 31. With the same assumptions of .eorem 7 on
ψ1 and ψ2, furthermore, let I⊆(0,∞) be a compact interval
and ψ1,ψ2 ∈ C2(I). Let l � [μ] + 1 and m � [c] + 1, for

c, μ ∉ N0. Also, let CD
μ
a+u ∈ Lq[a, b] and CD

μ
a+ ∈ L1[a, b],

c≤ μ − 1, and Πx2p2
j (D

c
a+u, D

μ
a+u)≠ 0. .en, there exists

η4 ∈ I such that, for c< μ − (1/p2), we have

Πψ1
2

C
D

c

a+u,
C

D
μ
a+u; (b − a)

μ− c− 1/p2( )/Γ(μ − c) p1(c − 1) + 1( 
1/p1( )  

Πψ1
2

C
D

c

a+u,
C

D
μ
a+u; (b − a)

μ− c− 1/p2( )/Γ(μ − c) p1(c − 1) + 1( 
1/p1( )  

�
η4ψ1″ η4(  − p2 − 1( ψ1′ η4( 

η4ψ2″ η4(  − p2 − 1( ψ2′ η4( 
, (66)

where denominators should not be zero.

Proof. It is easy to prove by applying )eorem 15 for the
kernel defined in (58) and using function w given by
(59). □
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inequalities of godunova and levin,” Bulletin of the Polish
Academy of Sciences Mathematics, vol. 36, pp. 645–648, 1988.
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