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In the compressed sensing (CS) reconstruction algorithms, the problems of overestimation and large redundancy of candidate
atoms will affect the reconstruction accuracy and probability of the algorithm when using Sparsity Adaptive Matching Pursuit
(SAMP) algorithm. In this paper, we propose an improved SAMP algorithm based on a double threshold, candidate set reduction,
and adaptive backtrackingmethods.*e algorithm uses the double threshold variable step-size method to improve the accuracy of
sparsity judgment and reduces the undetermined atomic candidate set in the small step stage to enhance the stability. At the same
time, the sparsity estimation accuracy can be improved by combining with the backtracking method. We use a Gaussian sparse
signal and a measured shock wave signal of the 15psi range sensor to verify the algorithm performance. *e experimental results
show that, compared with other iterative greedy algorithms, the overall stability of the DBCSAMP algorithm is the strongest.
Compared with the SAMP algorithm, the estimated sparsity of the DBCSAMP algorithm is more accurate, and the reconstruction
accuracy and operational efficiency of the DBCSAMP algorithm are greatly improved.

1. Introduction

In recent years, Candes, Donoho, and Tao have proposed a
new theory of signal acquisition and processing-compressed
sensing (CS) [1, 2]. *is theory states that as long as a signal is
sparse or sparse in a specific transform domain, a projection
matrix that is incoherent with the transform basis can be used
to project the high-dimensional sparse signal onto a low-
dimensional space. And the original signal can be then
reconstructed with high probability from these few projec-
tions containing enough reconstruction information by
solving an optimization problem [3]. *e CS theory only uses
a lower sampling rate to randomly sample and compress
signals, breaking through the traditional sampling theorem. It
has great advantages in processing massive complex signals
and is widely applied to various engineering practices. Shock
wave signals are transient signals, which have the charac-
teristics of short duration in the time domain and obvious
beginning and end nodes [4]. Moreover, relatively centralized
information is another advantage, that is to say, the

information density is low in the whole acquisition process, so
we can consider the existing of a transform domain which can
be used for sparse representation of shock wave signals.
*erefore, in this paper, we apply a shockwave signal to detect
the performance of reconstruction algorithms in CS theory.

*e research contents of CS theory can be divided into
signal sparse representation, sampling matrix establishment,
and reconstruction algorithm design. We focus on recon-
struction algorithms in this paper. At present, the commonly
used reconstruction algorithms mainly include convex op-
timization algorithms, combinatorial optimization algo-
rithms, and iterative greedy algorithms [5]. Although convex
optimization algorithms have good reconstruction effects,
they are difficult to process large scale data as a consequence
of its high time complexity. Combinatorial optimization
algorithms have particularly high operational efficiency, but
they have strict requirements on sampling structures and
poor practicability. Only iterative greedy algorithms have
small calculation amount, great reconstruction effects, easy
implementation, and the widest application range.
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Sparsity Adaptive Matching Pursuit (SAMP) algorithm
is one of the iterative greedy algorithms. *is algorithm
solves the sparsity in signal reconstruction [6], breaking
through the defect of using sparsity as prior information in
traditional iterative greedy algorithms. However, SAMP
algorithm has a fixed step-size, which easily affects the al-
gorithm performance in the process of SAMP algorithm
approaching the true sparsity by superimposing the step-
size. *e sparsity accuracy is higher if the step-size is too
small, but the running time will increase accordingly. *e
operational efficiency can be improved if the step-size is too
large, but the overestimation that reduces the reconstruction
accuracy is easy to occur. Moreover, the large redundancy of
the atomic candidate set in the later stage of the algorithm
operational will affect the reconstruction probability.

In the improvement of SAMP algorithm, the most
commonmethod is the variable step-size method, which can
make the step-size change more flexible. *is method has
been used in [7, 8]. In [7], the selection column of the inner
product of atoms is expanded to 2 times by the combination
of Compressive Sampling Matching Pursuit (CoSaMP) al-
gorithm and SAMP algorithm. Although the atomic
matching rate is improved, the sparsity is limited reducing
the practicability of the algorithm. *e improved SAMP
algorithm in [8] integrates the regularization thought, which
makes the atoms clipped twice, but also increases the
running time of the algorithm. *e Dice coefficient
matching based SAMP (DSAMP) algorithm in [9] uses Dice
coefficient to improve the atomic correlation formula and
enhance the accuracy of the selected atoms. *e method
makes faster convergence of the algorithm, but the overall
efficiency of the algorithm is not obvious. In addition, [10]
refers to the Adaptive Iterative Forward-Backward (AFB)
greedy algorithm proposed by the SAMP algorithm, which
can select and remove atomic indexes in the candidate set. In
order to accurately estimate the sparsity, the algorithm in
[11] adopts a method of preestimating the sparsity, which
can effectively reduce the number of iterations of the al-
gorithm, but its effect is related to the signal type and cannot
be widely used.

In this paper, we propose an improved SAMP algorithm
to enhance the stability and balance the accuracy of sparsity
estimation and the efficiency.

2. CS Theory and Reconstruction Algorithms

2.1. CS'eory. *e core idea of compressed sensing theory
is to project the sparse signal and reduce the redundant
information, realizing the high probability reconstruction of
original signal with fewer data.

*e necessary condition for the application of com-
pressed sensing theory is that the signal is sparse. If a signal x
is sparse, it can be projected by the following linear
transformation:

y � Φx, (1)

where V ∈RM×N denotes the random projection matrix that
can also be called the sampling matrix. And y is the M-

dimensional measurements with M<<N data points. In
other words, the length of the measurement signal is far less
than that of the measured signal obtained.

It is necessary to make a sparse representation of x if x is
a nonsparse signal. LetΨ ∈ RM×N be the orthonormal basis,
and θ ∈RN× 1 is the sparse signal with the sparsityK, then the
sparse representation process of signal x is as follows:

x � Ψθ. (2)

Combining (1) and (2) to obtain the nonsparse signal
projection process,

y � Aθ, (3)

where A� VΨ is the sensing matrix.
When y is received, if A satisfies the Restricted Isometry

Property (RIP), as long as the number of measurements
satisfies M � O(K log(N/K)), we can accurately recon-
struct the original sparse signal. *e reconstruction model is
expressed as

θ � argmin ‖θ‖0 s.t.y � Aθ, (4)

where θ is the sparse signal obtained by reconstruction, and
║║0 represents the ℓ0 − norm, which is used to measure the
nonconvex optimization value of signal sparsity. ℓ0 − norm
has high computational complexity and a large amount of
numerical calculation, so it is difficult to achieve accurate
data reconstruction. Generally, the ℓ0 − norm minimization
problem is converted into a simpler ℓ1 − normminimization
problem for an equivalent solution. θ is defined as

θ � argmin ‖θ‖1 s.t.y � Aθ. (5)

Except (5), there are other methods to achieve signal
reconstruction by relaxing the ℓ0 − norm to the ℓp − norm
(p≤ 1) or based on the Bayesian framework.

2.2. Reconstruction Algorithms. Reconstruction algorithm is
one of the key technologies of compressed sensing. It solves
the problem of how to use compressed sampling data to
recover the original signal. *e higher the accuracy of the
reconstruction algorithm, the closer the reconstructed signal
to the original. *e solution of (4) belongs to the NP-hard
problem, which can be solved by exhaustively enumerating
the combinations of nonzero values in CK

L . *erefore, a
series of methods for solving suboptimal solutions have been
proposed, and the most widely used is iterative greedy
algorithm.

Iterative greedy algorithms select one or several atoms
(column vectors) from the sampling matrix in each iteration
to gradually match y or the residual of y until achieving the
iteration stop condition. *e earliest greedy iterative algo-
rithms are Matching Pursuit (MP) algorithm and Orthog-
onal Matching Pursuit (OMP) algorithm. *e solution idea
is to update the candidate set by estimating one by one in
each iteration. But the algorithms are susceptible to noise
and atomic correlation [12], resulting in the low recon-
struction efficiency. On this basis, many improved algo-
rithms have appeared: Regularized OMP (ROMP) algorithm
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selects atoms carrying larger amounts of reconstruction
information through a regularization process; CoSaMP al-
gorithm selects 2K atomic indexes to update the candidate
set in each iteration and then discards redundant atomic
indexes by pruning; Subspace Pursuit (SP) algorithm is
similar to CoSaMP algorithm, but each iteration updates the
candidate set with K atomic indexes. Although these algo-
rithms improve the reconstruction accuracy, efficiency, and
robustness to a certain range, they all require the sparsity K
as a prior for exact recovery. However, the piece of infor-
mation cannot be obtained in advance in practical CS [13].
*erefore, when the sparsity is unknown, it is easy to cause
overestimation or underestimation, which will affect the
accuracy of signal reconstruction and the operational effi-
ciency of algorithms. SAMP algorithm can realize signal
reconstruction when solving the signal sparsity and over-
come the defect of the aforementioned algorithms.

3. Sparsity Adaptive Matching Pursuit
Algorithm and Its Improved Algorithm

3.1. SAMP Algorithm. SAMP algorithm combines the for-
ward tracking of OMP algorithm and the backward tracking
of SP algorithm. During the iteration process, the atomic
candidate set is expanded with fixed step-size, and at the
same time, bad atomic indexes are removed and new atomic
indexes are added until the signal residual energy is reduced
to 0 or a certain threshold [14]. SAMP algorithm can esti-
mate sparsity and complete signal reconstruction when
sparsity is unknown, and the stability of the algorithm is
better than that of other algorithms.

Suppose a signal compressed sensing process: y�Aθ,
where y is the M-dimensional measurement signal, A is the
M×N-dimensional sensing matrix, and θ is the N-dimen-
sional sparse signal of the original signal. *e main steps of
the algorithm are represented as Algorithm 1 in Table 1.

Table 1. *e main steps of the SAMP algorithm are as
follows.

*e computational complexity of the SAMP algorithm is
mainly reflected in the solution of the least-squares problem
in the loop body, and the formula (AT

Ct
ACt

)−1AT
Ct
is analyzed

step by step [15], where ACt
, ∈RM× S.

(1) *e computational complexity of AT
Ct
ACt

is O (SM2).
(2) *e computational complexity of (AT

Ct
ACt

)−1 is O
(S3).

(3) *e computational complexity of (AT
Ct
ACt

)−1AT
Ct
isO

(MS2).
(4) (AT

Ct
ACt

)−1AT
Ct

is executed at most M times in the
loop body, and the computational complexity is O
(M2S2).

(5) In summary, the computational complexity of the
SAMP algorithm is O (M2S2).

3.2. Improved Algorithm. Although SAMP can achieve re-
construction under the condition of unknown sparsity, the
step-size for determining the update of the atomic candidate
set in the algorithm is fixed, and there is a situation of

overestimation or low operational efficiency. Besides, there
are too many redundant atomic indexes in the candidate set
at the later stage of the algorithm, which is not conducive to
algorithm reconstruction. To solve the above problems, we
propose an improved algorithm. We adjust the step-size by
setting double threshold parameters to improve the accuracy
of sparsity estimation and filter the candidate set in the small
step-size stage to improve the reconstruction probability. At
the same time, we reduce the number of atomic indexes in
the candidate set through the backtracking of the overall
state of the algorithm, which improves the estimation ac-
curacy of sparsity. In order to conveniently express the
improved algorithm in this paper, combined with the im-
proved methods, it is named DCBSAMP (D-Double
*reshold; C-Candidate set reduction; B-Backtracking) al-
gorithm.*is abbreviation is used to represent the improved
algorithm in the following paper.

3.2.1. Double 'reshold Method. Reference [16] points out
that the double threshold method proposed according to the
variation of residual energy can adaptively solve the sparsity
K, which can improve the reconstruction speed whereas
ensuring high reconstruction accuracy. Its basic idea is to
approach K quickly with large steps and gradually approach
K with small steps [11]. In the algorithm, a double threshold
judgment condition for residual energy is designed. One
large threshold*1 is set in the judgment condition 1.When
the residual energy is close to *1, it means that the algo-
rithm quickly approaches K with large steps, which can
reduce the reconstruction time. *e other threshold *2
(*2<<*1) is set in the judgment condition 2. When the
residual energy is close to *2, it means that the algorithm
gradually approaches K through small steps to improve the
reconstruction accuracy. *e algorithm adaptively changes
the step-size S according to the residual energy of the signal,
thereby adjusting the value of the candidate set length L,
reducing overestimation, and improving the efficiency of the
algorithm. In this paper, we select parabolic function y�

��
x

√

and logarithmic function y� ln (x) as the step change model
[17], and the specific step update formula is

S � round
��������

S
2
0 + Stage



 , rt
����

����2>Th1,

S � round a ln S0 + Stage( ( ,Th2≤ rt
����

����2≤Th1,

⎧⎪⎨

⎪⎩
(6)

where S0 �M/
��
N

√
, Stage is the number of step update times,

round () means rounding, ║rt║2 is the residual energy, and a
is a constant.

3.2.2. Candidate Set Reduction. *e SAMP algorithm does
not perform secondary screening of atomic indexes when
forming the total candidate set C, and a large number of
redundant atomic indexes will enter each iteration [18]. If
the number of atomic indexes in C is greater than the
number of measurements M, the algorithm will end the
iterative process before the signal fails to meet the conditions
for successful reconstruction. And as L increases in the later
stage, the number of redundant atomic indexes will also

Mathematical Problems in Engineering 3



increase. According to the method of introducing fuzzy
threshold in the preselection stage of a candidate set in [19],
under the condition that the algorithm can be iterated
normally, if the number of redundant atomic indexes in C in
the later stage can be effectively reduced, the stability of the
algorithm can be enhanced. What is more, since the effective
atoms carrying more reconstruction information are more
dominant in matching with the residual, the atomic indexes
will appear in the upper part of the pending candidate set J.
*erefore, in this paper, after the algorithm enters the small
step stage, the size L of J is appropriately reduced, and we
have

L1 � (δ − ξ × flag2)L,Th2< rt
����

����2<Th1. (7)

L1 is the size of the reduced J, the parameter δ∈(0.5, 0.9),
the parameter ξ << δ, and the flag bit flag2 is the number of
times the algorithm enters in the small step stage. At this
time, there will be no failure of algorithm reconstruction due
to an insufficient number of basic atomic indexes in C.
Furthermore, the expansion speed of C will slow down, and
the algorithmwill get more iterative opportunities to find the
final set of atoms and improve the reconstruction
probability.

3.2.3. Algorithm Backtracking. Although the double
threshold variable step-size method can improve the esti-
mation accuracy of sparsity, the algorithm still has short-
comings: it is impossible to effectively compare the estimated
sparsity of the algorithm with the true sparsity when the
signal sparsity K is unknown. If the algorithm is updated to
the last step when S is too large, it is still prone to over-
estimation [20]. Based on this, we propose a method that can
backtrack the overall operational state of the algorithm to
determine whether the signal sparsity is overestimated and
to further approximate the true sparsity. Save but not output
the results when reaching the normal iteration stop con-
dition for the first time. *e overall algorithm is traced back
to the previous iteration state according to the stored pa-
rameters. *at is, Ft � Ft - 1, L� L - S, rt - 1 � rt - 2, S is reduced
to S1, and after using the update method of S1, let L� L+ S1.
And then it iterates normally until reaching the iteration
stop condition for the second time.

Compare the sparsity of the two outputs and take the
smaller one and its corresponding reconstructed signal
output. *e estimated sparsity obtained is closest to the true
sparsity. Use flag bit flag1 to determine the number of times
that the algorithm normally reaches the iteration stop
condition: when flag1� 0, the algorithm reaches the iteration
stop condition for the first time; when flag1� 1, the algo-
rithm reaches the iteration stop condition for the second
time.

3.2.4. DCBSAMP Algorithm Steps. *e main steps of the
DCBSAMP algorithm are represented as Algorithm 2 in
Table 2 and the algorithm flow chart is shown in Figure 1.

Table 2. *e main steps of the DCBSAMP algorithm.
*e adaptive change of the algorithm step length and the

reduction of the redundancy of the candidate set can be
realized through the above steps. As a result, the algorithm
performance can be effectively improved. And the com-
putational complexity of the DCBSAMP algorithm is mainly
reflected in the solution of the least-squares problem in the
loop body. When the worst-case execution times of the loop
body isM, the computational complexity is O (M2S2), which
is equal to the SAMP algorithm.

4. Experimental Results and Discussion

To verify the performance of the DCBSAMP algorithm, we
use a Gaussian sparse signal and a shock wave signal to
conduct experiments. And we select SAMP algorithm, OMP
algorithm, DSAMP algorithm in [9], AFB algorithm in [10],
and SP algorithm as control groups.

4.1. AGaussian Sparse Signal to AlgorithmPerformance Index
Test. Gaussian sparse signals are random compared with
shock wave signals. *ey have controllable sparsity and the
nonzero amplitude of the signals obeys the Gaussian dis-
tribution. *ey are commonly used experimental signals
when testing the stability of reconstruction algorithms.
Suppose the length of the all-zero signal x is N, and any K
(K<<N) element index forms the matrix H, then the
Gaussian sparse signal is

Input: sensing matrix A, the measurement signal y, step-size S.
Initialize: t� 0, r0 � y, Λ0 � ∅, L� S.
Repeat

(1) Jt �max {λj � |〈rt−1, aj〉|,L}. Seek the index of the first L most matching atoms, where J is the pending candidate set of atoms.
(2) Ct �Λt-1∪Jt. Construct the total candidate set of atoms.
(3) θt � (AT

Ct
ACt

)− 1AT
Ct
y. Solve the least-squares problem. And according to Ft �max {|θtj|, L}, find the index of the first L best atoms

from Ct, where F is the atom construction set.
(4) rt � y − AFtθFt. Calculate the residual.
(5) If ║rt║2< 1e− 6, the algorithm iteration stop condition is satisfied, output θ � AT

Ft × y, K � L; otherwise, go to 6.
(6) If ║rt║2≥║rt-1║2, Stage� Stage+ 1, L� Stage× S, go to 1; otherwise, Λt � Ft, rt − 1 � rt, t� t+ 1, go to 1.
Until iteration stop condition is true.
Output: estimated sparse signal θ; estimated signal sparsity K.

ALGORITHM 1: *e SAMP algorithm.
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xH � ρ
K

i�1

1
���
2π

√ exp −
x2Hi

2
⎛⎝ ⎞⎠. (8)

Among them, ρ represents any constant.
*e purpose of compressed sensing is to use the smallest

possible number of measurements M to realize the recon-
struction of the N-dimensional original signal. To compare
the change results of the reconstruction probability and
reconstruction error of each algorithm under the condition
of the different number of measurements M, we design
experiment 1.

Experiment 1: A Gaussian sparse signal is of length
N� 256 and the sparsity is fixed as K� 20. *e sampling
matrix is the Bernoulli random matrix. *e different
numbers of measurements are chosen from M� 50 to
M� 115 and for each M, 1000 simulations are conducted to
calculate the probabilities of exact reconstruction for
DCBSAMP, SAMP (S� 16) (S� 8), OMP, DSAMP, AFB,
and SP algorithms. When the residual energy of algorithms
is less than 1e− 6, the reconstruction is regarded as suc-
cessful. Observe reconstruction probability and error.

As can be seen from Figure 2, the reconstruction
probability of the DCBSAMP algorithm is always optimal
from M� 50 to M� 115, and the stability is improved by
11.18% compared with the optimal small step SAMP al-
gorithm. When M< 80, the reconstruction probability of
each algorithm does not reach 100%, but the reconstruction
probability of the DCBSAMP algorithm is the best. When
M� 80, the DCBSAMP algorithm can already achieve 100%
reconstruction probability. Among other algorithms, the SP
algorithm achieves 100% reconstruction probability when
M� 85, and the AFB algorithm achieves 100% reconstruc-
tion probability when M� 95. *e OMP algorithm still
cannot achieve 100% reconstruction probability when
M� 110.

As shown in Figure 2, when M≤ 70, the reconstruction
probability of all algorithms is less than 90%, which cannot

be used in actual projects. Combined with Figure 3 focusing
on the case of M> 70, the DCBSAMP algorithm is the al-
gorithm with the smallest reconstruction error from M� 55
to M� 115. Especially after M≥ 80, the reconstruction
probability of the algorithm reaches 100%. It can be seen that
the DCBSAMP algorithm has the minimum reconstruction
error whereas ensuring the reconstruction probability. *e
average error is about 10.85% lower than that of the small
step SAMP algorithm, which effectively improves the re-
construction probability and accuracy of the compressed
sensing system.

As shown in Figures 2 and 3, the DCBSAMP algorithm
has higher reconstruction probability and lower recon-
struction error, but compared with the large step SAMP
algorithm and the DSAMP algorithm with similar experi-
mental results, the performance advantage of the DCBSAMP
algorithm is smaller. It can be approximately considered that
the DCBSAMP algorithm based on the SAMP algorithm
does not reduce the algorithm performance when the
number of measurements M changes. In Experiment 1, we
find that the results of DCBSAMP, SAMP (S� 8) and
DSAMP algorithms are very closed; however, SAMP (S� 8)
and DSAMP algorithms are both at the expense of more
computing resources. Further it is proved by the algorithm
runtime comparison; that is, the DCBSAMP algorithm
consumes less calculation time to achieve better recon-
struction results.

For original signals, the sparsity of different signal
segments may be different. Using the largest possible sparsity
K to realize the reconstruction of theN-dimensional original
signal can detect the effectiveness of algorithms. To compare
the change results of the reconstruction probability of each
algorithm in the case of different sparsity K, we design
experiment 2.

Experiment 2: a Gaussian sparse signal is of length
N� 256 and the number of measurements is fixed as
M� 128. *e sampling matrix is a Bernoulli random matrix.
Different sparsity is chosen from K� 10 to K� 75. *is

Input: sensing matrix A, the measurement signal y, step-size S.
Initialization: r0 � y, Λ0 � ∅, L� S, t� 1, Stage� 0, flag1� 0, flag2� 0, S0 �M/

��
N

√
.

Repeat
(1) If flag2� 0, Jt �max {λj � |〈rt−1, aj〉|, L}, search for the most matching first L atomic indexes; if flag2 > 0, Jt �max {λj � |〈rt−1, aj〉|,,

L1 � (δ − ξ × flag2)L}, select the first L1 atomic indexes.
(2) Ct �Λt−2 ∪ Jt.
(3) θt � (AT

Ct
ACt

)−1AT
Ct

y, Ft �max {|θtj|, L}. Store the first L (L1) optimal atomic indexes in Ct into Ft.
(4) rt � y − AFtθFt. Calculate the residual.
(5) If ║rt║2≥'2, go to 6; otherwise, judge whether flag1� 0 is satisfied. If it is satisfied, set flag1� 1, Λt � Ft �Ft−1, rt−1 � rt−2,

L� L− S1, t� t+ 1 and go to 1; if not, output θ � AT
Ft

× y, K � L.

(6) If ║rt║2≤'1, go to 7; otherwise, judge whether ║rt║2≥║rt−1║2 is satisfied. If it is satisfied, there are Stage� Stage+1, S� round

(
���������

S20 + Stage



)� S1, t� t+ 1, and if flag1� 1, make S1� 0.45S, L� L + S1, go to 1; otherwise, there areΛt � Ft, rt−1 � rt, t� t+ 1, go to
1.

(7) −1flag2� flag2 + 1, if ║rt║2 ≥ ║rt−1║2, Stage� Stage + 1, S� round (a ln (S0+ Stage))� S1, t� t+ 1, go to 1, and if flag1� 1, so
S1� 0.2S, L� L+ S1, go to 1; otherwise, Λt � Ft, rt-1 � rt-2, t� t+ 1, go to 1.

Until iteration stop condition is true.
Output: Estimated sparse signal θ; estimated signal sparsity K.

ALGORITHM 2: *e DCBSAMP algorithm.
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procedure is repeated 1000 times for each value of K. Use
OMP, SP, SAMP (S� 16) (S� 8), DSAMP, AFB, and
DCBSAMP algorithms to reconstruct the signal and observe
its reconstruction probability.

Figure 4 shows that the reconstruction probability of the
DCBSAMP algorithm from K� 10 to K� 75 is always the
best, and the stability is improved by 15.43% compared with
the optimal algorithm. When K≥ 65>M/2, the recon-
struction probability attenuates significantly, and all algo-
rithms cannot maintain the reconstruction probability above
90%. When K< 65, the reconstruction probability of the
DCBSAMP algorithm is better than 90%. Only the SAMP
algorithm with small steps and DSAMP algorithm can
maintain the reconstruction effect close to the algorithm in
this paper at the expense of algorithm efficiency, and the

reconstruction probability of the DCBSAMP algorithm is
always better than that of the two algorithms. *e recon-
struction probability of the other five algorithms attenuates
earlier as the K value increases.

*e experimental results shown in Figure 4 indicate that
the DCBSAMP algorithm has obvious advantage in re-
construction probability compared with other algorithms
when the sparsityK changes. In other words, when the signal
sparsity is high, the DCBSAMP algorithm still has a large
probability to reconstruct the signal, and the application
range of the algorithm is wider. In order to further verify the
engineering practicality of the algorithm, this paper uses a
measured shock wave signals to further explore the re-
construction error and operational efficiency of the
algorithm.

Begin

flag2 = 0?

Initialization: r0 = y, Λ0 = Ø,
L = S, t = 1, Stage = 0,

flag1 = 0, flag2 = 0

Update L1 in (7)

Update rt t = t + 1

flag1 = 1

flag1 = 1?

flag2 = flag2 + 1

||rt||2 > Th1?

||rt||2 ≥ ||rt–1||2? ||rt||2 ≥ ||rt–1||2?

||rt||2 < Th2?

flag1 = 1 ? flag1 = 1 ?

Backtracking

Output
Update S in (6)

And S1 = S
Update S in (6)

And S1 = S

End

S1 = 0.45S S1 = 0.2S

Y

Y

Y

Y

Y Y

Y

N

N N

N
N

N

Y

N

Jt = max{λi = l < rt–1, αj > l,
L (L1)} Ct = Λt–1∪Jt

θ–t = (AT
Ct ACt)

–1 AT
Ct y

Ft = max{|θ–tj|, L}

rt–1 = rt
Λt = Ft

Figure 1:*e flow chart of the DCBSAMP Algorithm (flag1 is a flag bit for judging howmany times the algorithm reaches the iteration stop
condition: when flag1� 0, the algorithm reaches the iteration stop condition for the first time; when flag1� 1, the algorithm reaches the
iteration stop condition for the second time).
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4.2.AShockWaveSignal toAlgorithmPerformance IndexTest.
Intercept a shock wave signal measured by the 15 psi range
sensor and perform preprocessing such as precise inter-
ception and frequency reduction to obtain the shock wave
signal with a length of N� 4096. Use the discrete wavelet
matrix to sparse the signal to get the wavelet domain signal
[4].*e time domain and wavelet domain of the shock waves
are depicted in Figure 5.

*e DCBSAMP algorithm is an improved algorithm
based on the SAMP algorithm, which belongs to sparsity
adaptive algorithms. *e operational efficiency and sparsity
estimation accuracy of the DCBSAMP algorithm are affected
by the true sparsity and step-size of the signal, which is
different from other algorithms relying on sparsity. To
compare the different results of the running time, the es-
timation accuracy of the sparsity, and the reconstruction
error in the case of variable sparsityK of the adaptive sparsity
algorithm, we design experiment 3.

Experiment 3: intercept a shock wave wavelet domain
signal which is of length N� 4096 and the number of
measurements is fixed as M� 2048. *e sampling matrix is
the Bernoulli random matrix. *e sparsity K is generated by
signal amplitude ft less than 0.0008 : 0.0003 : 0.0041. *is
procedure is repeated 45 times for each value of K. Use
DCBSAMP, DSAMP, AFB, and SAMP (S� 16) (S� 8) al-
gorithms respectively to reconstruct the signal, and observe
its reconstruction probability. When the SP algorithm is
used to reconstruct signals with large sparsity, the opera-
tional efficiency is extremely low, and the reconstruction
error is also large. *e robustness of the SP algorithm is
relatively weak. In the actual shock wave test, the length of
the signal N and the sparsity K are very large, so the SP
algorithm is not suitable for the application. *erefore, only
add the OMP algorithm as a control group to compare the
impact of algorithms that rely on sparsity on running time.

Figure 6 depicts that the average running time of the
DCBSAMP algorithm from K� 152 to K� 732 is the shortest
and the algorithm has the highest efficiency. When K� 732,
the advantage of the DCBSAMP algorithm is the most
obvious, which is 59.3% higher than that of the small step
SAMP algorithm and 23.6% higher than that of the large
one.*e running time of the OMP algorithm depends on the
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Figure 2: *e Prob. of exact reconstruction vs. the number of
measurements M. Here, the test signal is of length N� 256 and the
sparsity is fixed as K� 20.
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Figure 4: *e Prob. of exact reconstruction vs. the signal sparsity
K. Here, the test signal is of length N� 256 and the number of
measurements is fixed as M� 128.
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sparsity, and the number of iterations is fixed at K times.*e
running time of the OMP algorithm in Figure 6 is lower than
the small step SAMP algorithm after K> 396. If the step-size
of the sparsity adaptive algorithm is selected appropriately,
the running time can be saved. However, the appropriate S
value cannot be selected directly owing to the unknown
signal. *e larger the step-size selected by the SAMP al-
gorithm in Figure 6 is, the shorter the running time is.
Conversely, the smaller the step-size is, the longer the
running time is. However, the running time of the large step
SAMP algorithm in Figure 6 is always higher than that of the
DCBSAMP algorithm.

As shown in Figure 7, the sparsity estimation accuracy is
the highest during the process of the DCBSAMP algorithm
from K� 152 to K� 732. *e sparsity obtained by the
DCBSAMP algorithm is equal to or approximately equal to
the true sparsity, and the maximum error is only 2.*e error
of AFB and DSAMP algorithms is much higher than that of
the DCBSAMP algorithm. Regardless of whether the SAMP
algorithm chooses large steps or more advantageous small
steps to solve the sparsity, the error is much higher than that
of the DCBSAMP algorithm. Moreover, the sparsity error
curves of the other algorithms fluctuate significantly, and
their stability is much lower than that of the DCBSAMP
algorithm.

We normalize the reconstruction time of the algorithm
to increase the attribute characteristics of the data. Com-
bining it with the overestimation error respectively to obtain
the error result under the effect of the algorithm recon-
struction time and the overestimation is helpful for more

comprehensive evaluation of the performance of the algo-
rithm. *e error result is shown in Figure 8.

Figure 8 demonstrates that the average reconstruction
error of the DCBSAMP algorithm from K � 152 to K � 732
is the smallest. When the operational efficiency gap be-
tween algorithms is large, the error is less affected by the
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Figure 5: Graphics of a shock wave signal in time domain and wavelet domain. Here, the test signal is of lengthN� 4096 and the number of
measurements is fixed as M� 2048. (a) Time domain and (b) wavelet domain.
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sparsity estimation accuracy. On the contrary, when the
efficiency gap is small, the error is greatly affected by the
sparsity estimation accuracy. Although the sparsity esti-
mation accuracy of the small step SAMP algorithm is lower
than that of the large, the algorithm has the least opera-
tional efficiency, resulting in the biggest error. *e
DCBSAMP algorithm has the highest operational efficiency
and sparsity estimation accuracy. *e average error is
reduced by 18.35% compared with the large step SAMP
algorithm.

In summary, the DCBSAMP algorithm can seek a bal-
ance between operational efficiency and estimation effect,
making the algorithm perform better than that of the SAMP,
AFB, and DSAMP algorithms.

5. Conclusions

*is paper proposes an improved SAMP algorithm, which
combines the double threshold variable step-size method
with the candidate set reduction method and the overall
algorithm backtracking method to achieve an effective
improvement in the stability and accuracy of the algorithm
reconstruction. We use a Gaussian sparse signal and a shock
wave signal of the 15 psi range sensor as test signals to verify
the algorithm performance. *e DCBSAMP algorithm is
compared with traditional reconstruction algorithms to
analyze the performance changes. Experiment results show
the superior performance of the DCBSAMP algorithm over
the existing algorithms. Compared with iterative greedy
algorithms: when the number of measurements M changes,
although the performance advantage of the algorithm is
weak, the stability of the algorithm is still enhanced by
11.18%, and the reconstruction accuracy is also improved by
10.85% within the practical range of the algorithm more
than that of the original optimal algorithm; when the
sparsity K changes, the stability is enhanced by 15.43%.
Compared with the SAMP algorithm and its improved al-
gorithms: the operational efficiency of the algorithm has a
maximum improvement of 59.3%. *e maximum estimated
sparsity error is only 2. And the time-overestimation error is
also reduced by 18.35% when compared with the original
optimal average.
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