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.is article deals with three-dimensional non-Newtonian Jeffrey fluid in rotating frame in the presence of magnetic field..e flow
is studied in the application of Hall current, where the flow is assumed in steady states..e upper plate is considered fixed, and the
lower is kept stretched. .e fundamental equations are transformed into a set of ordinary differential equations (ODEs). A
homotopy technique is practiced for a solution. .e variation in the skin friction and its effects on the velocity fields have been
examined numerically. .e effects of physical parameters are discussed in various plots.

1. Introduction

.e rotation of fluid exists in nature due to the fact that the
fluid particles rotate internally and rises with fluid move-
ment. Due to engineering and industrial applications, the
scientist considers the rotational fluid coupled with various
features. Rotational fluids have many applications in engi-
neering. Taylor and Geoffrey introduced the motion of
viscous fluid in the rotating system [1]. .e detailed study of
fluid in rotating system is done by Greenspan [2] and
Goodman [3]. .e effects of MHD in a rotating system and
stretched and porous mediums have been studied by Attia
and Kotb [4], Borkakoti and Bharali [5], and Vajravelu and
Kumar [6]. .is work has been magnified along with the
temperature effects by Mehmood and Ali [7], Das et al. [8],
and Tauseef et al. [9].

.e non-Newtonian fluid is used in many industry and
technology appliances. Hayat et al. studied the non-New-
tonian fluid in a rotating frame, considering the effects of

MHD for micropolar nanofluids [11, 12]. Jeffrey’s model was
presented by Jeffrey as a subclass of non-Newtonian fluid
and studied with convection term [13, 14].

Most of the physical problems are nonlinear and have
rare exact solutions. .e numerical methods (NMs) and
analytical methods (AMs) are used to get the results. .e
NMs required discretization techniques which can affect the
results. Among the AMs, HAM proposed by Liao is the most
powerful and fast convergent [15–19]. Hall introduced Hall
current and proves that, in case of strong magnetic field, the
Hall current effects cannot be ignored [20]. Similar other
interesting studies are provided in [21–32] for different fluid
models. .is article aims to elaborate the non-Newtonian
nanofluid in the rotating frame with Hall effect. Hall effect is
produced due to the potential difference across an electrical
conductor when a magnetic field is acting in a direction
vertical to that of the flow of current. So, for this aim, Jeffrey
fluid flow is considered. For the proposed model, HAM is
used.
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2. Problem Formulation

Assume the Jeffrey fluid between two parallel plates having d
separation. .e plate and fluid rotate about y axis with Ω.
.e lower plate is stretched by two opposite and equal forces.

A uniform magnetic field B0 is applied perpendicularly with
a steady-state condition (Figure 1).
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.e BCs are

u
⌢

(0) � ax,

v
⌢

(0) � 0 � w
⌢

(0),

u
⌢

(d) � v
⌢

(d) � w
⌢

(d) � 0.

(5)

.e similarity transformation used is
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Using equation (6) in (1)–(4), we get
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Substituting equation (8) in (7), we get
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Figure 1: Geometrical structure of the flow problem.
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.e dimensionless form of cf is

cf

���
Rex

􏽰
� 1 + c1( 􏼁

− 1
f″(0) + βf″(0)( 􏼁. (12)

3. Solution Procedure

HAMwas introduced by Liao. LetΨ1,Ψ2 are two continuous
functions defined on topological spaces 􏽥Χ, 􏽥Y, then
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Figure 2: Combined h curves of function and velocity, at the 15th-
order approximation.

Table 1: Convergence table of HAM up to the 25th-order ap-
proximations when R � β � c1 � m � M � 0.01.

Order of approximation f″(0) g′(0)

1 3.18886 0.2207921
3 3.17650 0.2387064
6 3.17584 0.2396453
11 3.17583 0.2396677
15 3.17583 0.2396682
20 3.17583 0.2396682
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Figure 3: Effect of R on f(η) when
m � 0.5, c1 � 0.7, M � 1, β � 0.4, and kr � 0.6.
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Figure 4: Effect of R on g(η)when
m � 0.5, c1 � 0.7, M � 1, β � 0.4, and kr � 0.6.
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Figure 6: Effect ofkr on g(η) when
m � c1 � 0.8, M � 0.4, R � 1, and β � 0.4.
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Figure 5: Effect of kr on f(η) when
m � c1 � 0.8, M � 0.4, R � 1, and β � 0.4.
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Figure 8: Effect of m on g(η) when
R � 1, c1 � 0.7, β � 0.4, M � 1, and kr � 0.6.
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Figure 7: Effect of m onf(η) when
R � 1, c1 � 0.7, β � 0.4, M � 1, and kr � 0.6.
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Figure 10: Effect of c1 on g(η) when
R � 0.1, m � 0.8, β � 0.4, andM � kr � 1.
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Figure 11: Effect of β onf(η) when
R � 1, m � c1 � 0.8, M � 1, and kr � 0.6.
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Figure 12: Effect of β on g(η) when
R � 1, m � c1 � 0.8, M � 1, and kr � 0.6.
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Figure 13: Effect of M on f(η) and g(η) when
R � 1, m � c1 � 0.8, β � 1, and kr � 0.6.
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Figure 14: Effect of M on f(η) and g(η) when
R � 1, m � c1 � 0.8, β � 1, and kr � 0.6.
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where

ζ �
1, if q> 1,

0, if q≤ 1.
􏼨 (22)

4. Convergence of HAM

With the help of assisting constraints hf and hg, the con-
vergence region is achieved. .e possible region of conver-
gence for the proposed model is given in Figure 2 and Table 1.

Table 2: Variation in skin friction coefficient for dissimilar values of R,Kr, β, and c1 when m � 0.1 andM � 0.5.

R Κr c1 β
cf

Shehzad et al. [15] results Present results

0.01
0.5

1.0

0.5

2.63312 3.86416
0.1 2.65133 2.94882
0.5 2.63995 2.64208

1.0

0.0 1.31217 4.33999
0.5 1.25917 4.34157
0.9 1.21694 4.36897

0.5

0.0 2.38508 5.64227
0.5 1.25917 5.44576
0.9 1.03399 4.89911
1.0 0.0 0.61911 2.22743
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5. Results and Discussion

.e effect of R on f(η) and g(η) is given in Figures 3 and 4.
An increase in R decreases f(η) and g(η). .e large
amounts of viscous energy reduction produce large inertial
forces, which decreases f(η) and g(η). .e effect of kr on
the f(η) and g(η) is shown in Figures 5 and 6. It is evident
that an increase in kr increases fluid flow due to increase in
Cariolis force. .is fluid rotation increases kinetic energy
which also increases the flow rate. .e influence of m and c1
on f(η) and g(η) is given in Figures 7–10, respectively. Both
reduce velocity profile..e effect β is given in Figures 11 and
12, showing that the velocity profile increases by increasing
β. .e relaxation time gets smaller by enhancing c1. .e
effects of Μ on f(η) and g(η) are presented in Figures 13
and 14, respectively. β and Μ oppose the flow due to large
relaxation time and magnetic effects. .e magnetic field
opposes the flow in the y direction and enhance in the z
direction.

.e numerical values of R, c1, β, and kr on Cf are
presented in Table 2. We see that Cf has inverse relations
with R, c1, β and decreases Cf while on direct relation with
kr.

6. Conclusion

.e following conclusion is observed:

(i) A rise in R causes to decline cf.
(ii) .e mass flux decreases at a lower plate and in-

creases at upper plate.
(iii) R, c1, m resist the velocity profile.
(iv) β, Kr assist the velocity profile.
(v) M resists the flow along the y direction and assists

the flow along the z direction.

Nomenclature

Gravitational acceleration: g (m/S2)
Density: ρ (kg/m3)
Distance between two plates: d (m)
Angular velocity: Ω (m2/s)
Magnetic field: B0
Ratio of time relaxation to time
retardation:

c1

Shear stress: τ (kg/ms2)
Electrical conductivity: σ (Siemens per meter

(S/m))
Time: t (S)
Velocity: V (m/s)
x-component: u (m/s)
y-component: v (m/s)
z-component: w (m/s)
Dynamic viscosity: μ (kg/ms)
Kinematic viscosity: ] (m2/s)
Volume: V (m3)
Pressure: P (N/m2).
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available in the manuscript.
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